486 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Energy and Load Aware Multipath Route Selection for Mobile Ad hoc Networks

    Get PDF
    Routing protocols are crucial in delivering packets from source to destination in scenarios where destinations are not directly within the sender’s range. Various routing protocols employ different strategies, but their presence is indispensable for seamless data transfer from source to destination. Multipath routing, while offering load balancing, often falls short in efficiently distributing the network’s load, thus adversely impacting the vital communication resource—energy—due to packet loss. This paper introduces an Energy-Efficient Load-Aware Routing (ELAM) scheme to enhance the routing performance of Mobile Ad hoc Networks (MANETs). Our motivation stems from the observation that many multipath routing protocols are designed based on a single criterion, such as the shortest path, often neglecting load balancing or energy conservation. While the Ad Hoc On-Demand Multipath Distance Vector (AOMDV) protocol demonstrates improved performance compared to unipath routing schemes, achieving both load balancing and energy efficiency remains challenging.  The proposed ELAM scheme considers energy conservation, the shortest path, and load balancing to enhance the performance of multipath routing protocols. ELAM considers the shortest path and energy conservation while accommodating more than two paths in a MANET. We introduce an energy factor that contributes to the network’s lifespan, with efficient load balancing enhancing the longevity of nodes and the overall network. The energy factor provides insights into the energy status, and we evaluate the performance of AODV, AOMDV, and the proposed ELAM. The results demonstrate that the proposed scheme outperforms existing protocols and effectively manages unnecessary energy consumption by mobile nodes. Our performance analysis reveals a minimum 5% improvement in throughput and Packet Delivery Ratio (PDR), indicating reduced packet dropping and network delays

    Adaptive Multicast Multimedia Transmission Routing Protocol System (ACMMR) for Congestion Control and Load Balancing Techniques in Mobile Adhoc Networks

    Get PDF
    A MANET is a probable solution for this need to quickly establish interactions in a mobile and transient environment. Proposed congestion controlled adaptive multicasting routing protocol to achieve load balancing and avoid congestion in MANETs. The existing algorithm for finding multicasting routes computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes to target node. Routing may let a congestion happen, which is detected by congestion control, but dealing with congestion in this reactive manner results in longer delay and redundant packet loss and requires significant overhead if a new route is needed. Transmission of real-time video typically has bandwidth, delay, and loss requirements. Video transmission over wireless network poses many challenges. To overcome these challenges, extensive research has been conducted in the various areas of video application

    Light Load Path Selection Techniques for Control Congestion in MANET (ENBA)

    Get PDF
    The nodes have limited bandwidth and processing capability. The routing protocols cannot handle the congestion due to heavy load in mobile ad hoc networks. Several routes are established in the network, and some intermediate nodes are common. The dynamic behaviour of the network creates problems for strong link establishment. The routing protocol establishes the connection between the sender and receiver. The efficient routing approach uses the concept of load balancing to reduce packet loss in a network. The heavy load on the network affects the node’s buffer capacity and link capacity. The research proposed the Effective Network Behavior Analyze (ENBA) for route sections to control congestion in MANET. This paper’s effort is driven by the idea of considering several aspects of the routing design of Mobile Ad hoc Networks (MANETs) in a unified manner. ENBA is a routing strategy that uses the shortest path for routing and balances the load by managing incoming and outgoing packets on links and nodes. In this routing scheme, the shortest path measures the buffer capacity of the nodes with higher TTL values selected for sending the data packets in the network. The link capacity is based on the flow of packets in the network. Queue optimisation is a continuous optimisation in which we count the number of packets incoming and decide the link reliability in a dynamic network. The performance of ENBA is compared with the Ad hoc On-demand Multipath Distance Vector -Modified (AOMDV-M) routing protocol. The ENDA strategy outperforms the competition in terms of performance over a shorter period. In the proposed technique, performance matrices like PDR, overhead, and delay provide better results than the previous AOMDV-M routing approach

    Control bit Based Congestion Control in Mobile Ad-hoc Network using OLSR Protocol

    Get PDF
    MANET is mobile ad-hoc network having various mobile nodes moves from position to the other position. While moving they can be at different speeds. Such that sometimes they are neighbor of given node and some time they become neighbor of other node. Each time the neighbor lists get changed. So each time each node has to upgrade the neighbor list. Each source node identifies the route by broadcast the route request. In congestion control mechanism in current research control bit is used. Before sending any data packet control signal will be send. If this control bit will be acknowledged then path is assumed to be cleared from congestion and send the packet on the route. Else alternative route will be selected. While this technique performance will be measured on the basis of different parameters like end to end delay, packet Delivery Ratio, Success rate and throughput. Under current research someparameter has improved compared to the previous mechanism. This we have tested over to the OLSR protocol and compared it with AODV based existing technique

    An Improvement in Congestion Control Using Multipath Routing in Manet

    Get PDF
    The ad hoc connections, which opens many opportunities for MANET applications. In ad hoc network nodes are movable and there is no centralised management. Routing is an important factor in mobile ad hoc network which not only works well with a small network, but also it can also work well if network get expanded dynamically. Routing in Manets is a main factor considered among all the issues. Mobile nodes in Manet have limited transmission capacity, they intercommunicate by multi hop relay. Multi hop routing have many challenges such as limited wireless bandwidth, low device power, dynamically changing network topology, and high vulnerability to Failure. To answer those challenges, many routing algorithms in Manets were proposed. But one of the problems in routing algorithm is congestion which decreases the overall performance of the network so in this paper we are trying to identify the best routing algorithm which will improve the congestion control mechanism among all the Multipath routing protocols

    An Improvement in Congestion Control Using Multipath Routing in MANET

    Get PDF
    The ad hoc connections, which opens many opportunities for MANET applications. In ad hoc network nodes are movable and there is no centralised management. Routing is an important factor in mobile ad hoc network which not only works well with a small network, but also it can also work well if network get expanded dynamically. Routing in Manets is a main factor considered among all the issues. Mobile nodes in Manet have limited transmission capacity, they intercommunicate by multi hop relay. Multi hop routing have many challenges such as limited wireless bandwidth, low device power, dynamically changing network topology, and high vulnerability to Failure. To answer those challenges, many routing algorithms in Manets were proposed. But one of the problems in routing algorithm is congestion which decreases the overall performance of the network so in this paper we are trying to identify the best routing algorithm which will improve the congestion control mechanism among all the Multipath routing protocols. Keywords: Disjoint Multipath, Multi hop, reliability, Congestion Control, Optimizatio

    On-demand Multipath Routing Protocols for Mobile Ad-Hoc Networks: A Comparative Survey

    Get PDF
    A Mobile Ad Hoc Network (MANET) is an infrastructure-less, self-organized and multi-hop network with a rapidly changing topology causing the wireless links to be broken at any time. Routing in such a network is challenging due to the mobility of its nodes and the challenge becomes more difficult when the network size increases. Due to the limited capacity of a multi-hop path and the high dynamics of wireless links, the single-path routing approach is unable to provide efficient high data rate transmission in MANETs. The multipath routing is the routing technique of using multiple alternative paths through a network. Furthermore, whenever a link failure is detected on a primary route, the source node can select the optimal route among multiple available routes. Therefore, the multipath routing approach is broadly utilized as one of the possible solutions to overcome the single-path limitation. Most of the multipath routing protocols are based on Ad Hoc On-Demand Distance Vector (AODV). The objective of this paper is to provide a survey and compare sets of multipath routing protocols for mobile ad-hoc networks. This survey will motivate the design of new multipath routing protocols, which overcome the weaknesses identified in this paper
    corecore