249 research outputs found

    Pipelining the Fast Multipole Method over a Runtime System

    Get PDF
    Fast Multipole Methods (FMM) are a fundamental operation for the simulation of many physical problems. The high performance design of such methods usually requires to carefully tune the algorithm for both the targeted physics and the hardware. In this paper, we propose a new approach that achieves high performance across architectures. Our method consists of expressing the FMM algorithm as a task flow and employing a state-of-the-art runtime system, StarPU, in order to process the tasks on the different processing units. We carefully design the task flow, the mathematical operators, their Central Processing Unit (CPU) and Graphics Processing Unit (GPU) implementations, as well as scheduling schemes. We compute potentials and forces of 200 million particles in 48.7 seconds on a homogeneous 160 cores SGI Altix UV 100 and of 38 million particles in 13.34 seconds on a heterogeneous 12 cores Intel Nehalem processor enhanced with 3 Nvidia M2090 Fermi GPUs.Comment: No. RR-7981 (2012

    Particle-in-cell simulation using asynchronous tasking

    Get PDF
    Recently, task-based programming models have emerged as a prominent alternative among shared-memory parallel programming paradigms. Inherently asynchronous, these models provide native support for dynamic load balancing and incorporate data flow concepts to selectively synchronize the tasks. However, tasking models are yet to be widely adopted by the HPC community and their effective advantages when applied to non-trivial, real-world HPC applications are still not well comprehended. In this paper, we study the parallelization of a production electromagnetic particle-in-cell (EM-PIC) code for kinetic plasma simulations exploring different strategies using asynchronous task-based models. Our fully asynchronous implementation not only significantly outperforms a conventional, synchronous approach but also achieves near perfect scaling for 48 cores.Peer ReviewedPostprint (author's final draft

    Particle-In-Cell Simulation using Asynchronous Tasking

    Get PDF
    Recently, task-based programming models have emerged as a prominent alternative among shared-memory parallel programming paradigms. Inherently asynchronous, these models provide native support for dynamic load balancing and incorporate data flow concepts to selectively synchronize the tasks. However, tasking models are yet to be widely adopted by the HPC community and their effective advantages when applied to non-trivial, real-world HPC applications are still not well comprehended. In this paper, we study the parallelization of a production electromagnetic particle-in-cell (EM-PIC) code for kinetic plasma simulations exploring different strategies using asynchronous task-based models. Our fully asynchronous implementation not only significantly outperforms a conventional, synchronous approach but also achieves near perfect scaling for 48 cores.Comment: To be published on the 27th European Conference on Parallel and Distributed Computing (Euro-Par 2021

    A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    Get PDF
    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandybridge 8-core CPU by a factor of 3.4

    An efficient mixed-precision, hybrid CPU-GPU implementation of a fully implicit particle-in-cell algorithm

    Full text link
    Recently, a fully implicit, energy- and charge-conserving particle-in-cell method has been proposed for multi-scale, full-f kinetic simulations [G. Chen, et al., J. Comput. Phys. 230,18 (2011)]. The method employs a Jacobian-free Newton-Krylov (JFNK) solver, capable of using very large timesteps without loss of numerical stability or accuracy. A fundamental feature of the method is the segregation of particle-orbit computations from the field solver, while remaining fully self-consistent. This paper describes a very efficient, mixed-precision hybrid CPU-GPU implementation of the implicit PIC algorithm exploiting this feature. The JFNK solver is kept on the CPU in double precision (DP), while the implicit, charge-conserving, and adaptive particle mover is implemented on a GPU (graphics processing unit) using CUDA in single-precision (SP). Performance-oriented optimizations are introduced with the aid of the roofline model. The implicit particle mover algorithm is shown to achieve up to 400 GOp/s on a Nvidia GeForce GTX580. This corresponds to 25% absolute GPU efficiency against the peak theoretical performance, and is about 300 times faster than an equivalent serial CPU (Intel Xeon X5460) execution. For the test case chosen, the mixed-precision hybrid CPU-GPU solver is shown to over-perform the DP CPU-only serial version by a factor of \sim 100, without apparent loss of robustness or accuracy in a challenging long-timescale ion acoustic wave simulation.Comment: 25 pages, 6 figures, submitted to J. Comput. Phy
    corecore