239 research outputs found

    Super Logic Programs

    Full text link
    The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotic formalism introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories called `super logic programs'. We argue that these programs form a natural generalization of standard logic programs. In particular, they allow disjunctions and default negation of arbibrary positive objective formulas. Our main results are two new and powerful characterizations of the static semant ics of these programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization is much simpler than the fixed point construction of the static semantics for arbitrary AELB theories. The model-theoretic characterization via Kripke models allows one to construct finite representations of the inherently infinite static expansions. Both characterizations can be used as the basis of algorithms for query answering under the static semantics. We describe a query-answering interpreter for super programs which we developed based on the model-theoretic characterization and which is available on the web.Comment: 47 pages, revised version of the paper submitted 10/200

    Tight Logic Programs

    Full text link
    This note is about the relationship between two theories of negation as failure -- one based on program completion, the other based on stable models, or answer sets. Francois Fages showed that if a logic program satisfies a certain syntactic condition, which is now called ``tightness,'' then its stable models can be characterized as the models of its completion. We extend the definition of tightness and Fages' theorem to programs with nested expressions in the bodies of rules, and study tight logic programs containing the definition of the transitive closure of a predicate.Comment: To appear in Special Issue of the Theory and Practice of Logic Programming Journal on Answer Set Programming, 200

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    Logic programming and negation: a survey

    Get PDF

    Positive Dependency Graphs Revisited

    Get PDF
    Theory of stable models is the mathematical basis of answer set programming. Several results in that theory refer to the concept of the positive dependency graph of a logic program. We describe a modification of that concept and show that the new understanding of positive dependency makes it possible to strengthen some of these results

    On Program Completion, with an Application to the Sum and Product Puzzle

    Full text link
    This paper describes a generalization of Clark's completion that is applicable to logic programs containing arithmetic operations and produces syntactically simple, natural looking formulas. If a set of first-order axioms is equivalent to the completion of a program then we may be able to find standard models of these axioms by running an answer set solver. As an example, we apply this "reverse completion" procedure to the Sum and Product Puzzle.Comment: Submitted to the 2023 International Conference on Logic Programmin

    Commonsense axiomatizations for logic programs

    Get PDF
    AbstractVarious semantics for logic programs with negation are described in terms of a dualized program together with additional axioms, some of which are second-order formulas. The semantics of Clark, Fitting, and Kunen are characterized in this framework, and a finite first-order presentation of Kunen's semantics is described. A new axiom to represent “commonsense” reasoning is proposed for logic programs. It is shown that the well-founded semantics and stable models are definable with this axiom. The roles of domain augmentation and domain closure are examined. A “domain foundation” axiom is proposed to replace the domain closure axiom

    On Equivalence of Infinitary Formulas under the Stable Model Semantics

    Full text link
    Propositional formulas that are equivalent in intuitionistic logic, or in its extension known as the logic of here-and-there, have the same stable models. We extend this theorem to propositional formulas with infinitely long conjunctions and disjunctions and show how to apply this generalization to proving properties of aggregates in answer set programming. To appear in Theory and Practice of Logic Programming (TPLP)

    Integrity constraints in deductive databases

    Get PDF
    A deductive database is a logic program that generalises the concept of a relational database. Integrity constraints are properties that the data of a database are required to satisfy and in the context of logic programming, they are expressed as closed formulae. It is desirable to check the integrity of a database at the end of each transaction which changes the database. The simplest approach to checking integrity in a database involves the evaluation of each constraint whenever the database is updated. However, such an approach is too inefficient, especially for large databases, and does not make use of the fact that the database satisfies the constraints prior to the update. A method, called the path finding method, is proposed for checking integrity in definite deductive databases by considering constraints as closed first order formulae. A comparative evaluation is made among previously described methods and the proposed one. Closed general formulae is used to express aggregate constraints and Lloyd et al. 's simplification method is generalised to cope with these constraints. A new definition of constraint satisfiability is introduced in the case of indefinite deductive databases and the path finding method is generalised to check integrity in the presence of static constraints only. To evaluate a constraint in an indefinite deductive database to take full advantage of the query evaluation mechanism underlying the database, a query evaluator is proposed which is based on a definition of semantics, called negation as possible failure, for inferring negative information from an indefinite deductive database. Transitional constraints are expressed using action relations and it is shown that transitional constraints can be handled in definite deductive databases in the same way as static constraints if the underlying database is suitably extended. The concept of irnplicit update is introduced and the path finding method is extended to compute facts which are present in action relations. The extended method is capable of checking integrity in definite deductive databases in the presence of transitional constraints. Combining different generalisations of the path finding method to check integrity in deductive databases in the presence of arbitrary constraints is discussed. An extension of the data manipulation language of SQL is proposed to express a wider range of integrity constraints. This class of constraints can be maintained in a database with the tools provided in this thesis
    corecore