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Load Disaggregation Based on
Aided Linear Integer Programming

Md. Zulfiquar Ali Bhotto, Stephen Makonin, and Ivan V. Bajić

Abstract—Load disaggregation based on aided linear integer
programming (ALIP) is proposed. We start with a conventional
linear integer programming (IP) based disaggregation and en-
hance it in several ways. The enhancements include additional
constraints, correction based on a state diagram, median filtering,
and linear programming-based refinement. With the aid of these
enhancements, the performance of IP-based disaggregation is
significantly improved. The proposed ALIP system relies only on
the instantaneous load samples instead of waveform signatures,
and hence works well on low-frequency data. Experimental
results show that the proposed ALIP system performs better
than conventional IP-based load disaggregation.

Index Terms—Integer programming, combinatorial optimiza-
tion, linear programming, load disaggregation, NILM

I. INTRODUCTION

Load disaggregation or non-intrusive load monitoring
(NILM) is the process of finding out how much each appliance
within a household is consuming when only the aggregate
current or power reading is available [1]. Such readings
are now available through smart meters, which have been,
or are being, installed by most power utilities. In addition
to determining appliance consumption patterns, NILM could
help balance different loads within a power network [2] by
predicting demand without the use of additional sensors.

Recent disaggregation methods make use of machine learn-
ing approaches such as clustering [3], fuzzy systems [4], and
hidden Markov models [5]–[9]. Such methods might lead to
practical solutions when large and sufficiently representative
datasets become available for training, which is still not the
case. The ultimate goal for NILM is to enable disaggregation
without the need for supervised learning. There has been
some recent progress in this area [10], [11], although the
accuracy of such methods is still low. Alternative approaches
such as combinatorial optimization or integer programming
(IP) have been much less explored. Two notable earlier works
on IP-based disaggregation include Egarter et al. [12] and
Suzuki et al. [13]. Egarter et al. formulated disaggregation as
a modified knapsack problem and proposed a solution using
an evolutionary algorithm. From a practical standpoint, the
drawback here is that evolutionary algorithms potentially have
a long execution time, and their stochastic nature may lead to
different solutions in different runs, even on the same data.
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Our goal here is to develop a simpler and more principled
approach that gives repeatable results.

The other IP-based disaggregation proposal was by
Suzuki et al. [13] in 2008 using high-frequency sampled
current readings. We extract the IP portion of [13] (without
the load signature part) and enhance it in multiple ways to
improve disaggregation accuracy. The enhancements include
additional constraints, correction based on a state diagram, me-
dian filtering, and linear programming-based refinement.Our
method works on low-frequency data, which is a more realistic
solution for current smart meters that usually report power
readings at intervals of 8–15 seconds1.

The remainder of the paper is organized as follows. We
mathematically define the problem of load disaggregation as a
mixed-integer linear IP problem in Section II. We propose sev-
eral enhancements to IP-based disaggregation in Section III,
which is our main contribution. A number of experimental
results with a comparison to previous works are reported
in Section IV, followed by conclusions in Section V.

II. LOAD DISAGGREGATION AS INTEGER PROGRAMMING

Consider a household with n appliances, where the i-th
appliance (i = 1, 2, . . . , n) has li non-OFF states. For example,
a conventional light bulb would have one non-OFF state.
Vector ri ∈ Rli contains the voltampere (VA) ratings of the li
non-OFF states of the i-th appliance. Let m =

∑n
i=1 li. With

this we construct vector r = [r1; r2; · · · ; rn] that contains all
VA (or Watt) ratings of all n appliances. For the k-th time
instant, the indicator of each non-OFF state is stored in a
vector bk as

bk[i] ∈ {1, 0} for i = 1, 2, . . . ,m, (1)

with 1 denoting that the particular state is active and 0 denoting
the state is inactive.

At the k-th time instant, the smart meter yields the total
VA reading zk, which is the sum of all power drawn by n
appliances at that time. This can be expressed as

sk = F diag(bk)r (2)
zk = htsk (3)

where h = [1; 1; · · · ; 1] ∈ Rn and vector sk ∈ Rn contains
VA draws of each appliance that is turned ON. The binary
matrix F ∈ Rn×m in (2) is a block diagonal matrix given as

F = diag(1t
1, 1t

2, . . . ,1
t
n)

1For example, Rainforest Automation’s EMU2 device polls the smart meter
at 15 second intervals, while their Eagle product polls at 8 seconds. In the
UK it is mandated to 10 seconds [14, p. 78].
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where 1i ∈ Rli is a unity vector for i = 1, 2, . . . , n.
The objective of load disaggregation is to find which ap-

pliance states are active at the k-th time instant. Specifically,
the goal is to find bk in (2) by using the known quantities
zk, F, and r. Similarly to [13], load disaggregation can be
formulated as an integer programming (IP) problem

minimize (zk − htF diag(bk) r)
2
.

bk
(4)

Like any IP, this problem can be solved by exhaustive search
over all possibilities for bk, however this approach can be
prohibitive even for a moderate number of appliances. The
alternative is to explore more efficient IP solvers [15].

Before proceeding to enhancements, we reformulate (4) as a
mixed-integer linear IP. Let qj =

∑j−1
i=1 li. Since any appliance

must be in exactly one state at any given time and vector
bk is an indicator for non-OFF states, we can formulate this
constraint as

bk[qj + 1] + bk[qj + 2] + · · ·+ bk[qj + lj ] ≤ 1

for j = 1, 2, ..., n. Let v = r � (Fth) where � denotes the
element-wise product. Further, let v̌ = [0; v], u1 = [1; 0],
f = [1; 0], and xk = [δ; bk], where δ is an auxiliary real
variable. We can now rewrite the quadratic IP in (4) as a
mixed-integer linear IP

minimize f txkxk
(5)

subject to

Axk ≤ e (6)
xk[i] ∈ {1, 0} for i = 2, 3, . . . ,m+ 1 (7)

where matrix A and vector e in (6) are given by A = [−(v̌+
u1)t; (v̌−u1)t; F̌] and e = [−zk; zk; 1] and the rows of the
binary matrix F̌ are copies of the rows of matrix F that have
more than one nonzero element.

The solution of (5)–(7) leads to correct disaggregation
only if the elements in r are not binary combinations (linear
combinations with coefficients 0 or 1) of each other, and the
deviations from the steady-state power/current draw during
transients do not overlap with the steady-state draws of other
appliances, or their combinations. In practice, these criteria
are rarely met, so disaggregation based on (5)–(7) would yield
unsatisfactory results. This can also be true for an appliance
with an infrequently occurring state with a high rating, since
an undetected state with high rating would significantly reduce
the accuracy score (Section IV). In the next section we
introduce several enhancements that are meant to overcome
the aforementioned limitations of the above IP disaggregation.

III. AIDED LINEAR IP FOR LOAD DISAGGREGATION

The proposed aided linear IP (ALIP) for load disaggregation
incorporates several enhancements to the IP given in (5)–(7),
each of which is discussed next.

A. Additional Constraints

The first enhancement involves additional constraints that
help resolve ambiguities related to the possible non-uniqueness

of the solution to the IP. First, consider appliances like
refrigerator, surveillance camera, smoke detector, heat pump,
etc., that happen to switch between the “sleep mode” and one
or more higher-power states. In other words, these appliances
always draw some power. We can incorporate this additional
information as an equality constraint to be added to (5)–(7),

Aeqxk = 1 (8)

where each row in the binary matrix Aeq has unity elements
only in those positions that correspond to the states of those
appliances in vector xk that remain turned ON at all time.

Next, consider the scenario where the rating of a given state
of an appliance is equal to the sum of the ratings of some of the
states of other appliances. For example, an appliance H1 could
have a VA rating 300 in one of its states, and appliances H2
and H3 could have VA ratings of 100 and 200, respectively,
in some of their states. Then a reading zk = 300 could be
interpreted in two ways - either H1 is ON, or H2 and H3
are simultaneously ON. To break such ties, we assume the
minimum number of appliances is ON at any given time -
a heuristic that does not always hold, but turns out to be
surprisingly good based on empirical evidence in existing
datasets. This can be incorporated into the IP by using an
additional row in the binary A and an additional 1 in e in (6).
The additional row in A would have unity elements only in
those positions that correspond to the states where the ratings
become binary combinations of each other.

Finally, consider the scenario where the rating of a given
appliance (say H1) is equal to the amount by which the steady-
state rating of another appliance (say H2) differs from its
transient VA measurement. The transient reading may cause
the IP solver to declare both H1 and H2 as ON, even though
only H2 is in the ON transient. Such situation can also be
avoided by using an additional row in the binary matrix A
and an additional 1 in e in (6), where the additional row in
A has unity elements only in those positions that correspond
to the states whose combinations produce a transient rating of
another appliance.

B. Correction Based on State Transition Diagrams
Many appliances operate as finite state machines and their

possible state transitions can be described by a state transition
diagram (STD). For example, the fridge (FRG) appliance from
the dataset in [16] has the STD shown in Fig. 1. This offers the
possibility to correct the output of an IP solver if it happens
to violate the STD. For example, if FRG was in state s1 at
time k − 1, then at time k it can only be in s1 or s2. If the
IP solver output suggests otherwise, we know there must be
an error, and can therefore select either s1 or s2, depending
on which of the two options yields lower cost f txk in (5).
The same type of correction can also be applied backwards
(for example, the only way to get to s3 is either from s2 or
s3), although we did not incorporate such processing in our
experiments.

C. Median Filtering
Median filtering can help filter out implausible events such

as frequent switching between states, which may occur in the
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Fig. 1. State transition diagram (STD) of FRG from [16].
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Fig. 2. ALIP flowchart.

IP solver output if the ratings of a particular appliance are
much smaller than the total reading zk. Consider the appliance
B1E from [16], which has a fully-connected 2-state diagram
(Fig. 1 with states s3 and s4 deleted). Although any transition
between these two states is possible, it is implausible that the
appliance changes state at each sampling instant; we expect
it to stay in a state for at least a few sampling instants. To
enforce this, we apply the correction rule

ŝk−L =

{
s1 if ŝk−L = s2 and med(ŝk, ŝk−1, . . . , ŝk−L) = s1

s2 if ŝk−L = s1 and med(ŝk, ŝk−1, . . . , ŝk−L) = s2
(9)

for k > L in the solution obtained by the IP solver. In
other words, the state estimate at time k − L (i.e., ŝk−L)
is corrected based on the current state estimate ŝk and the
corrected state does not affect the subsequent median filter
outputs. Analogous corrections are applied to all states of all
appliances.

D. Linear Programming-Based Refinement

As mentioned before, vector r contains steady-state appli-
ance ratings, which could be obtained from appliance data
sheets or measurements. However, VA (or Watt) values for
transients between states are usually much more difficult to
obtain, and even if this were possible, incorporating transient
state ratings into the model would tremendously increase the
model size (i.e., number of states) m. Yet, if the sampling
instance happens to catch a transient of one or more appli-
ances, it could lead to incorrect solution of the IP. For this
reason, we develop a method to refine the IP solution using
only the minimum and maximum transient rating of each
appliance, which is easier to obtain, either from the data sheet
or measurement.

Let rmin and rmax be the vectors of the same size as
r that contain, respectively, the minimum and maximum
transient ratings for each state of each appliance. Let vector
p1 contain indices of r for which rmin(p1) = rmax(p1) =
r(p1). Such states do not exhibit transient behavior. Let the
vector p2 contain the indices of other, potentially transient,
states, that have been declared active by the IP solver (i.e.,
the corresponding value in bk is 1). If p2 is non-empty, then

the current measurement may contain transient states and the
solution given by the IP solver needs to be refined.

Let h = Fth and wk = bk � r. To refine the solution, we
solve the following problem

minimize
(
zk − htyk

)2
yk

(10)

subject to

yk(p1) = wk(p1) (11)
rmin(p2) ≤ yk(p2) ≤ rmax(p2) (12)

Constraints (11)–(12) force the non-transient states to match
the steady-state ratings in r while requiring potentially tran-
sient states to be between the corresponding minimum and
maximum.

The cost function can be simplified by subtracting out
the steady-state portion of the measurement, žk = zk −
h(p1)twk(p1), and focusing on the transient portion of yk,
i.e., y̌k = yk(p2). Then, applying a similar procedure as
in Section II, the problem can be converted to a linear
programming problem. With x̌ = [δ; y̌k], ȟ = [0; 1], u1

= [1; 0], and f = [1; 0], the problem becomes

minimize f tx̌
x̌ (13)

subject to
Ax̌ ≤ e (14)

where matrix A and vector e in (14) are given by A
= [−(ȟ + u1)t; (ȟ − u1)t; [0 −I]; [0 I; ]] and e =[
−žk; žk; −řl; řu

]
, respectively.

The flowchart of ALIP is shown in Fig. 2. Further steps
such as time-of-day probabilities can be incorporated in order
to further improve disaggregation accuracy.

IV. EXPERIMENTAL RESULTS

We compare the performance of our ALIP method with the
IP-based disaggregation from [13] in terms of two accuracy
measures [17]: per appliance accuracy

ACi = 1−
∑N

k=1 |sk[i]− ŝk[i]|
2
∑N

k=1 |sk[i]|
and overall accuracy

ACC = 1−
∑N

k=1

∑n
i=1 |sk[i]− ŝk[i]|

2
∑N

k=1

∑n
i=1 |sk[i]|

where sk[i] is the ground-truth rating of the i-th appliance
at time index k from the dataset and ŝk[i] is its estimate
obtained by disaggregation. In all experiments, the steady-state
ratings of each appliance were determined empirically from
the datasets from the power consumption of each appliance
separately. The maximum and minimum transient VA or Watt
values for the ALIP disaggregator were also determined empir-
ically. The aggregate VA or Watt totals for the appliances used
in the experiments were computed from aggregated individual
appliance readings. For ALIP, the enhancements were applied
in the order depicted in the flowchart in Fig. 2. All ratings
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Fig. 3. AC and ACC plots for Experiment 1.

and parameters used in the experiments can be found in the
Matlab code2, which can be used to reproduce all the results.

In Experiment 1 we used n = 4 appliances (CDE, FRG,
HPE, and B1E) from the dataset in [16]. The number of states
considered for the CDE, FRG, HPE, and B1E appliances were
3, 4, 4, and 2, respectively. The total number of samples
considered was 72×5040, which we partitioned into 72 blocks
of data each containing N = 5040 samples. This number of
samples covers 9 months worth of readings. We computed AC
and ACC for each block. The AC curves obtained by using
the IP and proposed ALIP disaggregators for CDE, FRG, and
B1E appliances are illustrated in Fig. 3, along with the ACC
curves. We have not illustrated AC curves for HPE, since both
disaggregators produced very similar curves for this appliance.

It is seen from the AC, CDE plots (top-left in Fig. 3) that
ALIP performs better than IP consistently in all blocks. The
same is true for B1E (bottom-left in Fig. 3). From the AC,
FRG plots it is seen that the ALIP performs considerably
better than IP in many blocks, while IP performs marginally
better in some blocks. This is because FRG has occasional
impulsive VA readings which get filtered out by ALIP but not
by IP. Overall, however, ALIP disaggregates FRG better than
IP. From the ACC plots (bottom-right of Fig. 3), it can be seen
the ALIP disaggregator is overall more accurate than the IP
disaggregator - usually by 5–8%, and in some cases by up to
20%. The AC values obtained over the whole 9 months worth
of data are given in Table I, while the overall ACC measure
for this and other experiments is given in Table II. As seen in
these tables, ALIP outperforms IP on each appliance, as well
as overall.

In Experiment 2 we used n = 7 appliances (OVN, RFG,
DSH, MIC, DRY, BTH, and DIF) from house 1 of the REDD
dataset [5], with m = 13 states. We down-sampled the data
by a factor 20 to obtain the samples at 1-minute intervals.
The AC values are given in Table I and the overall ACC in
Table II. Again, ALIP performs better than IP on all appliances
individually, as well as overall.

In Experiment 3 we used n = 6 appliances (KTC, LTE,
STV, MIC, DRY, and DSH) from house 2 in [5], with m = 17
states. We downsampled the data by a factor 5 to obtain the

2http://www.sfu.ca/∼ibajic/software/NILM-TCAS.rar

TABLE I
RESULTS FOR EXP. 1–7

Exp. Dataset ID Appliance IP ALIP
1 AMPds CDE Clothes Dryer 0.986 0.987

FRE Furnace Fan 0.891 0.909
HPE Heat Pump 0.955 0.957
B1E Bedroom 0.600 0.757

2 REDD OVN Oven 0.65 0.63
House 1 FRG Refrigerator 0.79 0.85

DSH Dishwasher 0.88 0.92
MIC Microwave 0.74 0.83
DRY Clothes Dryer 0.64 0.78
BTH Bathroom GFI 0.64 0.70
DIF Unmetered 0.60 0.95

3 REDD KTC Kitchen Outlets 0.88 0.95
House 2 LTE Lighting 0.91 0.96

STV Stove 0.71 0.75
MIC Microwave 0.78 0.88
DRY Clothes Dryer 0.98 0.85
DSH Dishwasher 0.84 0.90

4 REDD FRG Refrigerator 0.91 0.89
House 3 DSH Dishwasher 0.83 0.90

DRY Clothes Dryer 0.83 0.99
MIC Microwave 0.59 0.87
BTH Bathroom GFI 0.68 0.91
FRN Furnace 0.66 0.76
SMK Smoke Detector 0.16 0.64

5 REDD LTE Lights 0.75 0.73
House 4 KTC Kitchen Outlets 0.64 0.80

DRY Clothes Dryer 0.67 0.65
STV Stove 0.64 0.66
ARC Air Conditioner 0.57 0.53
SMK Smoke Detector 0.32 0.79
DSH Dishwasher 0.70 0.88
BTH Bathroom GFI 0.82 0.89

6 REDD MIC Microwave 0.38 0.55
House 5 LTE Lighting 0.77 0.84

UKN Unknown Circuit 0.61 0.67
SBP Sub-Panel 0.62 0.72
HEA Heater 0.91 0.93
DIF Unmetered 0.75 0.96

7 REDD ELE Electronics 0.70 0.70
House 6 BTH Bathroom GFI 0.53 0.56

FRG Refrigerator 0.64 0.77
UKN Unknown Circuit 0.68 0.73
LTE Lighting 0.64 0.91
ARC Air Conditioner 0.73 0.98
DIF Unmetered 0.51 0.70

samples at 15-second intervals. The AC values are given in
Table I. As seen in the results, ALIP performs significantly
better than IP on all appliances except DRY. This is because
DRY has a state with a high VA rating, whose occurrence is
infrequent, and the median filter has filtered out some of its
occurrences. As a result, the accuracy of ALIP gets reduced
compared to IP on DRY. Nonetheless, the accuracy of ALIP on
DRY is still acceptable and its overall accuracy is significantly
better than that of IP, as seen in Table II.

In Experiment 4 we used n = 7 appliances (KTC, LTE,
STV, MIC, DRY, and DSH) from house 3 in [5], with m = 20
states. We downsampled the data by a factor 10 to obtain the
samples at 30-second intervals. The AC values are given in
Table I, where we see that ALIP performs significantly better
than IP on all appliances except FRG, where it performs sim-
ilarly due to the reasons discussed in Experiment 1. Overall,
again, ALIP outperforms IP by a significant margin as Seen
in Table II.

In Experiment 5 we used n = 8 appliances (LTE, KTC,
DRY, STV, ARC, SMK, DSH, and BTH) from house 4 in [5],

http://www.sfu.ca/~ibajic/software/NILM-TCAS.rar


1549-7747 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2603479, IEEE
Transactions on Circuits and Systems II: Express Briefs

5

with m = 20 states. The data was downsampled factor 10 to
obtain the samples at 30-second intervals. As seen in Table I,
IP performs slightly better than ALIP on LTE, DRY and ARC,
but the difference is small, within 4%. However, on other
appliances ALIP performs better than IP, and in most cases
by a significant margin. Note that IP yields a negative AC
value for SMK, which means that it produces false positives
more often than true positives. Overall, ALIP has a significant
advantage over IP, as seen in Table II.

TABLE II
ACC RESULTS (INCL. PUBLISHED COMPARISON)

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7
IP 0.92 0.51 0.70 0.64 0.43 0.57 0.46

ALIP 0.96 0.76 0.82 0.87 0.76 0.83 0.79
[5] – 0.47 0.51 0.33 0.52 – 0.56
[6] – 0.82 0.85 0.82 – – 0.78

TABLE III
AVERAGE EXECUTION TIME PER DATA SAMPLE (MILLISECONDS)

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7
IP 14.2 15.3 15.1 14.7 16.0 17.0 17.3

ALIP 15.4 16.7 17.0 16.9 18.5 17.0 18.8

In Experiment 6 we used n = 6 appliances (MIC, LTE,
UKN, SBP, HEA, and DIF) from house 5 in [5], with m = 24
states. The data were downsampled by a factor 10 to obtain
the samples at 30-second intervals. Here, ALIP outperforms
IP on all appliances, as well as in overall accuracy, as seen in
Tables I and II, respectively.

Finally, in Experiment 7 we used n = 7 appliances (ELE,
BTH, FRG, UKN, LTE, ARC, and DIF) from house 6 in [5],
with m = 20 states. The data were downsampled by a factor
10 to obtain the samples at 30-second intervals. Again, ALIP
outperforms IP consistently on all appliances, as well as in
overall accuracy, as seen in Tables I and II, respectively.

In Table II we also include the published ACC results
of two state-of-the-art machine learning-based disaggregation
approaches, [5] and [6], on the REDD dataset. Note that [5]
and [6] did not report the results for all the houses. Although
these methods used different downsampling rates and there
is some uncertainty about the processing of data prior to
testing, the comparison gives us a feeling for how the proposed
ALIP would compare against machine learning-based disag-
gregation. We note that against [5], ALIP scores on average
0.32 better. Against [6], it scores on average 0.03 better on
houses 3 and 6, and on average 0.04 lower on houses 1 and 2.
Based on these results, we conclude that the proposed ALIP
is competitive in terms of accuracy with the state-of-the-art
machine learning-based disaggregation approaches.

A final word on complexity. The proposed ALIP approach
incorporates several additional processing steps compared to
the conventional IP-based disaggregation. Hence, its compu-
tational complexity is slightly higher. In Table III we list
the average execution time (in milliseconds) per sample of
IP and ALIP disaggregators for Experiments 1–7, which
were obtained in Matlab 2015a using intlinprog and
linprog (with default settings) on an Intel(R) Core(TM) i7-
4770 CPU@3.40 GHz processor with 16 GB RAM. As seen
in the table, ALIP is only slightly slower than IP, and both
disaggregators take less than 20 ms per data sample.

V. CONCLUSION

Integer programming (IP) provides a natural way to solve
the load disaggregation problem, by trying to determine which
appliance states are active at any given time. However, pre-
vious IP-based disaggregation is shown to run into problems
on real data due to issues related to transient readings and
in cases when some states are binary combinations of other
states. We proposed an aided linear IP (ALIP) approach for
disaggregation that overcomes many of the shortcomings of
the previous IP-based approach. Experimental results demon-
strate significant accuracy advantage of ALIP over the previous
IP-based disaggregation method, as well as competitive per-
formance against two state-of-the art machine learning-based
disaggregation approaches.

REFERENCES

[1] S. Makonin, F. Popowich, and B. Gill, “The cognitive power meter:
Looking beyond the smart meter,” in Proc. IEEE Canadian Conference
on Electrical and Computer Engineering (CCECE), 2013.

[2] V. Zdraveski, M. Todorovski, D. Trajanov, and L. Kocarev, “Dynamic
load balancing and reactive power compensation switch embedded in
power meters,” IEEE Transactions on Circuits and Systems II: Express
Briefs, 2016.

[3] G. C. Koutitas and L. Tassiulas, “Low cost disaggregation of smart meter
sensor data,” IEEE Sensors J., vol. 16, pp. 1665–1673, Mar. 2016.

[4] P. Ducange, F. Marcelloni, and M. Antonelli, “A novel approach based
on finite-state machines with fuzzy transitions for nonintrusive home
appliance monitoring,” IEEE Trans. Ind. Informat., vol. 10, pp. 1185–
1197, May 2014.

[5] J. Z. Kolter and M. J. Johnson, “REDD: a public data set for energy
disaggregation research,” in Proc. SustKDD Workshop on Data Mining
Applications in Sustainability, 2011.

[6] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric hidden semi-
markov models,” The Journal of Machine Learning Research, vol. 14,
no. 1, pp. 673–701, 2013.

[7] M. Zeifman, “Disaggregation of home energy display data using prob-
abilistic approach,” IEEE Trans. Consum. Electron., vol. 58, pp. 23–31,
Feb. 2012.

[8] D. Egarter, V. P. Bhuvana, and W. Elmenreich, “PALDi: online load dis-
aggregation via particle filtering,” IEEE Trans. Instrum. Meas., vol. 64,
pp. 467–477, Feb. 2015.

[9] S. Makonin, F. Popowich, I. V. Bajić, B. Gill, and L. Bartram, “Ex-
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