
Integrity Constraints in Deductive Databases

Subrata Kumar Das

A thesis submitted in fulfiRment of the

requirements for the degree of

Doctor of Philosophy

Heriot-Watt University

Department of Computer Science

May 1990

This copy of the thesis has been supplied on the condition that anyone who consults it

is understood to recognise that the copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author or the University (as may be appropriate).

Dedicated to my parents
whose wholehearted wish it is

to have their son's name embellished by 'Dr'.

Contents

1. Introduction
.. I

I. I. Background
.. 1

1.2. Objective of thesis .. 2

1.3. Overview of thesis5

2. From Logic to Logic Programming
.. 1ý

2.1. Sets, relations and functions
... 8

2.2. First-order logic ...
2.2.1. Semantics: Interpretations and models 11

2.2.2. Syntax: First-order theory 11

2.3. Unification
... 1(

2.4. Resolution theorem proving 17

2.4.1. Resolution principle I-

2.5. Program 19
2.5.1. Definite program completion 21

2.5.2. SLDNF-resolution in definite programs 22

2.6. Logic programming 2(

2.6.1. Prolog
... 2(

3. Logic and Databases
.. 2ýý

3.1. The relational data model ... 2()

3.1.1. Model-theoretic view of relational databases
... _ ... ý

32

3.1.2. Proof-theoretic view of relational databases
... 33

3.2. The deductive database model ... 3,

3.2.1. Proof- theoretic view of definite databases
.. Y

3.2.2. Transactions on deductive databiLses
.. 37

4. Integrity Constraints in Databases ...
4.1. Integrity constraints ..

4.1.1. Classification of constraints .. 39
4.1.2. Syntactic definibon of constraints

42
4.1.3. Constraint satisfiability in definite databases .. 44

4.1.4. Constraints in denial fonn
... - -. -- -. - ... - 45

5. The Path Finding Method
... 4 (ý

5.1. I'lic Path
... 49

5.2. The Method
.. 51

5.3. 'Dicorems for Integrity Checking
... 60

5.4. Prolog Implementation
... 64

5.5. Optimisations
... 66

6. A Comparative Evaluation .. 69
6.1. Constraint Representation

.. X
6.2. Constraint Checking Methods .. 72

6.2.1. Method proposed by Lloyd et a] . .. 74
6.2.2. Method proposed by Decker

... 77

6.2.3. Method proposed by Kowalski et a] . .. 79
6.2.4. Method proposed by Bry et al . .. 82
6.2.5. Method proposed by Asirelli et al . .. 82
6.2.6. Method proposed by Ling ... 83
6.2.7. Path finding method .. 84

6.3. Comparison
.. 95

7. Negation as Possible Failure
...

7.1. A brief overview of the field
.. ,.... .9

7.2. Possible forms of an indefinite database
.. 96

7.3. The declarative semantics for negative information
.. JOC

7.4. 'llie procedural semantics for negative information
... I ()]

7.4.1. Possible resolution 101

7.4.2. Definite resolution 105

7.4.3. Rule for inferring negative inforniation
.. III

7.5. Prolog implementation 114

8. Integrity maintenance in indefinite databases I -)(

S. 1. Constraint satisfiability in indefinite databases 12(

8.2. 'llic gencralised path finding method 122
8.3. Prolog implementation 129

9. Formalising Aggregate Constraints
.....................................

9.1. General formulae and aggregate constraints
9.2. Aggregate constraint satisfiability
9.3. The extended simplification theorem
9.4. Generalisation to other aggregate predicates
9.5. Prolog implementa6on ...

....................... IR

....................... 137

....................... 139

....................... 143

....................... -- -- - 145

....................... 146

10. Handling Transitional Constraints
..

14S

10.1. Basic Concepts
...

141.)

10.2. Implicit update .. I
15C

10.3. Action relations
15.5

10.3.1. Addition type
15ýý

10.3.2. Deletion type 15(

10.3.3. Update type jsý

10.3.4. Mixed type 157,

10.4. The gencralised path finding method 157

10.5. Implementation
... ... 157

I I. Integrity Constraint Manipulation Language
... 159

11.1. Constraints in SQL _ ___ ... 151ý

11.2. An SQL Grwnmar for Integrity Constraint Manipulation
.. 16(

11.3. Translating constraints to logical forrnulae
.. 161

11.4. Examples .. 162

12. Conclusion 16 5,

Appendix 1
.. 174

Appendix 2 .. 175

Appendix 3
.. 177

Appendix 4
.. 181

Declaration

The work presented in this dissertation was carried out by myself, except where due

acknowledgement is made. This dissertation has not been submitted by me for any other degree at

this or any other university. However, some material presented in this document has been or will

be published as follows:

1. S. K. Das and M. H. Williams, "A path finding method for checking integrity in deductive

databases, " Data & Knowledge Engineering, Vol. 4, pp. 223-244, Elsevier Science

Publishers B. V. (North-Holland), (1989).

2. S. K. Das and M. H. Williams, "Integrity checking methods in deductive databases: A

comparative evaluation, " M. H. Williains (ed.): Proceedings of the 7th British National

Conference on Databases, pp. 85-116, Cambridge University Press, (1989).

3. S. K. Das and M. H. Williams, "Extending the integrity maintenance capability in deductive

databases, " to appear in Proceedings of the UK ALP-90 Conference, Bristol, UK, (March

1990).

4. S. K. Das and M. H. Williams, "Negation as possible failure: A rule for inferring negative

information from indefinite deductive databases, " Submitted for publication.

Acknowledgments

My thanks go first to my supervisor, Prof. M. H. Williams, for his continuous encouragement, able

supervision and for directing my immature thinking along the right path throughout my research.

I am extremely indebted to him.

Thanks also to the Government of India for awarding me a scholarship for studying abroad.

Without this sponsorship I would not have been able to fulfill my ambition for higher studies.

Thanks to all the members of my family at home for patiently accepting my absence amongst

themselves and for their inspiration.

The good academic atmosphere in the department, stimulating people in the environment and

pleasant entertainment have rekindled my enthusiasm from time to time. I am grateful to

everyone in my department - particularly David Ferbrache, Greg Michaelson and Steve Salvini

for their helpful comments on my thesis - to my friend Janique for her good company.

Many thanks to all the anonymous referees who have commented either on my published papers

or on this thesis. Their comments have improved my thesis substantiaRy.

Finally, I acknowledge and express my gratitude to all those - in the past and at present, either

directly or indirectly - who have contributed to the two fields, Deductive Databases and Logic

Programming.

Abstract

A deductive database is a logic program that generalises the concept of a relational database.

Integrity constraints are properties that the data of a database are required to satisfy and in the

context of logic programming, they are expressed as closed formulae. It is desirable to check the

integrity of a database at the end of each transaction which changes the database. The simplest

approach to checking integrity in a database involves the evaluation of each constraint whenever

the database is updated. However, such an approach is too inefficient, especially for large

databases, and does not make use of the fact that the database satisfies the constraints prior to the

update.

A method, called the path finding method, is proposed for checking integrity in definite

deductive databases by considering constraints as closed first order formulae. A comparative

evaluation is made among previously described methods and the proposed one. Closed general
formulae is used to express aggregate constraints and Lloyd et al. 's simplification method is

generalised to cope with these constraints.

A new definition of constraint satisfiability is introduced in the case of indefinite deductive

databases and the path finding method is generalised to check integrity in the presence of static

constraints only. To evaluate a constraint in an indefinite deductive database to take full

advantage of the query evaluation mechanism underlying the database, a query evaluator is

proposed which is based on a definition of semantics, called negation as possible failure, for

inferring negative information from an indefinite deductive database.

Transitional constraints are expressed using action relations and it is shown that transitional

constraints can be handled in definite deductive databases in the same way as static constraints if

the underlying database is suitably extended. The concept of irnplicit update is introduced and

the path finding method is extended to compute facts which are present in action relations. The

extended method is capable of checking integrity in definite deductive databases in the presence

of transitional constraints.

Combining different generalisations of the path finding method to check integrity in

deductive databases in the presence of arbitrary constraints is discussed. An extension of the data

manipulation language of SQL is proposed to express a wider range of integrity constraints. This

class of constraints can be maintained in a database with the tools provided in this thesis.

Abbreviations

Abbreviation Full

CWA Closed World Assumption

DCA Domain Closure Assumption

DDR Disjunctive Database Rule

dmf Disjunctive Minimised Form

EGCWA Extended Generalised Closed World Assumption

GCWA Generalised Closed World Assumption

iff IF and only T

mgu Most General Unifier

NAF Negation As Failure

NAFFNH Negation As Finite Failure for Non-Horn

programs

NF Normal Form

nH-Prolog Near Horn-Prolog

PMR Perfect Model Rule

QBE Query By Example

QUEL QUEry Language

resp RESPectively

SLD Linear resolution with Selection function for

Definite clauses

SLDNF SLD-resolution augmented by Negation as Failure

SQL Structured Query Language

Tran TRANsaction

UNA Unique Name Assumption

wff Well-Fon-ned Formula

wTt With Respect To

1v-

List of Figures

Figure Title Page

2.1 The complete SLDNF-tree for 27

rIU (+- P (X, Y) AT (x))

4.1 Classification of integrity constraints 43

5.1 The complete path space in the case of example 5.1 54

5.2 The complete path space in the case of example 5.2 57

6.1 Partial search space for evaluating the constraint in 76

Lloyd et al. 's method by SLDNF-proof procedure

6.2 Illustration of the process of deriving the two sets 77

of partially instantiated atoms POSD, D, and negD, D'
in Lloyd et al. 's method

6.3 Illustration of the process of deriving the two sets 79

of ground atoms DT and DT in Decker's method

6.4 Partial search space generated by taking the update 81

as the top clause in Kowalski et al. 's method

6-5 The complete path space traversed by the path 85

finding method, taking the update as the source

7.1 A Partial search space for the definite derivation of 114

D 6u [<-- P (x))

8.1 The two complete possible path spaces in the case 128

of example 8.2

8.2 The complete possible path space in the case of 130

example 8.3

12.1 The network for constraint evaluation in the case 174

of example 12.1

-V.

List of Tables

Table Title Page

2.1 An SLDNF-derivation for rIu [+- P (x, y), T (x)) 28

3.1 STUDENT relation 30

3.2 EXAM relation 30

3.3 SPECIAL COURSE relation 30

3.4 COURSE relation 30

6.1 Times taken (in cpu seconds) by different 88

methods to report inconsistency in the case of

example 6.2

6.2 Times taken (in cpu seconds) by different 91

methods to report consistency in the case of

example 6.3

6.3 Times taken (in cpu seconds) by different 93

methods to report consistency in the case of

example 6.4

6.4 Times taken (in cpu seconds) by different 94

methods in the case of example 6.2 varying the

number of facts

6.5 Times taken (in cpu seconds) by different 95

methods in the case of example 6.5 varying the

number of facts

7.1 A definite derivation for D 6u P (x 115

7.2 The possible derivation for D 6u [<-- T(b)) 115

12.1 The class of databases and constraints handled by 172

the path finding method and its different possible

generalisations

"vl-

List of Notations

Notation Description Page I

A uB Union of two sets A and B 8

A r-B Intersection of two sets A and B 8

A -B Difference of two sets A and B 8

<d 1,
d2s

..., d,, > n -tuple 8

D, xD2X ... x D, Cartesian product of the sets D 1, D 2s D. 8

D Cartesian product of the sets D, D, D 8

(n times)

f: A -->B Functionf fromasetA intoasetB 8

--I Logical negation 9

V Logical disjunction 9

A Logical conjunction 9

Logical implication 9

Logical equivalence 9

Universal quantifier 9

3 Existential quantifier 9

<__ Reverse implication 9

U U is true for the interpretation 1 13

rýu U is a logical consequence of F 13
I-ýT U'rý U Wff U is derivable from a set of wffs I- in a 14

first-order theory T

L (r) First-order language underlying the set of 15

wffs 17

HU (ID Herband universe of the set of wffs 1' 15

HB (r) Herband base of the set of wffs r 15

X It 1, Xk Itk A substitution to the variables x 1, ..., xk 16

E0 Application of the substitution 0 to the 16

expression E

<--Ll A ... A L. n 2! 1 A goal or a query 19

Alv ... vA,. <-- LAAL, m ý! l A program or a database clause 19

EJ An empty clause 20

-vil- Contd..

Notation Description Page ý

CO? V (rl) The completion of the program rI 22

Id Set of constraints in denial form with their 48

heads

IC (No Head of a constraint which is in denial 48

form
R, R2 R.

LO --> L1L,, A padi 49

CompL Complement of the literal L 66

Not (P) Normal form negative formula 71

uc (F) Set of update constraints 77

** Set of facts derivable from the database D 77

*T Set of include-facts due to the transaction 77

T on the database D
DT Set of remove-facts due to the transaction 77

T on the database D

mod(D) Modified form of the database D 82

EXTRA (Not (P)) Set of NF-negative formulae 83

gcs (D) Greatest closed set of the database D 97

pos (R, A) Possible form of the clause R wrt. A 99

Def-true (D) Set of all definitely true facts in the 100

database D

Def jalse (D) Set of all definitely false facts in the 100

database D

Unknown (D) Set of all possibly true facts in the database 100

D

Di' Positive database 101

Dj- Negative database 102

Def A Deferred literal 105

def (R , Mp Definite form of the clause R wrt, M.. 105

con (R, Mr) Contrapositive form of the clause R wrt Mr 106

con (G, Lr) Contrapositive form of the goal G wrt Lr 106

-viii- Conld..

Notation Description Page

ADDD, D' Set of all facts added to the database D due 151

to a transaction
DELD, D' Set of all facts deleted from the database D 151

due to a transaction
UPDD, D' Set of all explicit or implicit update facts 152

due to a transaction

<R (T), R (T)> R (T) has been updated by R (T') 152

UPD_ADDD, D' Facts added to the database D due to the 156

updates
UPD_DELD, D' Facts deleted from the database D due to the 156

updates
ADDL, D' Facts added to the database D not due to the 156

updates
DELý, D' Facts deleted from the database D not due to 156

the updates
ADD_R Addition type action relation corresponding 156

to the relation R

DEL_R Deletion type action relation corresponding 156

to the relation R

UPD_R Update type action relation corresponding to 156

the relation R

-Ix-

CHAPTER I

Introduction

1.1. Background

Deductive database systems [34,35,45,59,64,76,102] have first-order logic as their theoretical

foundation. This approach has several advantages:

(a) Logic itself has a well-understood semantics.

(b) Logic can be used as a unifonn language for expressing facts, rules, queries and integrity

constraints.

(c) The well-developed theory of logic can be used to solve different database problems, e. g.,

null value, indefinite data.

(d) Use of a single rule may replace many explicit facts. It provides an expressive and

economic environment for data modeffing.

(e) In a natural way, a deductive database generalises the concept of relational databases

[9,23,36,1041.

In a database an integrity constraint (or, simply a constraint) [20,33,51,1041 is a formal

representation of a property which the data in the database must satisfy to be consistent with some

model of the real world from which it comes. A constraint can specify either some property

governing the correct states of the database or the allowable transitions from one database state

into another. From the logic point of view, an integrity constraint is defined as a closed formula.

Constraints are classified according to their nature, e. g., static (range, referential, aggregate

etc.) or transitional. Some examples of constraints are as follows:

. 1-

the salary of an employee must be less than 10000 (static & range),

every worker has a manager (static & referential),

the total number of employees in a department may not exceed 100 (static & aggregate),

when updating the salary of an employee, the new value must exceed the old value (transitional).

The major concern behind developing a method for checking integrity in a database is

improving efficiency. Efficiency can be improved by making one important assumption that the

database satisfies constraints prior to its update. A number of methods have been proposed for

checking integrity in deductive database by exploiting this assumption. They include generalised

simplification methods by Lloyd et al. [661 , Decker [25] , and Bry et al. [10] ,a general

theorem-proving technique by Kowalski et al. [91,551 , using the Prolog not-predicate by Ling

[60] , consistency proof method and a modified program method by Asirelli et al. [3].

Two major views of constraint satisfiability have been proposed. In the first, the

consistency view, a database is said to satisfy a set of constraints if every constraint is consistent

with the completed [16] form of the database. In the second, or the theoremhood view, every

constraint has to be a theorem of the completed database. The methods of Lloyd et al., Decker,

Bry et al. and Ling are based on the theorernhood view; whereas, the methods of Kowalski et al.

and Asirelli et al. are based on the consistency view. The former methods are different

generalisations of the simplification method [791 proposed by Nicolas for checking static non-

aggregate kinds of constraints in relational databases.

1.2. Objective of thesis

Integrity constraints are expected to be satisfied after every change to the database. The problem

of efficiently checking integrity constraints in a database is becoming increasingly important.

Checking integrity constraints in deductive databases is more difficult than for relational

databases since a single update in a deductive database may cause a number of implicit additions

to and deletions from the database. The following shortcomings have been observed in the

methods previously proposed for checking integrity constraints in deductive databases:

(i) There is a dearth of literature discussing the problems of maintaining integrity constraints in

deductive databases or comparing the different methods and highlighting their shortcomings

from the ideal.

-2-

(ii) Most of the methods fail to avoid various overheads, e. g., redundant constraint evaluation,

frequent reasoning with two database states (i. e. the database before and after update) during

the process of constraint evaluation; efficiency can be increased in some situations by

avoiding such overheads.

(iii) The underlying database is always definite, i. e. the head of each database clause is an atom

and the body is a conjunction of literals. When the database becomes indefinite by allowing

the head of a database clause to be a disjunction of atoms, the methods are no longer

sufficient.

(iv) The methods deal only with static non-aggregate constraints, i. e. constraints which are

closed first-order fonnulae without any aggregation over any attribute of a predicate. The

first two examples of constraints given in the previous section fall into this category and can

be expressed as closed first-order formulae as follows:

Vx Vy Vz (Employee (x, y, z) -ý z< 10000)

Vx (Worker (x) --4 3y Manager (y, x))

Confining constraints to static non-aggregate types of formulae excludes some important

types from consideration. For example, the third constraint from the examples in the

previous section

the total number of employees in a department may not exceed 100

cannot be expressed conveniently as a closed first-order fonnula because of the aggregation

involved over the attribute x of Employee predicate.

(v) None of the methods can handle transitional constraints.

To try to deal with the problems listed above, the major concems of the thesis are as

follows.

(1) A method, called the path finding method, is proposed for checking integrity constraints in

definite deductive databases by taking into account some of the problems described in (ii)

above.

(2) In response to the first problem, a survey has been carried out to focus on different pmblems

of maintaining integrity constraints in a database. Different approaches are compared as a

-3-

basis for assessing the proposed method for checking integrity constraints. This comparison

includes the path finding method and is confined to definite deductive databases.

(3) In response to the third problem, the thesis generalises both the simplification and the path

finding methods to handle integrity constraint checking in indefinite databases. This is

based on a new definition of constraint satisfiability in indefinite databases. This concept of

constraint satisfiability is a generalised version of the theoremhood view of constraint

satisfiability in the context of definite databases.

Although a constraint verification program based on the above concept of constraint

satisfiability can work on any query evaluator for the underlying database, the semantics of

the database based on the negation as possible failure rule has been considered for inferring

negative information from a database. The introduced notion of constraint satisfiability and

the negation as possible failure rule are closely related.

(4) In response to the problem cited in (iv), closed formulae which are more general than first-

order, called closed general formulae, have been considered to represent aggregate

constraints. For example, the constraint

the total number of employees in a department may not exceed 100

can be expressed as the closed general fonnula

Vx Vv (Dept (v)ACount (3 u 3w Employee (u, v, w), x) -ý x <I 00)

The path finding method has also been extended to deal with these constraints.

(5) In response to the final problem, action relations [80] are considered to represent

transitional constraints. The constraint

when updating the salary of an employee, the new value must exceed the old value

can be expressed using action relation UpdýEmployee corresponding to Employee as

Vx Vy Vz Vy` Vz'(UpdýEmployee (x, y, z, x, y', z') ^z #z' ---> z'> z)

To compute tuples of a derived relation, the concept of implicit updates is introduced. The

path finding method is extended to handle transitional constraints in definite deductive

databases.

-4-

1.3. Overview of thesis

The remainder of the thesis is organised. as fbHows.

Chapter 2 gives an introduction to the concepts of sets, functions, relations, first-order

theory, unification in first-order theory, resolution inference rules, SLDNF-resolution, logic

programming etc. The chapter also describes briefly the main features of Prolog.

A discussion on both relational and deductive databases is given in chapter 3 from a logic

point of view. The relative merits and demerits of relational and deductive databases are also

examined.

Chapter 4 is devoted to different issues of integrity constraints. This chapter includes the

definition, classification and different views of satisfiability for integrity constraints.

In chapter 5, the path finding method is presented. In this method the verification of the

integrity constraints in the updated database is reduced to the process of constructing paths from

update literals to the heads of constraints. Correctness of the method has been proved in the

context of stratified deductive databases. An explanation of how this method may be realised

efficiently in Prolog is given.

Chapter 6 evaluates the merits and demerits of a number of constraint checking methods,

including the path finding method, in the context of definite deductive databases as proposed by a

number of authors in the last few years. To achieve this, a brief introduction to the methods is

given in this chapter and then their performances are compared against each other in the context

of different databases. The various formats for representing constraints used by these different

methods and the expressiveness of each is also discussed in this chapter.

Chapter 7 presents the rule negation as possible failure for inferring negative information

from an indefinite deductive database. This problem has been addressed previously by several

workers and their results are given briefly. The implementation of query evaluation based on the

introduced semantics for negative information is considered and it is also shown that when the

database is definite, this implementation reduces to the mechanism of simple SLDNF. The query

evaluator which is required for constraint evaluation is based on this implementation. The Prolog

code for the main algorithms from the implementation is given. A similar implementation in the

nH-Prolog [69,93] enviroru-nent is considered in the following chapter. The null value problem is

discussed and guidelines for extending the semantics and implementation to cope with null values

. 5-

are also given in this chapter.

A generalisation of the path finding method to check integrity constraints in indefinite

deductive databases is described in chapter 8. The Prolog implementation of the method and a

meta-interpreter for the extended nH-Prolog are discussed. The extended nH-Prolog, which is

capable of inferring negative information from the database, is based on the negation as possible
failure rule. The query evaluator required for constraint evaluation operates on this extended nH-
Prolog. The Prolog code is given for the main algorithms for implementing the extended nH-
Prolog as well as that for the method itself.

Chapter 9 considers a class of constraints, called aggregate constraints. A set of aggregate

predicates (e. g., count, sum, max) is allowed in the definition of constraints and Lloyd et al. 's

generalised simplification method is extended to maintain integrity in the presence of aggregate

constraints. The implementation of this in Prolog may be achieved using the predicate setof.

Chapter 10 extends the path finding method to handle transitional constraints in definite

deductive databases. It is argued that transitional constraints can be handled in the same way as

static constraints provided that the database is extended using action relations. This idea was

originally introduced by Nicolas and Yazdanian [80]. The extension of the path finding method

involves the computation of facts in action relations.

The objective of chapter II is to propose a data manipulation language for integrity

constraints [6]. As a query language, SQL has already proved its popularity. However, the

constraint expressing capability in standard SQL [21] is highly limited. An extension is required

to express the variety of constraints discussed in the thesis (e. g transitional, aggregate and more

general static constraints). An extension to SQL is proposed which increases its capability to

express constraints. Some guidelines are given to develop an algorithm for translating constraints

expressed in the extended SQL to their equivalent logical formulae. A number of examples of

constraints are also given with their syntax in extended SQL and their associated translations in

logical formulae.

The final chapter assesses the contribution of this thesis and identifies areas of further work.

The problem of handling the static non-aggregate type of integrity constraint in definite

deductive databases has already received much attention by several researchers as compared to

more specialized problems such as that of handling integrity constraints in indefinite databases or

handling the aggregate and transitional type of integrity constraint in deductive databases. Hence,

-6-

there is scope for discussion of the former type of problem and a review of this takes place in

chapter 6. On the other hand, such a review cannot take place when dealing with the latter

unexplored problems mentioned above. It is author's hope that the proposals put forward in

chapters 8,9 & 10 dealing with, respectively, integrity constraints in indefinite databases,

aggregate and transitional type of integrity constraints, will form a basis for future work in the

respective areas. A detailed discussion comparing different semantics for negative information in

indefinite deductive databases (including the one proposed in chapter 7) considered to be beyond

the scope of this thesis.

The description of every relation variables used in this thesis can be found in appendix 1.

-7-

CHAPTER 2

From Logic To Logic Programming

This chapter introduces some basic concepts of sets, relations, functions, first-order logic,

unification in first-order theory, resolution inference rules, SLDNF-resolution, logic

programming, Prolog, etc. The order of introduction of these topics reflects the development of

logic programming through different steps from standard first-order logic. Logic programming is

introduced here since the results related to logic programming are relevant to deductive databases

which are introduced in the next chapter.

2.1. Sets, relations and functions

Definition :A well-defined collection of distinct elements is called a set [41,42,981. The union

of the sets A and B, denoted by A uB , is the set of all elements which are members of either A or

B (or both). The intersection of the sets A and B, denoted by A r)B, is the set of all elements

which are members of both A and B. The difference of the sets A and B, denoted by A -B, is the

set of all elements which are members of A but not of B.

Definition : Given a collection of sets D 1, D 2, ...,
D, the cartesian product of these n sets,

denoted by D, xD2X ... x D, , is the set of all possible ordered n -tuples <d 1, d 2, ..., d., > such

that djEDj, for i=1,2, ..., n. When each Di is equal to D then the product is written as D

Definition :A relation R on the sets D 1, D 2, ..., D,, is a subset of the Cartesian product

DIXD2X *** xD,,.

Definition :A function from a set A into a set B, denoted by f: A -ý B, is a relation on the sets

A, B such that each element of A is related to exactly one element of the set B. The set A is

called the domain of the function and the set B is called the co-domain (or range).

-8-

Example: Let D, =(a, b) and D2= (1,2,3) be two sets. ThenDIXD2: -- (<a, 1>, <a, 2>,

<a, 3>, <b, l>, <b, 2>, <b, 3>1. ArelationonD, andD2iS[<a, l>, <b, 3>).

2.2. First-order logic

Definition : An alphabet [63] consists of the following symbols:

1. Parentheses: G).

2. Sentential connective symbols: --, (negation), v (disjunction), A (conjunction), -ý
(implication), <-+ (equivalence).

3. Individual variables: s, t, u, v, w, x, Y, z, s 1, ti, ... -

4. Quantifier symbols: V (universal), 3 (existential).

5. N -ary predicate symbols: For each positive integer n, some set (possibly empty) of symbols

P', Q', R', P j, Q j, Rj 1119... -

6. Constant symbols: Some set (possibly empty) of symbols a, b, c,

7. N-ary function symbols: For each positive integer n, some set (Possibly empty) of symbols

f n, n gn n g hn, fn, j, h,,....

Constant symbols are often considered as 0-place function symbols to ensure the uniform

treatment of function symbols and constant symbols. The symbols "v", "All, 11-4", N-4", "3",

"V" are read as not, or, and, implies, if and only if, there exists, for all. To avoid using brackets

for the readability of formulae, the precedence hierarchy which has been adopted for the

connective symbols and the quantifier symbols is as follows. The symbols "Y' and "3" have

the highest precedence, then "A", followed by "v" and finally N--% N-4".

Definition : Terms are those finite strings of symbols generated by repeated application of the

following rules:

(a) A variable is a tenn.

A constant is a tenn.

. 9-

(C) If f is an n -ary ftinction symbol and t 1, ... ' t,, are terms, then f (t 1, ..., t,) is a term.

Definition : The well-formed formulae [19,28,74] (wffs or simply formulae) of a first-order

language are those finite strings of symbols generated according to the following rules:

(a) If P is an O-ary predicate symbol then P is a formula.

(b) If P is an n -ary (n >0) predicate symbol and t 1, ..., tn are terms then P (t tn) is a
formula.

(c) If U and V are formulae then so are (--, U), (UAV), (UvV), (U-->V) and (U"V).

(d) If U is a formula and x is a variable then (Vx U) and (3x U) are formulae.

Often the symbol "<--" (reverse implication) is used to represent a formula U--. >V alternatively as

V +- U and in that case the formula U -ý V will be read as if U then V. Atomic formulae (or more

simply atoms) are those generated by rules (a) and (b).

Example :P (x), Q (y, x) are atoms and IVx (P (x) -ý 3y Q (y, x)) is a wff.

Definition : The first-order language [28] given by an alphabet comprises the set of all formulae

constructed from the symbols of the alphabet.

Definition : In Vx W, where W is a wff, W is called the scope of the quantifier "Vx'. W need

not contain the variable x and in that case, Vx W is same thing as W.

Definition : An occurrence of a variable x is said to be bound in a wff W if either it is the

occurrence of x in the quantifier 'Vx' or it lies within the scope of a quantifier 'Vx' in W. An

occurrence of a variable x in a wff W will be called afree occurrence if it is not bound.

Example : The occuffences of x are free in the wff P (x) --) 3y Q (y, x) wherras y is bound in

the same fonnula.

Definition A closedformula is a formula with no free occurrences of any variable.

Example 'I'he formula Vx (P (x) -* 3y Q (y, x)) is closed whereas the formula

P (x) -+ 3y Q (y, x) is not closed as x is now ftee in it.

Definition : If U is a wff and t is a tenn, then t is said to be free for x in U if no free occurrences

of x in U lies within the scope of any quantifier Vy, where y is a variable in t.

-10-

Definition :A literal is an atom or the negation of an atom. A positive literal is an atom. A

negative literal is the negation of an atom. An expression is either a term, a literal or a

conjunction or disjunction of literals.

Any wff of a first-order language can be written in prenex normal form [74] , i. e. with all
quantifiers at the front, by applying the usual transformations of the form -ýVxU) -= 3x(--, U),

Vx (--, U), etc.

Definition :A clause is a disjunction of literals all of whose variables are universally quantified

over the whole disjunction. A negative clause is a disjunction of negative literals only.

A clause will sometime be written as a disjunction of literals without its universal

quantifiers and in those cases free variables are assumed to be universally quantified over the

whole disjunction.

Example : Vx Vy (-nP (x, y) vQ (x) vR (y)) is a formula in the form of a clause.

Any closed wff in prenex normal form (and hence any closed wff) may be rewritten as a

conjunction of clauses, by first applying transformations of the form U -+V (or V 4-U) =- -, U vV,
U +4V M (--iU VV)A(--, V VU), U V(VAW) =- (U VV)A(U VW), --, (U AV) =- -, U V--, V, --r-, U =- U,

and then each existentially quantified variable is replaced by a function of all the universally

quantified variables which precede the existential quantifier in the prefix. The latter is known as
Skolemisation of the existentially quantified variables.

Definition :A Horn clause [70] is a clause with at most one positive literal in the disjunction.

Example : The clause Vx Vy (-nP (x, y) vQ (x)) is a Hom clause as Q (x) is the only positive

literal whereas Vx Vy (--P (x, y)vQ (x) vR (y)) is not as it contains Q (x) and R (y) both of

wWch are positive literals.

2.2.1. Semantics: Interpretations and models

This sub-section describes the truth-based declarative semantics of first-order languages based on

the concepts of interpretation and model.

Definition : An interpretation [1,19,28,44,58,74] 1 of a first-order language L consists of the

foflowing:

. 11-

(a) A nonempty set D called the universe or domain of interpretation 1.

(b) For each n-ary predicate symbol in L, the assignment of an n-ary relation in D.

(c) For each n -ary function symbol in L, the assignment of a mapping from D" to D.

(d) For each constant symbol, the assignment of a fixed element of D.

Given such an interpretation I, variables are thought of as ranging over the domain of the

interpretation 1, and the sentential connective symbols and quantifiers are given their usual

mearung.

Let I be an interpretation with domain D. Let I be the set of all sequences of elements of

D. For a given sequence S 4S 1, S 2, ...
)E I and for a term t consider the Mowing tenn

assignment of t with respect to I and S as follows:

(a) If t is a variable xj then its assignment is sj.

(b) If t is a constant then its assignment is according to 1.

(c) If t 1', ..., t,, ' are the tenn assigrunents of t 1, ..., t,, respectively and f' is the assignment of

the n -ary function symbol f, then f '(t 1', ..., tn')E D is the term assignment off (t 1, ..., tn).

The definition of satisfaction of a formula with respect to a sequence and an interpretation

can be inductively defined as follows:

(a) If U is anatomic wff P(t I, ..., t,
), then the sequence S =(s I, s2, ---)satisfies U if and

only if F(t 1', ..., t,,
') (i. e. the n -tuple <t 1', ..., t, '> is in the relation P'), where P' is the

corresponding n -place relation of the interpretation of P.

(b) S satisfies --, U if and only if S does not satisfy U.

(c) S satisfies U,, \V if and only if S satisfies U and S satisfies V.

(d) S satisfies U vV if and only if S satisfies U or S satisfies V-

(e) S satisfies U -->V if and only if either S does not satisfy U or S satisfies V.

(f) S satisfies U+-+V if and only if S satisfies both U and V or S satisfies neither U nor V.

-12-

(9) S satisfies 3xi (U) if and only if there is a sequence S' that differs from S in at most the i th

component such that S' satisfies U.

(h) S satisfies 'Vxi(U) if and only if every sequence that differs from S in at most the ith

component satisfies U.

Definition :A wff U is true for the interpretation (alternatively, U can be given the truth value
true) I (written ý, U) if and only if every sequence in I satisfies U. U is said to be false for I

if and only if no sequence of I satisfies U.

The truth value of a closed fonnula does not depend on the sequence of interpretation and in

such a situation the satisfaction of the formula is with respect to the interpretation only. If a

formula is not closed then it may be neither true nor false for some interpretation. If a formula is

closed then for an arbitrary interpretation either the formula or its negation is true with respect to

the interpretation.

Definition : Let I be an interpretation of a first-order language L. Then I is said to be a model

for a closed wff U if U is true with respect to 1.1 is said to be a model for a set IF of closed wffs

of L if and only if every wff in F is true with respect to I.

Definition : Let F be a set of closed wffs of a first-order language L. Then IF is

1. satisfiable if and only if L has at least one interpretation which is a model for IF.

2. valid if and only if every interpretation of L is a model for IF.

3. unsatisfiable if and only if no interpretation of L is a model for IF.

Definition : Let U be a closed wff of a first-order language L. A closed wff V is said to be

implied by U (or, equivalently, U implies V) if and only if for every interpretation I of L, I is a

model for U implies that I is a model for V.

Definition : Let r be a set of closed wff of L. A closed wff U is said to be a logical consequence

of r' (written IF P U) if and only if for every interpretation I of L, I is a model for IF implies that

I is a model for U.

Definition : Two closed wffs U and V are said to be equivalent if and only if they imply each

other.

-13-

2.2.2. Syntax: First-order theory

The syntactic aspect of a first-order language is concerned with proof theory, using axioms and

inference rules in order to infer theorems from a given set of wffs.

Definition :A first-order theory [1,19,28,44,58,74] comprises a set of symbols called the

alphabet, the first-order language, the set of axioms and the set of inference rules. The axioms of

a first-order theory are a set of wffs and are divided into two classes: the logical axioms and the

proper axioms. If U, V and W are wffs, then the following are logical axioms of the theory:

(1) U -ý (V -* U)

(II) (U -4 (V -4 W)) -4 ((U -4 V) -4 (U -4 W))

(111) (-1 V ---> U) -4 ((--1 V -4 U) --ý' V)

(IV) (Vx U) V if V is a wff obtained from U by substituting all free occurrences of x by a

term t and t is free for x in U.

(V) Vx (U _+ V) --> (U -4 Vx V) if U is a wff that contains no free occurrences of x

Proper axioms vary from theory to theory. A first-order theory in which there are no proper

axioms is called a first-order predicate calculus. When other wffs are added as axioms to a first-

order predicate calculus, the new axioms become proper axioms. The following are rules of

inference of any first-order theory:

I. Modus ponens: V follows from U if U -4V

2. Generalisation: Vx (U) follows from U.

Given a set of inference rules, the notion of derivability of a wff from a set of wffs in a

first-order theory can be introduced as follows:

Definition :A wff U is derivable from a set of wffs F in a first-order theory T (written r ýT U)

if and only if

I. U is a member of F or

2. U is a result of applying a rule of inference to wffs derivable from F.

-14-

Whenever the theory T is clear from the context, a derivation would be written as FýU.

Definition : If the set IF is empty then U is a theorem of T (written ýT U).

Suppose, IF is a set of wffs and U is a wff. Then from Godel's completeness theorem,

FýU if and only if IF k U. Also, it can be proved that U is a logical consequence of IF if and

only if P-)j-. U) is unsatisfiable. For convenience, instead of considering every interpretation in

order to show the unsatisfi ability of a set of closed wffs, it is sufficient to consider a smaller class

of interpretation, called the Herband interpretation [70,63].

Given a set of wffs I-, it will always be assumed that the underlying first-order language

L (F) is defined by the constants, function symbols and predicate symbols appearing in IF.

Example : Let F be a set of wffs as foRows:

VxVyVz(G (x, y), ý--- F (x, z) ^F (z, y»

F (a, b)

F (b, c)

F (b, d)

Then the first-order language L (F) is given by constants a, b, c and d, and binary predicate

symbols G and F. There is no function symbol in the language.

Definition : The Herband universe HU (I-) of IF is the set of all ground tenns defined recursively

as follows:

(a) Every constant symbol of L (D is a member of HU (F). In the case that L (I') has no

constants, HU (IF) contains a specially introduced symbol, say a.

(b) If f is a function symbol of arity n that occurs in L (I-) and t tn are terms in HU(I')

then f (t 1, ..., tn) is a member of HU (r).

(c) No term other than those defined by (a) and (b) above, is a member of HU (D.

Definition : The Herband base HB (F) of F is the set of all ground instances of all atomic wffs

which can be formed by using predicate symbols from L (F) with terms from HU (n as

arguments.

-15-

Example : Let F be a set of wffs as Mows:

Vx (P (f (x» e- P (x»
P (a)

Then HU (I-) is {a, f (a), f (f (a)),...) and HB(r) is (P (a), P(f (a)), P(f (f

Definition : Let T be a first-order theory and let L be the language of T. A model for T is an
interpretation for L which is a model for the set of axioms of T. If T has a model then T is said

to be consistent.

Definition : Given a set of closed wffs r, a Herband model for IF is an Herband interpretation for

which is a model for IF.

A model of a set of closed wffs IF will always mean the Herband model of IF in this thesis.

Definition :A theory T is said to be complete if for every closed formula W in the language of

the theory, either W or its negation is a logical consequence of T.

2.3. Unification

Unification [47,73,81,88] is a process of determining whether two expressions can be made

identical by appropriate substitution for their variables. Various terms related to unification are

described in this section.

Definition :A substitution 0 is a finite set of pairs of variables and terms, denoted by

[xj1tj, -, xkltA:), where xis are distinct and each tj is different from xi. The term tj is called a

binding for xi. 0 is called a ground substitution if the tj are all ground terms. The substitution

given by the empty set is called the empty substitution (or identity substitution).

Let O= (xI It 1, ..., xkltk I be a substitution and E be an expression. The application of 0 to

E, denoted by E 0, is the expression obtained by simultaneously replacing each occurrence of the

variable xi in E by the term ti. In ffiis case E0 is called the instance of E by 0. If E0 is ground

then E0 is called a ground instance of E. Also, E is referred to as a generalisation of E 0.

Example: Let E=p (x, f (x), y, g (a)) and O= fxlb, ylh(x)). Then

E0=p (b, f (b), h (x), g (a)).

16-

Definition : Let O= (x It 1, ..., xm Itm) and O= (y Is 1, ..., y,, Is,) be two substitution. Then the

composition 00 of 0 and 0 is the substitution obtained from the set

IXIltlo,
---, XmltmolyllS1,

---, Yn/Sn)

by deleting any binding tj 0 for which xi =tj 0 and deleting any binding for which yj E fx 1, ... I xm 1.

It can be proved that the composition of substitutions is associative and hence in writing a

composition 01, ..., 0,, of substitutions, parentheses can be omitted.

Example: Let 0= (x lb, y 1h (z)) and a=z 1c. Then Oa = [x lb, y 1h (c), z Ic

Definition :A unifier of two atoms A and A' is a substitution 0 such that A0 is syntactically

identical to A'O. If the two atoms do not have a unifier then they are not unifiable. A unifier 0 is

called a most general unifier (mgu) for the two atoms if for each unifier cc of A and A' there exists

a substitution P such that oc=Op.

A mgu is unique up to variable renaming. Because of this property the mgu of two

expressions would be used quite often.

Example : The mgu of two expressions p (x, f (a, y)) and p (b, z) is [x lb, z If (a, y)). A

uni fier of these two expression is(x lb ,y Ic ,z If (a ,c)1.

2.4. Resolution theorem proving

Most theorem-proving techniques are based on the inference rule known as the Robinson

resolution principle which applies to wffs of clausal form. This technique of theorem-proving is

termed resolution theorem-proving and was developed by J. A. Robinson [89]. Unification is an

essential part of this kind of resolution theorem-proving.

2.4.1. Resolution principle

Suppose C and C' are two clauses. If there is a literal L occurring in C and a literal -'L'

occurring in C' such that L and L' have an mgu 0, then it is said that the two clauses C and C'

resolve and that the new derived clause, R (C, C; L, L), is a resolvent of the two clauses, where

R (C, C; L, L) is obtained from C, C, L, L' and 0 by performing the following two steps:

-17-

'Tbe clause CO-(L)O (resp. C'O-[L'10) is obtained from CO (resp. C'O) by removing the

occurrence L0 (resp. L'O).

2. R(C, C'; L, L') is the disjunction of all the literals occurring in CO-(L)0 and C'O-[L')0.

Example : The derived clause obtained from the two clauses P (x, y) vR (y) and Q (z) v --J? (a)

is P (x, a) vQ (z).

If a set of input clauses is unsatisfiable then it is possible to derive by resolution the empty

clause from the clauses in the set. To prove a clause from a set of clauses using this process of

derivation is known as resolution refutation and is described as follows: In order to prove a clause

U from a set of clauses F (i. e. Fý U), negate U and add it to r to yield 1'. If, by applying

resolution on the clausal form of 1, one can derive the empty clause, then IF and --, U cannot

simultaneously be satisfiable.

Resolution is not efficient when measured in tenns of the size of search space for refutation.

Various kinds of resolution principles have been proposed [97,70,151 to improve the efficiency

by reducing the search space. These include set of support, PI and N1 resolution,

hyperresolution, unit resolution, unit-resulting resolution, input resolution, ordered input

resolution, linear resolution, model elimination, connection-graph resolution, SL-resolution.

Input resolution requires that one of the parent clauses to each resolution operation must be

an input clause, i. e. not a derived clause. Linear resolution is an extension of input resolution in

which at least one of the parent clauses to each resolution operation must be either an input clause

or an ancestor clause of the parent. Linear resolution with selection function (SL-resolution) is a

restricted forrn of linear resolution. The main restriction is effected by a selection function which

choses from each clause a single literal to be resolved upon in that clause. This is also similar to

model elimination. SLD-resolution [27] (SL-resolution for non-negative Hom clauses)

augmented by by the rule Negation as Failure [161 is known as SLDNF-resolution. SLDNF-

resolution mechanism is usually chosen as a procedural counterpart of a correct answer which is

declaratively given in terms of the completion of the program. Programs and their completions

are discussed in the next section.

-18-

2.5. Program

A clause can be rewritten as

MIV ... VMP v -nN, v ... v -nNq,

where Mi s and Nj s are positive literals and variables are implicitly universally quantified over the

whole disjunction. Every closed wff may be rewritten in clausal form. The above clause can be

written in the form of a program clause as

MI'v '', VMk'<--NIA ... ANq A --, Mk, I'A ---A --, Mp' kýýl

or, in the form of a goal as

<-- NI A ... A Nq A -n M
I'A ... A --i Mp'

where each Mj' is an Mj, for some j. In general, the definition of a program clause and a goal are

as foRows:

Definition :A goal is a fonnula of the form

<-- Ll A ... AL,, n>l

where Ll A ... AL,, is the body of the goal. Each Li is either an atom or a negated atom. Any

variables in L 1, ..., L,, are assumed to be universally quantified over the whole forTnula.

Definition :A program clause is a fonnula of the fonn

Iv ... vAm <-- LIA *** ALn m ýtl

where AIv... vA,,, is the head (or conclusion or consequent) of the program clause and

LIA ... ALn the body (or condition or antecedent). Each Ai is an atom and each Lj is either

an atom (a positive condition) or a negated atom (a negative condition). Any variables in A

Am 9L1, ..., Ln are assumed to be universally quantified over the whole formula.

For the sake of convenience, in the rest of the thesis, the term 'clause' will refer to a

tprograin clause'.

The different forms of a program clause for different values of m and n are the following:

-19-

I. m =1, i. e. the clause has the fonn

AI +-LIA ... AL

in which the head is a single atom. This clause is called a definite clause.

2. m>1, i. e. the clause has the fonn

AIv... v A. (-- LIA A L,,

in which the head is a disjunction of atoms. This clause is called an indefinite clause.

m=1, n =0, i. e. the clause has the form

A1*-

in which the body is empty and the head is a single atom. This clause is called a unit

clause. Thus, a unit clause is a definite clause with an empty body. A unit clause will be

written omitting the symbol "<--".

Example : The clause P (x, y) +- Q (x, y)A--, R(y) is a definite clause whereas the clause

(x, y)vR (y) <-- Q (x, y) is an indefinite clause.

Definition :A clause (resp. a literal) in which variables do not appear is called a ground clause

(resp. ground literal).

Definition : An empty clause, denoted by [], is a clause (not a program clause) with empty

sJunction.

Definition :A general or indefinite program is a finite set of clauses. A definite program is a

finite set of definite clauses. Thus a definite program is a special form of a general program.

in writing a set of clauses to represent a program, the same variables may be used in two

different clauses. It will be understood that if there are any common variables between two

different clauses then they are actually different from each other. Variables in a clause are

renamed when they are fetched for use.

-20-

2.5.1. Definite program completion

Suppose that 11 is a definite program and

P(t I, ..., tn) 4-LI A ... A Lm

is a clause in I'l. If the predicate symbol '=' is interpreted as the equality (or identity) relation, and

x 1, ... ' x,, are variables not appearing elsewhere in the clause, then the above clause is equivalent

to the clause

Xj (-- x =t ,A^ x� =t� ^L, ^^ L�,

If y 1, ..., yp are the variables of the original clause then this can be transformed to

(x 1, ..., x�) *-- 3y , ... 3yp(xl=tl ^-- -A Xn =tn ^L, ^... ^ Ln)

The above forin is called the general form of the clause. Suppose there are exactly k clauses,

k ýtO, in rl defining P (a clause C defines P if C has P in its head). Let

P (x 1, ..., x,) <---- E,

P (x 1, ..., x�) 4-- Ek

be the k clauses in general form. Then the completed definition of P is the forTnula

(x� ..., x�) 4-> EI v ... v Ek

Example : Let the predicate symbol P be defined by the following clauses:

(a, z) +- Q (z, z')A -J?

(b,

Then the completed definition of P is

VxVy(P (x, y)(--->(3z3z'«x =a)�\ (y =z)^Q(z, z')^--, R(z'»v «x =b), «y =c»»

Some predicate symbols in the program may not appear in the head of any program clause. For

each such predicate Q, the completed definition of Q is the formula

-21-

vxl,
*' vxn , Q(Xl, ..., Xn)

Definition : The equality theory (or identitY theory) for a completed program contains the
foRowing axioms:

(a) c*d, for all pairs c, d of distinct constants (the symbol: * stands for not equal).

(b) 'Vxl''"Vx,
ýVYI*, *'VY,,, (f(xl,..., x,,)*g(yl,..., y,)), for aH pairs f, g of distinct

function symbols.

(C) Vx I*, * 'Vx,, (f (x I, ..., x,,)*c), for each constant c and function symbol f.

(d) Vx (t [x]# x), for each term t [x] containing x and different from x.

(e))Vxl A(Xn *Yn)-4f (XI,
---, Xn)*f (Yl,

---, Yn)), for

each function symbol f.

vx
: -- yA (f) I*** VXn)VYI VYn((XI ,* *A (Xn Yn f (X 1, Xn f (Y 1, Y. for

each function symbol f.

Vx (x =x)

Vx , ... IVX. IVY ,--- VY� «X ,=y 1) A---N (X. = Yý) ---. > (P (x 1, ---, x�) -+ p (y 1, ..., yn »),

for each predicate symbol P (including =).

Note that axioms (g) and (h) together imply that = is an equivalence relation.

Definition : The completion of 1-1 [16,56,631 , denoted by comp(R), is the collection of

completed definitions of predicate symbols in P together with the equality theory.

Among the resolution methods mentioned in section 2.4.1, the SLDNF-resolution is of most
interest to us as it is the present basis of logic programming. The following subsection is devoted

to the SLDNF-resolution and different aspects of it.

2.5.2. SLDNF-resolution in definite programs

This section deals with different aspects of SLDNF- resolution [16,63] such as SLDNIF-

derivation, SLDNF-refutafion, and SLDNF-tree in definite prograrns.

-22-

Definition : Let G be a goal 4-- AA... AA.. A ''' AAk, and C tx A <-- BIA... ABq * if

0 is the mgu of A,, and A then the goal

AA,,, -IABIA
... A Bq A Am+, A, ** /\ Ak)O

is a resolvent of G and C. If k =1 and q =0 then the resolvent goal is an empty goal.

Definition :A computation rule is a function from a set of goals to a set of literals such that the

value of the function for a goal is a literal, called the selected literal, in that goal. A computation

rule is safe if negative literals may only be selected if they are ground.

Definition : Let P be a definite program, G be a goal. The definitions of an SLDNF- refutation of

rank k of Pu(G) and a finitely failed SLDNF-tree of rank k for Pu[G1, for every non-negative

integer k, can be found in [63]. An SLDNF- refutation of Pu(G) is an SLDNF- refutation of

rank k of Pu[G1, for some k. A finitely failed SLDNF-tree for Pu(GI is a finitely failed

SLDNF-tree of rank k for Pu[G), for some k.

Definition : Let P be a definite program and Ga goal. An SLDNF-derivation of Pu(G)

consists of a sequence G O=G ,G1, ... of goals, a sequence C 1, C 2, -.. of variants of clauses of P

or negative literals, and a sequence 01,02, - of substitutions satisfying the following:

(a) For each i, either

(i) Gi is <-- LI A ... A Lk and the selected literal L,,, is positive. Suppose

Cj: A <-- MIA--- AMq is the input clause and L,,, and A have mgu Oj+j. Then the

derived goal Gi, l is

AL,,,
-IAMIA

... A Mq A L,,,,
l A ... A L/c)Oi

+I

(ii) Gi is <- Ll A ... ALk , the selected literal L,,, in Gi is a ground negative literal A

and there is a finitely failed SLDNF-tree for P uf<-- A). In this case, Oj, j is the

identity substitution, Ci, l is --, A and Gi, l is

ý- L, /ý A L,,,
-l

A L,,,
+, A---/, ý Lk

(b) If the sequence Go, G 1, ... is finite, then either

(i) the last goal is empty, or

-23-

(ii) the last goal is +- LIA... A Lk and the selected literal L. is positive and there is no

program clause whose head unifies with L, or

(iii) the last goal is +- LI A ... A Lk and the selected literal L.. is a ground negative

literal -, A and there is an SLDNF-refutation of Pu(<-- A 1.

An SLDNF-derivation is finite if it consists of a finite sequence of goals; otherwise, it is

in nite. An SLDNF-derivation is successful if it is finite and the last goal is the empty goal. A tfi

successful SLDNF-derivation is indeed an SLDNF- refutation. An SLDNF-derivation is failed if

it is finite and the last goal is not the empty goal.

Definition : Let P be a definite program, G be a goal. An SLDNF-tree for Pu(GI is a tree

satisfying the following;

(a) Each node of the tree is a goal.

(b) The root node is G.

(C) Let +-- LA--- I\Lk (ký! I) be a non-leaf node in the tree and suppose that a positive

literal Lm is selected. Then this node has a descendant for each input clause

A <-MIA ... A Mq such that L,,, and A are unifiable. The descendant is

4- (L
IA... A L.

-I
AM IA... A Mq A L,,,,

l A ... A Lk)O

wherr, 0 is an mgu of L. and A.

Let <-- L 1, ...,
Lk (k ýt 1) be a non-leaf node in the tree and suppose that the selected literal

Lm is a ground negative literal of the form ---LA and there is a finitely failed SLDNF-tree for

Pu(+-A). Then the single descendant of the node is

+- (L Lk).

(e) Let <-- L 1, ..., Lk (ký! l) be a leaf node in the tree and suppose that the literal L. is selected.

Then either

(i) L.. is positive and there is no program clause in P whose head unifies with L., or

(ii) Lm is a ground negative literal --, A and there is an SLDNF-refutation of Pu(<-- A).

-24-

(iii) A node which is the empty goal has no descendants.

In an SLDNF-tree, a branch which terminates at an empty goal is called a success
branch, a branch which does not terminate is called an infinite branch and a branch for which
terminates at a non-empty goal is called a failure branch. An SLDNF-tree for which every
branch is a failure branch is indeed a finitely failed SLDNF-tree. Each branch of an SLDNF-tree

corresponds to an SLDNF-derivation.

When a positive literal in an SLDNF-resolution is selected, SLD-resolution [54] has

been used to derive a new goal. When a ground negative literal is selected, a recursive process is

established to apply the negation asfailure (NAF) rule.

Definition : Let P be a definite program and Ga goal. A computation of Pu (G) represents an

attempt to construct an SLDNF-derivation of Pu[G1.

Definition : Let P be a definite program and Ga goal. A computation of Pu(G) flounders if at

some point in the computation a goal is reached which contains only non-ground negative literals.

Definition : Let P be a prograrn and Ga goal. A clause AIv... v Am <-- LI ý\ --- /\ Ln in P

is allowed [63] (or range -restricted [35]) if every variable that occurs in the clause occurs in a

positive literal of the body LI /\ ... /\ Ln. The whole database D is allowed if each of its

clauses is allowed. A goal G is allowed if G is <-- LI /\ ''' ALn and every variable that occurs

in G occurs in a positive literal of the body +- LIA ... A Ln.

The restriction of allowedness on a definite program P is introduced in order to

prevent floundering of any computation Pu(G1, for some goal G. In the context of definite

programs, the allowedness restriction corresponds exactly to the notion of range- restriction

introduced by Decker [25] and Kowalski et al. [551.

Definition : Let P be a definite program and G be a goal ý- W. An answer substitution for

PufGI is a substitution for the variables of G. A computed answer 0 for DU[G) is the

substitution obtained by restricting the composition 01 ... On to the variables of G, where 01,

On is the sequence of substitutions used in an SLDNF-refutation of Pu[G).

When a definite program P and a goal G are allowed, no computation of PU[G I

flounders and every computed answer for PufG) is a ground substitution for variables in G. A

computed answer for Pu(G) will also be referred to as an answer substitution for the SLDNF-

-25-

refutation of Pu[GI-

2.6. Logic programming

Logic programming is concerned with using logic to write programs and with their execution. A

logic program [27,26,52,53,63,101,1051 consists of a set of sentences which represents

knowledge about the problem that the program is intended to solve. First-order logic serves as a

tool for representing knowledge and the resolution mechanism within it can be used for executing

a logic program. Present logic programming uses a subset of first-order wffs to represent

knowledge and SLDNF-resolution mechanism for their execution. Prolog is a language based on

these principles. Work is underway to build full first-order [69] and higher-order [75] Prologs.

The logic programming language nH-Prolog [69,931 uses full first-order clauses as sentences and

X-Prolog [78] allows higher-order sentences [43,7]. Work in the area of developing semantics of

logic programming can be found in [38,39,46,50,57,84,83,85,37]. Interesting work defining

algebra of logic programs can be found in [71,72].

2.6.1. Prolog

Prolog [8,17,29,95] is a logic programming language based on ordered input resolution (a

restriction of model elimination to Hom clauses) with left to right resolution on literals. It also

provides a form of negation based on negation as failure. A Prolog program consists of a set* of

definite clauses. A query to a Prolog program is represented by a goal. It works with the same

mechanism as SLDNF with the following two restrictions:

(a) The computation rule in standard Prolog systems always selects the leftrnost atom in a

goal.

(b) Standard Prolog uses the order of clauses in a program as the fixed order in which

clauses are to be tried, i. e. search tree is searched depth-first

Prolog provides a system predicate called cut (T) to reduce the search space of a computation.

Also, there is a set of extra-logical predicates in Prolog such as to perform 1/0 (read, write etc.),

manipulate programs (assert, retract etc.) etc.

Example : Consider the following program:

-26-

1-1: 1: P (x, y) (-- Q (x, y)^ --, R (y)

R 2: P (X, Y) 4- S (X) AR (y)

F 1: Q (a, b)

F 2: Q (a, c)
F 3: R (c)

F4: S(a)

F5: T(a)

The SLDNF-tree (Prolog style) for nu f *- P (x, y) AT(x)) is given in figure 2.1. The left most
derivation is given in table 2.1.

(--- P (x, y) ^T (x)

, (-- Q (x, y) ^ --, R (y) ^ T(x) *-- S (x) ^R (y)^ T (x)

Fý/ F2 F41

4- -, R (b)^ T(a) *- --, R (c) AT (a) R (y) ^T (a)

NAF F3

T (a) FAILURE +- T(a)

F5

SUCCESS

F5

SUCCESS

Figure 2.1. The complete SLDNF-tree for IM-) (<-- P (x, y)AT (x) 1.

-27-

Goals Variants Substitutions

GoP (x, y) T(x)

G, Q (x, y) -, R(y) ^T (x)

R (b) ^T (a)

ý G3= *-T
I El

P (x, y) (-- Q (x, y) ^ --, R (y)

C2=Q (a, b)
C3 = ---, R (b)
C4 = T(a)

01 = (X/X, y /Y

02 = (x1a, y1b
03 =

04=

Table 2.1. An SLDNF-derivation for Ilu (e- P (x, y), T (x) 1.

The SLDNF-tree (Prolog style) for Flu (<-- P (X, Y) A! AT (x)) will contain only the above

derivation, i. e. the leftmost branch of figure 2.1.

Throughout this thesis a standard C-Prolog [171 syntax has been used to represent a

Prolog program or a query. In C-Prolog, the reverse implication sign '<--' in a clause is denoted

by ': -' and '4-' symbol in a goal is denoted by '? -'. The 'A' in the body of a clause is

represented by ', '.

-28-

CHAPTER 3

Logic and Databases

Both relational and deductive database models are discussed in this chapter and in particular it is

shown how each of them can be viewed through logic.

Definition :A data model consists of the foRowing:

(a) A mathematical notation for the formal description of data and their relationships, and

(b) A technique for the manipulation of data such as answering queries, checking

integrity.

3.1. The relational data model

The set-theoretic relation is used as a mathematical notation for describing data in the relational

data model [18]. A relation can be characterised as a two-dimensional table where each row is a

tuple and each column is an attribute. Each entry of the table is an attribute value. A relation

scheme of a relation is the collection of all attribute names for the relation. A relational database

scheme is the collection of relation schemes used to represent information, and the set of values of

the relations is called the relational database. Consider the following example of a relational

database:

Example 3.1 : Consider the four relations STUDENT, EXAM, SPECIAL COURSE and

COURSE given in tables 3.1,3.2,3.2 and 3.4 respectively.

-29-

STUDENT

SNo Group Result

iiiii Sc Pass

22222 Corn Pass

33333 Sc Incm

44444 Hum Pass

55555 Sc Pass

66666 Com Fail

77777 Com Pass

88888 Sc Fail

99999 Hum Prom

Table 3.1

EXAM

SNo Course Mark

88888 Phy 55

11111 Chem 65

77777 Acc 62

55555 Math 91

11111 Math 55

44444 Hist 66

55555 Phy 58

77777 BM 72

44444 Geo 46

88888 Chem 45

88888 Math 35

11111 Phy 85

77777 Eco 49

55555 Chem 81

44444 PS 60

22222 BM 65

66666 Acc 38

33333 Math 49

22222 Eco 68

66666 Eco 63

22222 Acc 51

33333 Chem 69

66666 BM 61

99999 Hist 49

99999 PS 65

SPECIAL COURSE

SNo Course

55555 Phy*

iiiii Chem

44444 Geo*

iiiii Math*

77777 Acc

99999 Hist*

99999 Geo*

77777 Eco*

22222 Acc*

Table 3.3

COURSE

Course Group

Phy Sc

Chem Sc

Math Sc

Hist Hum

Geo Hum

PS Hum

Acc Com

Eco com

BM Com

Table 3.2 Table 3.4

* tuples quoted by asterisk are implicit in the database. Without being stored explicitly they can be derived from the

dat3base with the help of deductive niles.

-30-

In example 3.1, <11111, Sc, Pass>, <22222, Com, Pass>, ... are tuples of the
STUDENT relation. I 1111,22222, ... are attribute values of the attribute SNo. The STUDENT

relation scheme contains the attributes SNo, Group and Result. The example database schema

contains relations STUDENT, EXAM, SPECIAL COURSE and COURSE. A student can either

pass (Pass) or fail (Fail) or be specially promoted (Prom) or have an incomplete result (Incm). A

student fails if s/he secures less than 40 in any course. A passed student who obtains less than 60

in a particular course will have to go for a special course on that particular course. If a promoted

student did not appear or appeared but secured less than 60 for the exam of a particular course

then that student will have to go for a special course on that particular course. Anyone else can

attend a special course if s/he wishes.

A number of data manipulation languages (or query languages) have been associated

with the relational model. A number of operations, for example, select, join, project, are defined

in data manipulation languages for the manipulations of data in relational databases. The effect of

these operations can be obtained by expressing queries [13]. The query language for the

relational model can be divided into two classes, relational algebra [18] and relational calculus.

In relational algebra queries are expressed by applying operators to relations, whereas in the

relational calculus approach a query describes a desired set of tuples by specifying a predicate that

the tuple must satisfy. Examples of calculus based languages are QUEL [100] and QBE [109].

An example of an algebra based language is SQL [21]. A typical query using the operation

select, join in the context of example 3.1 could be

find all studentsfrom the science group who have obtained more than 50 in mathematics.

The above query can be expressed in SQL as

SELECT S. SNo

FROM STUDENT S, EXAM E

WHERE S. SNo = E. SNo

AND S. Group = 'Sc'

AND E. Course ='Math'

AND E. Mark > 50.

The following hypotheses are made in definitions of the relational model for

evaluation of queries:

-31-

(a) The closed world assumption (CWA) states that all information that is not true in the
database is assumed to be false (i. e. ---, R (a 1, ..., a,,) is assumed to be true iff the tuple

<a 1, ..., a,, > is not explicitly present in the extension of R).

Example : From the CWA it can be said that the tuple <55555, Chem > is not in the
SPECIAL COURSE relation, i. e. the student identified by the number 55555 is not
taking a special course on chemistry.

(b) The unique name assumption (LTNA) states that constants with different names are

different.

Example : From UNA it can be said that the two constants 11111 and 22222

appearing in the relation STUDENT are identifying two different students uniquely.

(c) The domain closure assumption (DCA) states that there are no other constants than

those in the database.

Example : From DCA it can be said that there is no student with number 12345.

A database can be considered from the viewpoint of logic as

(1) An interpretation of a first order theory, or

(2) A first-order theory.

From the viewpoint of (1), queries and integrity constraints are formulae that are to be evaluated

using the semantic definition of truth. From the viewpoint of (2), queries are considered to be

theorems that are to be proved and integrity constraints are either considered to be theorem that

are to be proved or formulae that are to be consistent with the theory. These two approaches are

referred to as the model-theoretic view and the proof-theoretic view [351 respectively.

3.1.1. Model-theoretic view of relational databases

Let DB be a relational database. Define a first order language L as follows.

(1) L contains an n-place predicate symbol R for each n-ary relation R in DB.

(2) L contains a set of constants, one for each element in D, where D is the union of the

underlying domains of all attributes that occurs in the relation schema.

-32-

(3) There are no function symbols in L.

(4) Arithmetic comparison operators (<, =, *, >, : 5, ý!) are assigned their usual

mterpretation, if they are required.

The database DB can be taken as an interpretation of the first-order theory consisting of the above

language L and the variables of L as ranging over the domain D in this interpretation. The

evaluation of logical fonnulae of L in this interpretation is based on:

R (a 1, ..., a,,) is true iff <a 1, ..., a,, >ER .

The above way of evaluation preserves the properties of CWA, DCA and UNA. The least

Herband model of the constructed theory contains exactly the infon-nation that one intended to

store.

Although a relational database is generally considered as an interpretation of a first-

order theory, i. e. from a model-theoretic point of view, it can also be considered from a proof-

theoretic point of view.

3.1.2. Proof-theoretic view of relational databases

Let DB be a relational database and L be a first-order language defined as in the previous section.

The proof-theoretic point of view of a relational database DB is obtained by constructing a theory

T underlying the language L. The proper axioms of the theory T are as follows:

(a) Assertions. For each relation R in DB and for each tuple <a 1, ..., an > (=- R, the

assertions R (a 1, ..., a,,).

(b) The completion axioms. For each relation R, if <a an I>'
... ' <aM, ..., am>

denote all the n-tuples of R, the completion axiom for R

Vx 1, ..., Vx,, (R (x 1, ..., x,,) -4 (x I=a 11 /\ ... Ax,, = a., ') v ... v (x I= a'I A /\ x, = a,, "ý.

(c) The unique name axioms. If a 1, ..., ap are 0 constants in DB, then

(a I#a 2), ...,
(a I# ap), (a 2#a 3), --.,

(ap
-1

ap)-

-33-

(d) The domain closure axioms.

Vx ((x =a,) v ... v (x = ap)).

Equality axioms. The following axioms

Vx (X =x),
Vx Vy «x = y) ---> (y = x»,
Vx vy Vz «x = y) A (y = Z) -+ (x = ZA
vxl - vxn(P(XI,

---, Xn)A(XI=YI)A -

It can be shown that for any U in L, TýU iff U is true in DB. Hence the above two

approaches are equivalent.

3.2. The deductive database model

The first-order language is used as a mathematical notation for describing data in a deductive

database model. It can also be used as a language for expressing views, queries and integrity

constraints. Such databases are called deductive databases (also called logic databases, see [34])

because they are able to make deductions from known facts and rules at the time of answering

queries. Throughout this thesis, deductive database are considered from the proof-theoretic point

of view.

Definition :A (database) clause is a program clause (i. e. a clause) and a deductive database is a

program (i. e. a finite set of clauses). In the context of deductive databases, the different forms of

the clause

Alv ... vA <-- LIA/, ý L,, m ýtl

corresponding to different values of m and n are as follows:

(a) m=1, n=0, i. e. a unit clause. TWs clause is called a (definite)fact.

(b) m>1, n =0, i. e. the clause has the form

v

in which the body is empty and the head is a disjunction of more than one atoms.
This clause is called an indefinitefact.

-34-

(c) m =1, n >0, i. e. a definite clause with non-empty body. This clause is called a

(definite) rule.

(d) m>1, n >0, i. e. the head is a disjunction of atoms and the body is non-empty. This

clause is called an indefinite rule.

Thus, a definite (database) clause is either a fact or a rule. A general or indefinite (deductive)

database is a general program (i. e. finite set of clauses). A definite (deductive) database is a
definite program (i. e. finite set of facts and rules). As in the case of programs, a definite database

is a special form of a general or indefinite database.

Example 3.2 -. A definite database form of example 3.1 consists of the following clauses:

SNo (11111, Sc, Pass), etc.

Exam (8 8888, Phy ,5 5), etc.

SpecialCourse (x, y) ý- Student (x, z, Prom) A Course (y, Z) A --n Exam (x, y, t),

SpecialCourse (x, y) <-- Student (x, z, Prom) A Course (y, z) A Exam (x, y, t) At <60,

SpecialCourse (x, y) 4- Student (x, z, Pass) A Exam (x, y, t) At <60,

SpecialCourse (11111, Chem), SpecialCourse (77777, Acc),

Course (Phy, Sc),
... etc.

Definition :A (database) query is a goal. For example, the query

find all studentsfrom the science group who have secured more than 50 in mathematics

can be expressed in the form of a goal as

<-- Student (x, Sc, y) ,, Exam (x, Math, Z) Az >50.

Definition :A database DB (resp. query G) is caUed allowed (or range-restricted) if the program

DB (resp. goal G) is allowed.

To avoid floundering in the construction of a derivation of DB u(G), where DB is a

database and Ga goal, it has been assumed in the rest of the thesis that both DB and G are

allowed.

-35-

3.2.1. Proof-theoretic view of definite databases

Let DB be a definite database and L be a first-order language defined as follows:

(1) L contains an n-place predicate symbol R for each n-ary predicate R appearing in DB.

(2) L contains a set of constants, one for each element in D, where D is the set of all

constants appearing in DB.

L contains a set of function symbols, one for each element in F, where F is the set of

all function symbols appearing in DB.

Arithmetic functions(+, -, *, /) and arithmetic comparison operators(<, =, #, >95, >)

are assigned their usual interpretation, if they are required.

The proof-theoretic point of view of DB is obtained by constructing a theory T underlying the

language L. The proper axioms of the theory T are as follows:

(a) Completion axioms. Obtained by completing each predicate symbol of L (as defined

in section 2.5.1) according to the clauses of DB .

(b) Equality and Unique name axioms. Axioms of the equality theory (defined in section
2.5.1) according to the constant, function and predicate symbols of L.

(c) Domain closure axiom. If a 1, ..., ap are all the elements of D and f 1, fq are all the

function symbols of F, then the domain closure axiom [63] is as follows:

Vx «x =a 1) v ... v (x =ap) v (3x , ... 3x� (x =f (x 1, ..., xn») v ... v ßy , ... 3Yn (X=f q (Y 19 -- Yn»»-

Considering DB as a definite program, the above proof-theoretic point of view

reduces to comp (DB) plus the above domain closure axiom. The domain closure axiom may be

avoided by dealing with allowed queries and clauses. It has been shown in [16,63] that there is

an equivalence (sound but not always complete) between the completion axioms and unique name

axioms and the negation asfailure [16] rule. Hence, from the operational point of view a definite

database consists of the following:

(i) A set of definite clauses each of whose elements is allowed.

-36-

The negation as failure rule.

All the notions and results introduced in chapter 2 in the context of definite programs

and goals can be taken as valid in the context of deftnite databases and queries respectively. The

terms 'definite program' and 'definite database' win be used synonymously in the remaining

chapters. It is obvious that a relational database is a particular definite database and hence a

particular indefinite database. Unless otherwise stated, function symbols will be allowed in a
database clause.

3.2.2. Transactions on deductive databases

Definition :A transaction on a deductive database DB is a finite sequence of operations

(actions), insertion, deletion or update of clauses.

An update of a clause in a deductive database is normally taken as a deletion followed

by an addition. It has been assumed so in the rest of the thesis except in chapter 10. In chapter

10, update operations have been perfon-ned only on facts, explicitly present in the database, and

they have not been assumed as deletion followed by addition. Instead, their own identities have

been maintained to compute implicitly updated facts and to check integrity constraints relevant to

the updated facts.

As a deductive database is viewed as a set of clauses rather than their models, no

operations is allowed on a fact (either definite or indefinite) which is implicit in the database (i. e.

not present in the database, but can be derived from the database). Work related to this can be

found in [31,4,24).

Definition :A transaction is said to have been committed successfully if the entire sequence of

operations forming the transaction completes successfully. The main reasons for failing to

complete a transaction are, for example, the violation of an integrity constraint by operations in

the transaction, systems failure, infinite computation or user interruptions.

-37-

CHAPTER 4

Integrity Constraints in Databases

The purpose of integrity constraints is to ensure that the database remains in a valid state. This

chapter is devoted to different issues of integrity constraints. The formal definition through logic

and a detailed classification of integrity constraints are given. Different views of constraint

satisfiability are discussed and compared in detail. Finally, the notion of the denial form of

constraints is introduced and it is shown that a general integrity constraint in closed first-order

form can be converted to this form.

4.1. Integrity constraints

In a database, (semantic) integrity is concerned with limiting the possibility of erroneous

modifications being performed and hence incorrect information being stored in a database.

Modifications to a database can be performed via transactions. One of the reasons for failing to

complete a transaction is the violation of an integrity constraint by operations in the transaction.

Definition : Part of the semantics of a database is expressed, as (integrity) constraints

[20,104,106,30,99,33]. Constraints are properties that the data of a database are required to

satisfy.

Some typical constraints in the context of the database of example 3.2 in the previous

chapter are as follows:

each value of the domain of attribute Mark in the EXAM relation must be between 0

and 100,

(H) the domain of attribute SNo in the EXAM relation must be a subset of that in the

STUDENT relation.

-38-

The fonner one can be considered as a range constraint whereas the latter is an existential

constraint

4.1.1. Classification of constraints

As an initial formal classification of all constraints, the whole class can broadly be divided into

two, immediate and deferred. Constraints that are required to be satisfied after the completion of

a transaction are known as deferred constraints. Constraints that are required to be satisfied after

any action are known as immediate constraints. To clarify this distinction consider the constraint

which expresses that

the sum of debit and credit in a ledger is equal to the budget amount

Suppose a transaction, corresponding to an expense incurred, causes an amount to be subtracted

from the credit amount and that an amount is to be added to the debit amount. The consistency of

the database is preserved if the above constraint is treated as a deferred constraint. Consistency

would be violated if the same constraint was treated as an immediate constraint.

Considering every action on a database as a single transaction, the class of immediate

constraints can be verified in the same way as deferred constraints. Hence, in the thesis

constraints are considered as deferred and any further references to constraints will be taken as to

deferred constraints.

The set of all deferred constraints can be subdivided into the set of static constraints

and the set of transitional (or dynamic) constraints. Static constraints deal with information in a

single state of the world. The current state is independent of previous or future states. The

following are some examples of static constraints.

(a) Name of a department belongs to the domain [Fin, Admin, Comp).

(b) An employee's salary must be less than 10000.

Every worker has a manager.

(d) Every child has only one father.

If one of the parents of an unemployed person is employed then the person must be

dependent on that parent.

-39-

(f) Average salary of any department must be less than 10000.

(g) Total salary of all the employees in a department must be less than the budget of the
department.

(h) Maximum number of employee in a department is 100.

The static constraints can be sub-divided into two categories - aggregate and non-
aggregate. Static aggregate constraints involve one or more aggregate operations like Count,
Sum, Average, Maximum, Minimum. For example, the constraint (h) requires the help of the
Count operation on the Employee relation and hence this will be classified as static aggregate
count constraint. More on aggregate constraints can be found in chapter 9.

Static non-aggregate constraints are classified into the following five major categories:

Not Null : Can be specified for any attribute and any attempt to introduce null in such

an attribute is rejected. In the rest of this thesis, the considered databases are assumed
to be satisfy this constraint.

2. Check : Given a relation R, this constraint can be specified for any attribute or

combination of attributes within R, provided Not Nun is also specified for every

column involved. Any attempt to introduce a tuple into R that violates the specified

constraint, e. g., the attribute value is not in the specified Range (example (b)) or does

not belong to the specified Domain (example (a)), is rejected.

3. Unique : Given a relation R, this constraint can be specified for any attribute or

combination of attributes within R, provided Not Null is also specified for every

attribute involved. Any attempt to introduce a tuple in R having the same value in the

specified attribute or combination of attributes as some existing row will be rejected.

Primary Key is a special case of Unique. The identified attribute or combination of

attributes constitute the primary key for the relation R.

4. Existential : An existential constraint is specified on an attribute or a combination of

attributes in one relation whose values are required to match values of an attribute (the

primary key, in the case of Foreign Key) in some relation (example (c)). References is

an alternative way of specifying foreign keys. The imposed integrity constraint is

called a referential constraint [22,12].

-40-

5. Multivalued Dependence : Multivalued dependencies [321 are a generalisation of

functional dependencies [32,11]. Given a relation R, attribute Y of R is functionally

dependent on attribute X if and only if each X-value in R has associated with it

precisely one Y -value in R (example (d)).

A different classification of constraints concerns whether a constraint is applied to an

individual tuple of a base relation or to more than one tuple from different relations. The former

class of constraints would be considered as single record (or single tuple) whereas the latter

would be denoted as multiple record (or multiple tuple). This classification has a special

implication for the process of constraint checking. When a transaction is encountered, all the

single record constraints can be verified by looking at the transaction alone without accessing the

database. But for verifying a multiple record constraint, one has to access the database.

Examples (a) and (b) fall into the single record category whereas (c)-(h) fall into multiple record

category. As an example, the constraint (b) is applied only to an individual tuple of the

Employee relation. On the other hand, the constraint (c) is applied to two tuples, one from

Worker and the other from Manager. Likewise the two constraints (g) and (h) are applied to all

the tuples of the relation Employee who are working in a particular department.

Unlike static constraints, transitional constraints deal with the way in which world

evolves, i. e. an imposed constraint is related to at least two states of the database. Consider the

constraint, the minimum loan amount is 10000. This means that if a person negotiates a loan then

initially the amount of the loan has to be greater than or equal to 10000. Subsequently, when the

person repays the loan amount by installments, the loan amount outstanding may be less than

10000. Hence transitional constraints have to be satisfied only at the time the operation occurs.

Here are some examples of transitional constraints considered in the cases of addition, deletion

and updates of tuples to the database.

(1) Initially, the minimum loan amount is 10000.

(II) Lay-off of employees whose income is less than 1000 will be prevented.

(III) On updating the salary of an employee it should always increase.

The Maximum loan an employee can have is five times hislher salary unless the

employee has been given permissionfor a special loan.

41-

A change in grade must be accompanied by a change in salary.

More on transitional constraints can be found in chapter 10. Transitional constraints can be

subdivided into addition type, deletion type, Update Type and a mixture of one or more of these.

Each of the above types of transitional constraints are divided into two categories. An addition

type transitional constraint involving aggregate operations (e. g., Count, Sum, Average, Maximum,

Minimum) on one or more relations is classified as an addition type aggregate transitional

constraint, whereas an addition type transitional constraint without involving aggregate on any

relation is classified as an addition type non-aggregate transitional constraint. Similarly the case

applies for deletion and update types of transitional constraints. For example, the constraints

(A) on update of the salary of an employee, the difference of salaries should be between

10 and 100

(B) on insertion of a new employee in a department the new average salary of the

department must be less than the old average salary of the department

will be considered as an update type non-aggregate transitional constraint and an addition type

aggregate transitional constraint respectively.

Figure 4.1 illustrates the scheme of classification of constraints. The symbol

denotes repetition and a 'Mixed' type of constraint in a particular level of the hierarchy denotes a

constraint of a combination of types in that level.

4.1.2. Syntactic definition of constraints

In the previous chapter logic has been considered as the theoretical foundation of database

systems. The idea behind this consideration was to use logic as a uniform language for data,

programs, queries and constraints. In the context of logic, the definition of a constraint is as

follows:

Definition :A constraint is a closed fonnula.

All the static constraints can be represented by closed first-order formulae. To represent static

aggregate constraints conveniently, some aggregate predicates have been considered. This issue

is discussed in detail in chapter 9. To represent a transitional constraint, it is necessary to allow

some action relations. Using action relations and by modifying the database accordingly, it is

-42-

Integrity Constraints

Deferred Immediate

II-r ----I

Static Transitional Static Transitional

Addition J-Deletion update Idixed

Aggregate ; gregate

Count

Aggregate

Sum Average Maximum Minimum

Non-Aggregate

Iýfixed

IIIII, I

Not Null k Unique Existential Multivalued Dependence Mixed
II

Primary Key Functional Dependence

Domain Range Foreign Key Reference

Figure 4.1. Classification of integrity constraints

possible to verify the satisfiability of transitional constraints in the same way as for static

constraints. This issue is discussed in chapter 10. Considering constraints as closed first-order

formulae, the representation of constraints (a)-(e) in this form can be illustrated as follows:

Vx Vy Vz (Employee (x, y, z) --ý y =Fin' vy =A&nin' vy ='Comp')

Vx Vy Vz (Employee (x, y, z) -4 z <I 0000)

Vx (Worker (x) -* 3y Manager (y, x))

VxVy (Father (x, z) A Father (y, z) -+x=: y)

-43-

Vx Vy (Parent (x, y)AEmployed (x) A-, Employed (y) -* Dependent (y, x))

Any further reference to the term 'constraint' in the rest of this chapter and in chapters 5-8 will

refer to a 'non-aggregate static constraint.

4.1.3. Constraint satisfiability in definite databases

A constraint is a closed first-order formula that a database (consider definite for this section) is

required to satisfy. The standard definition of constraint satisfiability (the theoremhood view) in

databases is as follows. Let D be a database such that comp (D) is consistent. Then D is said to

satisfy W, where W is a constraint, if W is a logical consequence of comp (D); otherwise, D

violates W. D is said to satisfy I, where I is a set of constraints, if D satisfies each constraint in

I; otherwise, D violates I. This definition is followed in [66,25,10,601.

An alternative definition of constraint satisfiability (the consistency view), adopted in

[3,91] is as fbUows. A database D satisfies constraints I if and only if the set of formulae

comprising the completion of D together with the formulae in 1, is consistent.

The above two definitions of constraint satisfiability are equivalent if and only if the

completion of the database D is complete. If a constraint W is a theorem of the completion of a

database D then comp (D) together with W is always consistent. But the converse may not be

true. Hence the latter definition of constraint satisfiability deals with a larger class of databases.

The alternative defirdtion, of constraint satisfiability may differ from the standard view

in its outcome if either of the following two conditions is met:

(a) circular definitions are present in the database, or

(b) a predicate symbol occurs in the constraints but not in the database.

Each of the above points will be clarified with the help of examples.

To illustrate the problem associated with (a), consider the database

P (a) <--

where a is a constant, and the constraint

-44-

I:

The database is recursive and its completion, apart from the equality axiom, is given by

comp (D): P (x) +-+ x =a AP (a),

where x is a variable. Comp (D)uI is consistent as IP (a)) is a model of comp (D)uI. On the
other hand P (a) is not a theorem of comp (D).

To clarify point (b), consider the database

P

where a is a constant, and a constraint

I: (a).

The predicate symbol Q does not occur in the database. The completion of D, apart from the
equality axiom, is given by

comp (D): P (x) <--> x =a

where x is a variable. Comp(D)ul has a model [P(a), Q(a)j and hence comp(D)uI is

consistent. But Q (a) cannot be proved as a theorem from comp (D).

To implement reasoning with the completion of the database, the methods in
[66,25,55] make use of the notion of negation as failure.

Another view of constraint satisfiability, called the meta view, has recently been

proposed by Kowalski (51]. In this view a constraint is a meta-statement which must be true of
the database. None of the proposed methods exploits this view of constraint satisfaction.

4.1.4. Constraints in denial form

Different authors have represented constraints in different forms for the ease of their evaluation.

This issue will be discussed in detail in chapter 6. In this section a special format for constraints,

called denial form, will be introduced which will be needed in the next chapter for the proposed

methcd of constraint evaluation in definite databases.

-45-

Definition :A denial [91,55] is a goal, i. e. a formula of the form

+-LIA - AL, n>O,

where the Li are literals and all variables are assumed to be universally quantified in front of the

constraint

It is possible to convert an arbitrary constraint to its equivalent denial forrn as follows.

Let W be a constraint which is an arbitrary closed first-order formula which has been imposed on

a definite database D. Then this constraint can be replaced by a new constraint (-- A, where A is

a predicate symbol of zero arity that does not occur elsewhere in the database or constraints,

provided that a set of rules obtained by transfonning

A4--, W

is added to the database D using the foRowing method of transformation [67] :

(a) Replace A <-W, A ... A Wi-
IA

(U A V) A Wi+j A*-A Wn

by A <- W, A ... A Wj_
jAUA

Wj+j A ... A Wn

and A <- WIA ... AWi
_,

A--VAWi+IA - AWn

(b) Replace A <-- WA ... A Wi
-I

A VX
I ... VXMU A Wi+j A--- A W,

by A <--WIA ... AWi
-I /\ -, 3x I. - -3. ý. -,

UA Wi+j A ... A W,,

(c) Replace A <-WIA ... A Wi-
IA --i

VX
I ... VXM UA Wi+j A ... /\ W,

by A W, A ... A Wi-
I A3x I ... 3x,,, --, UA Wi,

j A---AW,,

(d) Replace A W1 A ... AWi- IA(U+-V)AWi+IA - AW,

by A <-- WA ... A Wi-
IAUA

Wi+j A ... A W,,

and A <-- W1 A ... AWi- IA--,
VAWi+IA ''' AWn

Replace A +- WI ý\ ... A Wi
-I

A --, (U +- V) A Wi+j AAW,,

by A *- WA... A Wi
-I

AVA --i
U W1+1 A ... A W,,

Replace A <-- W, /\ ... A Wi
-I

A (U V V) A W1+1 AAW,

by A *-WIA ... A Wi
-I

AUA Wj+j /\ ... A W,,

46-

and A+- W1 A ... A Wi-I AVA Wi,
j A ... A W,,

(g) Replace A +- WIA... A Wi-I A --i (U V V) A Wi+j AA Wn

by A <-- WA... AWi_, A-, UA-, V/1, Wi+, A i\Wn

(h) Replace A <-- WI /\ ... A Wi-I A -n -, UA Wi,
j AAW.

by A <-- W1 A ... A Wi-I AUA Wi,
j A---AW,,

Replace A <--WIA --- AWi
-IA3x I ... 3x

..
U A Wj+j AAW,,

by A ý- WIA ... A Wi
-I

AUA Wi+j A ... A W,,

Replace A <-- W, /\ ... A Wi-I
A-, 3x I ... 3x ..

UA Wi,
j A ... A W,,

by A <-- WIA -* ,\ Wi-I
A-,, P (y yk)A Wj+j A -A Wn

and P(yl,

where y 1, ..., yk are the free variables in 3x 1 ... xm U and P is a new predicate

symbol not already appearing in the program.

Suppose D' is the resulting database. Then W is a logical consequence of comp (D) if and only if

*-- A is a logical consequence of comp (D'). This justifies the transformation of a constraint to a

denial.

To illustrate the above transformation process, consider the following example:

Example : Suppose the constraint

Vx (Worker (x) --ý 3y Manager (y, x))

to be imposed on a database D. The above constraint can be transformed to a denial of the form

<--

by applying successively (e) and 0) and with the addition of the rules

Worker (x)A-, B (x)

B (x) (-- Manager (y, x)

47-

to the database D, where the two predicates A and B are not used elsewhere in the database D.

Unless otherwise mentioned, in the rest of the thesis, a closed first-order formula

representing a constraint will be assumed to be in the form of a denial.

Definition : Let I be a set of constraints in denial form. Then Id will represent the set of clauses

of the form

IC (No)

where <-B is a constraint from I and No is a unique identification of the constraint. IC(No) wiH

be caRed the head of the constraint <--B.

48-

CHAPTER 5

The Path Finding Method

In this chapter, the path finding method is described for checking integrity in definite databases.

A proof of the correctness of this method is given and the code for Prolog implementation of the

the main algorithm is proposed. Some possible optimisations are also discussed. Throughout the

chapter, the term 'database' will refer to a 'definite database' and the term 'constraint' a 'closed

first-order formula in the fonn of an allowed denial'.

Suppose D is a database and ta transaction whose application to D produces D'. The

path finding method of integrity checking in an updated database D' with a set of constraints I is

based on finding a path in D'UId from an update literal to the head of a clause in Id. If such a

path is found then the integrity in the updated database is violated; otherwise, if all possible

attempts to find a path fail, the integrity is said to be preserved in the updated database.

5.1. The Path

Definition : Let D be a database. A path in D is defined as a chain of literals

R, R2 R.

Lo -ý L, -ý --- -4 L,,

where LO is called the source of the path, L,, its destination, n its length and R 1, ... ' Rn am

clauses from D used to construct the path from LO to L, If the source LO is positive then it is

ground. For any two consecutive literals Li and L, -,,, Lj, j is called the successor of Li in the

path, and is obtained from Li in one of the following ways:

I. if

-49-

(a) Li is positive, and

(b) Li unifies with a positive literal L occurring in the body of the clause
Rj: H +- B, and

(c) a is an mgu of Li and L, and

(d) G' is a resolvent of +-B and Li +-, and

(e) 0 is a computed answerforDu[G'l

then Li +1 is HaO.

If

(a) Li is positive, and

(b) the negative literal --, L occurs in the body of the clause Rj: H <-- B such that Li

unifies with L, and

ot is an mgu of Li and L, and

(d) -, Hais not an instance of anyone of the Lj's, where 0<-j: 5i

then Li +1 is-, H cc.

If

(a) Li is negative, and

(b) Li unifies with a negative literal L occurring in the body of the clause

Rj: H +- B, and

cc is an mgu of Li and L, and

(d) 0 is a computed answer for D u(G), where G is the goal (--B cc

then Li, l is HccO.

If

-so-

(a) Li is negative and has the form -, M, and

(b) M unifies with a positive literal L occurring in the body of the clause
Rj: H +- B, and

(c) a is an mgu of M and L, and

(d) --, H cc is not an instance of any one of the Lj's, where 0-<j! 5i

then Li +I is --, H a.

From this definition, it is possible to construct more than one path starting from the

same literal. For simplicity, a path will sometimes be written without showing the clauses used

to construct the path. In the path L 0--+L I--> --- --4Ln , the distance of LP from Lq (0-<q ýp! 5, n) is

p -q and Lp is said to be at a distance p-q from L..

Definition : Let D be a database and La literal such that if L is positive then it is ground. Let S

be the set of all paths with L as the source. The path space rooted at the literal L is a tree defmed

as follows:

1. Each node of the tree is a literal.

The root node is L.

3. Let N be a node of the tree. Then the set of aU the successors of N in the paths of S

are the only descendants of N in the tree.

Each branch of the path space corresponds to a path in the database with the root node

as the source and vice-versa. A path which ends at the head IC (No) of a constraint will be called

a success path; otherwise, it will be called a failure path. A path space containing at least one

branch which corresponds to a success path is referred to as a success path space.

5.2. The Method

To check integrity in a database when a new constraint is added, the database is queried directly

to make sure that the constraint is a logical consequence of the completed database. If a

constraint is deleted then this cannot cause any inconsistency. To check integrity in the updated

database D' due to a transaction t applied to D, where a transaction is a finite sequence of

. 51 -

additions and deletions of clauses to/from a database, the source is taken as an update literal. An

update literal of the transaction t applied to a database D may be one of the following :

1. A fact of t which is to be added to D.

2. The negation of a fact of t which is to be deleted from D.

If a rule H <-- B in t is to be added to D then for a computed answer 0 for

D'u I <-- B), the corresponding instance of the head of the rule H <-- B, i. e. HO, which

is implicitly added to D due to the transaction.

4. If a rule H +- B in t is to be deleted from D then the negation of the head of the rule
H 4- B, i. e. -, H, whose instances are likely to be deleted from D due to the

transaction.

To preserve integrity one must ensure that a success path does not exist in the updated
database with the source as an update literal. The different branches of the path space from an

update literal can be generated in a number of ways and the backtracking mechanism is one of

them.

It has been assumed that a transaction does not add and delete the same clause. Also,

a transaction is rejected if a success path is found in the updated database. Modification can be

considered as being accomplished by a deletion followed by an addition.

The method is illustrated in the following few examples.

Example 5.1 :

Consider the foRowing database.

Database D1:

Rules :

R 1. Mother (x, y Father (z, y) A Husband (z, x)

R 2. Parent (x, y) Father (x, y)

R 3. Parent (x, y) Mother (x, y)

R4. Ancestor (x, y) <--Parent (x, y)

R5. Ancestor (x, y) ý- Parent (x, z) A Ancestor (z, y)

-52-

R 6. Wife (x, y) <-- Husband (y, x)
R 7. Married (x, y) <-- Husband (x, y)
R 8. Married (x, y) ý- Wife (x, y)
R 9. Employed (x) <-- Occupation (x, Service)

R 10. Student (x) <-- Occupation (x, Student)

R11. Dependent (x, y) *-Parent (y, X) AEmployed (y)AStudent (x)
R 12. Dependent (x, y) <--Married (y, X) AEmplqyed(y)A--, Employed (x)
R 13. Self (x) <--Married (y, x)A-, Employed (y
R 14. Guardian (x, y) *- Dependent (y, x)

Facts :

Occupation (2, Service)

Occupation (3, Student)

Father (1,3)

Integrity Constraints 11:

IC 1. Guardian (x, y) --* Sponsor (x, y
IC2. Married (x, y) -4 --, Student (x)

I l'i :

IC (1) <-- Guardian (x, y) A-., Sponsor (x, y)

IC (2) <-- Married (x, y) AStudent(x)

Transaction :

insertfact Husband (1,2)

where Student and Service are constants.

Before the transaction is applied, database DI satisfies the constraints 11. Let D I' be

the updated database after the insertion. The complete path space generated by the insertion is

shown in figure 5.1.

At the root of the path space is the update literal Husband (1,2). If one attempts to

unify Husband(l, 2) with a literal on the right hand side of any of the clauses in D 1', the first

potential unification is with the literal Husband (z, x) occurring in the body of RI for which

-53-

Husband (1,2)

R R61 7

Mother (2,3) Wife (2,1) Married (1,2)

R3 R8 R13

Parent (2,3) Married (2,1)

R RII R 121

Ancestor (2,3) Dependent (3,2)Dependent (1,2)

I R141 R14

FAILURE Guardian (2,3) Guardian (2,1)

ici I ici

Ic (1) 1 Ic (1)

SUCCESS SUCCESS

Figure 5.1. The complete path space in the case of example 5.1

cc--= Iz/1, x /21 is an mgu. The resolvent of the goal

<-- Father (z ,y)AHusband (z, x)

With

Husband (1,2) ý-

is

<-- Father (1, y).

Now if <-- Father (1, y) is treated as a goal and applied to the database, one will arrive at O= (y /3)

as a computed answer for D "U, ld u(<-- Father (1, y)). Pius the next literal of the path is the

head of rule RI with the substitution fzll, xl2, yl3) applied, i. e. Mother(x, y)C(O, or

Mother(2,3). In a similar way one can derive the literal Parent(2,3) as a successor to

Self (2)

FAILURE

-54-

Mother (2,3) in the path with the help of R3. The literal Parent (2,3) unifies with the literal of

the body of R4 as well as with a literal of the body of R5 and a literal of the body of R 11. If one

considers the first case, Ancestor(2,3) will be the next literal of the path. Although it unifies

with a literal from the body of R5, there is no explicit or implicit fact under the predicate Parent

which is present in D "U' ld whose second argument is 2. Hence, this path is a failure path. In

the second case, when Parent (2,3) unifies with the first literal from the body of R5,3 is not an

ancestor of anyone in D "U, ld which will satisfy the unified second literal and hence this path

also fails. In the third case, when Parent (2,3) unifies with the literal Parent (y ,x) occurring in

the body of R 11, cc: -- (x /3, y /21 would be an mgu of these two literals. The resolvent of the goal

<-- Parent (y, x)AEmployed (y) AStudent (x)

and

Parent (2,3) +-

is

<-- Employed (2)AStudent(3)

and there exists a computed answer 0=0 (the identity substitution) fo r
D FuI Ij u (<-- Employed (2)AStudent (3)). Thus the next literal of the path is

Dependent (x, y)(xO, i. e. Dependent (3,2). Using clauses R 14 and IC 1, one can construct the

foRowing success path

RI R3 RII R 14 Ic I
Husband (1,2) -4 Mother (2,3) -4 Parent (2,3) -+ Dependent (3,2) -+ Guardian (2,3) -ý IC (1)

and hence conclude that the integrity is violated due to the transaction.

Returning to the top-most level, Husband (1,2) may also unify with Husband (y, x)

from the body of R6 as well as Husband (x, y) from the body of R7. In the first case one can

construct the following success path

R6 R8R 12 R 14 Ic I

Husband (1,2) -ý Wife (2,1) -* married (2,1) -4 Dependent (1,2) --ý Guardian (2,1) -+ IC (1)

In the second case Married (1,2) may unify with

(a) Married (y, x) on the right hand side of rule R 12. This reduces the right hand side to

-55-

*- Employed(l) A--, EnWloyed (2).

If this is applied as a goal to the database DF it will fail and hence this rule is ignored.

(b) Married (y, x) on the right hand side of rule R 13 and oc: --(y I I, x12) is an mgu. This reduces

the right hand side to

+- --n Employed (1).

If this is applied as a goal to D l' it will succeed and the computed answer is the identity

substitution. Thus the next literal of the path is Se6F (x)cc or Self (2). This path is a failure path

as the literal Self (2) or its negation does not unify with any body literal of the clauses of

D l'U, Id -

(c) Married (x, y) on the right hand side of IC 2. This reduces the right hand side to

+- Student (1).

If this is applied as a goal to D l' it will fail and hence this constraint is ignored.

Example 5.2

Consider the foHowing database.

Database D 2:

Rules :

swne as D1

Facts :

Occupation (1, Service)

Occupation (2, Service)

Husband (1,2)

Integrity Constraints 12 :

swne as DI

-56-

Transaction :

deletefact Occupation (2, Service).

Before the transaction is applied, database D2 satisfies the constraints 12. Let D 2' be the updated
database after the deletion. Figure 5.2 shows the complete path space arising from the deletion.

-, Occupation (2, Service)

R9

--, Employed (2)

RI RY 13

Dependent (x, 2) -, Dependent (x, 2) Dependent (2,1) Self (1)

R14 R14 R14

-, Guardian (2, x) -, Guardian (2, x) Guardian (1,2)

IC(1)I IC(1) IC(1)I

--I ic (1) ic (1)

FAILURE FAILURE SUCCESS

FAILURE

Figure 5.2. The complete path space in the case of example 5.2

As the transaction is the deletion of a fact, the only update literal is the negation of tWs

fact and this is taken as a candidate source literal. Clause R9 shows that an implicit deletion of

the fact Employed(2) may occur due to this transaction. However, to avoid reasoning with two

database states, the facts deleted ft-om the database due to this transaction are not determined yet.
Instead, it can be said that the fact Employed(2) is likely to be deleted from the database.

O=fx/2) is an mgu of Occupation(2, Service) and the body literal Occupation(x, Service) of R9.

Thus the next literal of the path is the negation of Employed (x)O, Le. --i Employed (2). The literal

Employed (2) unifies with the literal Employed (y) occurring in the body of both RII and R 12

and the negation of Employed (2) unifies with a negative literal -Employed (x) occurring in the

body of R 12 as well as with ---, Employed (2) in the body of R 13. The first and second unification

-57-

may cause further implicit deletions from the database and cc. -- (y /2) is an mgu for both

unifications. The third and fourth unifications may cause implicit additions to the database and an

mgu in this case is P--[x/2). If one considers the first case, the two consecutive literals in this

direction of the path will be -, Dependent (x, 2) and --, Guardian (2, x) and it becomes a failure

path as the last literal of this path does not unify with any body literal of any of the clauses in

D TuI 2d. The second case also generates a failure path.

Now, if one considers the third case, the next two consecutive literals of the path will.

be Dependent (2,1) and Guardian (1,2) and these facts are implicitly added to the database due

to the transaction. The clause IC I unifies with the last literal of the path yielding a success path

R9 R 12 R 14 IC I
Occupation (2, Service) --) --, Employed (2) -4 Dependent (2,1) --- * Guardian (1,2) -* IC (1)

thereby showing that integrity has been violated. Considering the last case, Self (1) would be the

successor of -, Employed (2) in another direction. This path eventually fails.

Example 5.3

Consider the foUowing database.

Database D 3:

Rules :

R I-R 10, R 12-R 14 of DI

Facts :

Occupation (1, Service)

Occupation (2, Service)

Occupation (3, Student)

Husband (1,2)

Father (1,3)

Integrity Constraints 13 :

same as II

-58-

Transaction :

insertrule R: Dependent(x, y) (-- Parent(y, x) ^ Employed(y) ^ Student(x)

Before the transaction is applied, database D3 satisfies the constraints 13. Let D Ybe the updated
database. To determine the set of instances of the conclusion of R which are likely to be added to

the database due to the addition of the rule R, the following set of computed answers must be

derived.

f 0: 0 is a computed answer for D Tu (<--B 1, where R is H<--B)

which is equal to

[(xl3, yl2), [xl3, yll)).

The corresponding set of instances of the conclusion of R (equivalent to HO), i. e. the set of update

literals, is

(Dependent (3,2), Dependent (3,1))

and the facts in this set are added to the database due to the addition of the rule R to the database.

Taking one of the update literals Dependent (3,2) as a source, the success path

R 14 Ic I

Dependent (3,2) -* Guardian (2,3) --> IC (1)

in D YuI 3d can be constructed. Thus the integrity in the updated database D 3' is violated due to

the addition of the rule R to the database.

Example 5.4

Consider the foflowing database.

Database D4:

Rules :

same as DI

-59-

Facts :

Employed (1)

Occupation (1, Service)

Occupation (2, Service)

Husband (1,2)

Integrity Constraints 14 :

same as II

Transaction :

deleterule R: Employed (x) <-- Occupation (x, Service)

Before the transaction is applied, database D4 satisfies the constraints 14. Let D 4' be the updated

database. The set of ground instances of the conclusion of R which are likely to be deleted from

the database due to the deletion of R is not determined. Instead, the negation of the head of R,

which represents the set of facts deleted from the database, is taken as a source. From this the

following success path can be constructed in the updated database as the fact Employed (2) is

implicitly deleted from D4 due to the deletion of R.

R 12 R 14 Ic I

Employed (x) --ý Dependent (2,1) --4 Guardian (1,2) --+ IC (1).

Thus the constraints of the database are not satisfied by the deletion of rule R from the database.

5.3. Theorems for Integrity Checking

In this section, the definition of stratified databases [2,651 is given and the correctness of the path

finding method is proved for this class of databases.

Definition :A level mapping of a database is a mapping from its set of predicates to the set of

non-negative integers. A database is stratified if it has a level mapping such that, for every

database clause H <-- B, the level of the predicate of every positive condition in B is less than or

equal to the level of the predicate of H and the level of the predicate of every negated condition in

B is less than the level of the predicate of H.

-60-

It has been shown in [2] that if a database D is stratified then the completion of D is

consistent and hence will have a model. Based on this fact, the database versions of the following

two results [65], which are the basis of the method for determining whether a database satisfies or

violates a constraint <-- B, are given.

Result 5.1 : Let D be a stratified database, +-B a constraint. If there exists an SLDNF-

refutation of D uf<--B), then D violates *-B.

Result 5.2 : Let D be a stratified database, <--B a constraint. If D uf<--B) has a finitely failed

SLDNF-tree, then D satisfies <--B.

The proof of the theorem for integrity checking by the path finding method is similar

to the one which has been described in [65]. Let D and D' be stratified databases and D' is

obtained from D by applying a transaction t to D. Let the transaction t consist of a sequence of
deletions followed by a sequence of additions. Suppose that the application of the sequence of
deletions to D produces the intermediate database D". In [65] , the two sets of partially

instantiated atoms POSD". D, and NegD", D, have been calculated inductively by the following

formulae (similar formulae for POSD", D and NegD,., D)-

0 POSD", D' --": (A A <--W c UID

N0 "ý 1) egD" D''

POSLt, ID'= (A OA <--W E D', B is a positive condition of A +-W, CE POSL", D', and 0 is an mgu of B and C

u (A 0: A +-W (=- D', B is a negative condition of A +-W, CE Neg n, and 0 is an mgu of B and C) D", D'

n+l n NegD", D'=[A OA <-W (=- D', B is a positive condition of A +-W, CE NegD", D', and 0 is an mgu of B and C

(A 0: A <--W e D', B is a negative condition of A +-W, C 4=- pOS n D", D', and 0 is an mgu of B and C

POSD", D' U POSA", D'
n k0

gn NegD� u Ne D", D' , D' «
n k0

The above two sets P03D", D, and NegD", D' (resp. POSD", D and NegD", D) can be used to capture

the differences between the models of comp(D") and comp (D') (resp. comp(D") and comp(D)).

Suppose,

P05D, D'==POSD", D'UNegD", D

NegD, D'=NegD", D'UPO-5D", D

61-

Then the above two Sets POSD, D' and NegD, D' can be used to capture the differences between a

model for comp(D) and a model for comp (D'). Accordingly one can have the following lemma

similar to the one described in [65 1.

Lemma 5.1 : Let D, D' be stratified databases. Let t be a transaction which when applied to D

produces D' and D" as described above. Let <-- B be a constraint and 8= (0. - 0 is an mgu of an

atom Of POSD, D' (NegD, D') and a positive (complement of a negative) literal occurring in B).

Then D' satisfies *- B if and only if D' satisfies <-- B0 for allOER

Proof : Result (a) of the simplification theorem given in [65].

Suppose the set AddD, D' (resp. DeID, D') is the set of all positive (resp. complement of

negative) literals occurring in aU the path spaces generated by the update literals of L When aU

the path spaces are generated successfully without going into an infinite loop, one can have the

following lemma.

Lemma 5.2 : Let D be a stratified database, and D' and D" be obtainedfrom D by applying t to

D as described above. Then

(a) For each AE AddD, D' there exists an A'E POSD, D' such that A is an instance of A'.

(b) If there is a ground instance A of an atom A'EDelD, D' such that comp(D)ý A but not

comp (D') ýA, then A is an instance of an atom A"E NegD, D'-

(c) If A is a ground instance of an atom A'(=- PosD, D, such that comp (D') ýA but not

comp(D)ý A, then A ri AddD, D'-

(d) If there is a ground instance A of an atom A'c=- NegD, D, such that comp(D)ý A but not

comp (D') ý A, then A is an instance of an atom A" E DeID, D'-

Proof : Straightforward from the definition of path.

The above result shows that in the case of the path finding method, the set of ground

facts AddD, D' is the portion added to a model of comp(D) and the set of partially instantiated

atoms DeID, D, represents the portion deleted from a model of comp(D). The following theorem

and its corollary which are based on the above lemma help to reduce the checking of a constraint

into none or some of the simplified forms of the constraint.

-62-

Theorem 5.1 : Let D be a stratified database, <-- B be a constraint and D' be obtainedfrom D

by applying t to D. Let 0= (0: 0 is an mgu of an atom of POSD, D' (NegD, D,) and a positive
(complement of a negative) literal occurring in B). Let (D = (0: 0 is an mgu of an atom of
AddD, D' (DeID, D') and a positive (complement of a negative) literal occurring in B). Then D'

satisfies +- B0 for all OEE) if and only if D' satisfies 4- B0 for all OE (D.

Proof : The following is the proof of the 'if' part of the theorem. The proof of the 'only if' part is

similar.

Suppose D' satisfies <-- B0 for all OE RIf possible, let there exist a yE (D such that

D' violates ý- B y. Suppose L is a positive (negative) literal occurring in B and it (its

complement) unifies with an atom A of the set AddD, D' (DeID, D') With the mgu y. By lemma

5.2(a) (lemma 5.2(b)), there exists an atom L' from POSD, D' (NegD, D') such that Ly is an instance

of L' (negation of L). Since D' satisfies +- B0 for all OE E), it follows that D' must satisfy

+- B P, where 0 is an mgu, of L' and L. Ly is an instance of both L and L' and hence +- By is

an instance of +- B P. Therefore D' cannot satisfy <-- B y. This contradicts the initial

assumption. Hence D' satisfies 0 for all OE (D.

Corollary 5.1: Let D be a stratified database, +- B be a constraint and D' be obtainedfrom D

by applying t to D. Let (D = (0: 0 is an mgu of an atom of AddD, D' (DelD, D') and a positive

(complement of a negative) literal occurring in B). Then D' satisfies <- B if and only if D'

satisfies (-- B0 for all OE (D.

Proof: Follows from the above theorem and lemma 5.1.

Theorem 5.2 : (Theorem for integrity checking by the path finding method) Let D be a stratified

database and I be a set of constraints such that D satisfies I. Suppose D' is obtainedfrom D by

the application of transaction t to D. Then thefollowing properties hold.

(a) If there exists a success path in D'UId taking the source as one of the update literals,

then D' violates 1.

(b) If there exists no success path in D'uId from any one of the update literals, then D'

satisfies I-

Proof :

-63-

(a) Follows from corollary 5.1 and result 5.2.

(b) Follows from corollary 5.1 and result 5.1.

Corollary 5.2 : Let D be a hierarchical database [16] and I be a set of constraints such that D

satisfies I. Suppose D' is obtainedfrom D with the application of transaction t to D. Then the
following properties hold.

There exists a success path in D'uId taking the source as one of the update literals if

and only if D' violates I.

(b) There exists no success path in D'uId from any one of the update literals if and only

if D' satisfies I.

Proof : It follows from the above theorem directly as the hierarchical nature of D ensures the

termination of any query without going into an infinite loop.

5.4. Prolog Implementation

Facts and rules of a database are stored directly as Prolog facts and rules. A unique number has

been assigned to each newly inserted constraint as an identification- A constraint +-D numbered

No is stored directly as a Prolog rule ic(No): -D. A rule or a constraint can be retrieved

efficiently by using a reference which uniquely identifies the corresponding rule or constraint.

The path can be computed efficiently by maintaining additional information for each

rule and constraint in the database. For each literal L occurring in the body of a rule H<. -B,

clauses of the form

depend (Ref , H, L)

depend (Ref , not H, CompL)

have been maintained, where Ref is the reference which uniquely identifies the clause H <--B and

CompL, called the complement of L, is defined as follows. When L is positive, CompL is not L;

otherwise, when L is not A, then CompL is A. For each literal L occurring in a constraint <-D,

a clause of the form

depend (Ref , ic (No), L).

-64-

has been maintained, where ic (No) is the head of the constraint and Ref is the reference which
uniquely identifies the clause ic (No)<--D

-

The task of finding a path from a source literal S to a destination literal D can be
achieved in Prolog with the help of the following meta-interpreter [94,951:

path (D, S,
-)

:-

depend (Re f, D, S)

clause (D, B, Ref)

s impl ify (B, S,, SB) ,

call (SB) .

path(D, S, NegList): -

depend (-, Via, S) ,
Via = (not A),

not instance(A, NegList),

path (D, Via, [A I NegList I).

path(D, S, NegList): -

depend (Ref Via, S) ,

not via = (not
-),

clause (Via, B, Ref),

simpl if y (B, S, SB) ,

call(SB),

path (D, Via, NegList)

path (D, S, NegList) means that a path is constructed from the literal S to the literal D and the

set comprising the negation of each literal of the list NegList are the only negative literals

occurring in this path. clause (H, B, Ref) means H and B are unified respectively with the head

and body of a clause which is uniquely identified by the reference Ref . The interpretation of

simplify (B, S, SB) is that if S is a positive ground literal then SB is obtained by resolving B

against S; otherwise, SB is an instance of B obtained by unifying one of B's body literals with S.

instance (A, NegList) means that A is not an instance of any of the atoms occurring in the list

NegList. This corresponds to conditions 2(d) and 4(d) in the definition of a path and prevents a

possible generation of an infinite path from a negative literal in the presence of recursive rules.

-65-

The top level C-Prolog goal for integrity checking (Nc_violated(Tran).) can be

defined as

ic-violated(Tran): -

path (ic (No) , Tran,

where Tran represents an update literal. With the above convention if the database becomes

inconsistent due to the transaction Tran, then the first inconsistency is reported at a constraint

numbered No, i. e. this constraint is not a logical consequence of the completion of the updated
database.

The efficiency of the meta-interpreter can be improved (at the expense of storage) by

storing the two depend clauses

depend (H, L, B'),

depend (not H, CompL,

for each literal L occurring in the body of a clause H<--B, where B' is obtained from B by

removing the occurrence of L and CompL is the complement of L. It is obvious that in the new

definition of path, one can eliminate the calls to the predicates clause and simplijý.

5.5. Optimisations

Some optimisations could be carried out at the time of specifying certain specific kinds of rules or

constraints. These optimisations have been illustrated in the context of the alternative

implementation. Three cases have been considered. The first two deal with the generation of

depend clauses of the first type and the third with the generation of the second kind of depend

clauses in the implementation.

(1) Functional dependencies are a common form of constraint. An example of this kind of

constraint is

Father (y, X) AFather (z ,x) -ý y =z

Suppose that a constraint of this kind is present in the database and in the course of a transaction a

fact under the predicate Father is inserted into the database, either explicitly or implicitly.

According to the method and its implementation described in previous sections, it is necessary to

evaluate the two simplified instances of the above constraint and they are obtained from the

-66-

following two clauses under the predicate depend:

depend (ic (Id), father (Y, X), (father (Z, X) -4 Y=Z))

depend (ic (Id), father (Z, X), (father (Y, X) ---> Y=Z))

where Id is a unique identification of the constraint. Evaluation of the simplified instance which

arises from the second of the above two is redundant and hence may be excluded. This can be

prevented by not generating the second one at the time of specifying the constraint.

(2) The second case deals with rules in which two or more similar instances of a predicate occur
in the body. An example of this kind of rule is

Result (x, Hons) <- Exam (x, y, A) AExam (x, z, A),, \ y #z

If a database contains a rule of this form, the alternative implementation of the method described

in this section generates the following two clauses under the predicate depend:

depend (result (X, hons), exam (X, Y, a), (exam (X, Z, a), Y*Z))

depend (result (X, hons), exam (X, Z, a), (exam (X, Y, a), Y*Z)).

Now, if a transaction inserts into the database either implicitly or explicitly a fact under the

predicate Exam unifying with exam (X, Y, a), then an instance of result (X, hons) might be

added twice implicitly to the database. Consequently, the same path space rooted at the

corresponding instance of result (X, hons) would have to be generated twice. This can be

avoided by generating only one of the above two clauses under depend at the time of compiling

the rule.

The above two cases can be fonnalised as fbHows. Let D be a database and I be a set

of constraints. Suppose there exist literals L 1, L 2, ..., L,, under the same predicate occurring in

the body of a clause R in D uId such that any two of them are instances of each other. Suppose

for any two Li and Lj, R' is obtained from R by interchanging the variables in the same argument

position of Li and Lj. If for all Li and Lj, R' can be transformed to R with the help of the

transformations M, N <-+N, M, a =b <--4b =a and a #b <->b #a, where M, N are literals and a, b

are terms, then generate only one depend clause corresponding to one of the Lk's, 1! ýk! ýn.

(3) It can be seen from figure 5.2 corresponding to example 5.2 that the first and second branch

of the path space are identical to each other. Generating one of them is redundant- This happened

because the implicit or explicit deletion of a fact under the predicate Employed can delete the

-67-

same fact from both rules 11 and 12. Since the method does not compute what facts have been

deleted, it will be sufficient if one generates the second kind of depend clause corresponding to

either rule II or rule 12.

The above can be formalised as follows. Suppose therr, are two depend clauses of the

form depend (_, not H, L) and depend(-, not H', L') such that L' is an instance of L and H' is

an instance of H. If H'O is an instance of H0 and L'(x is an instance of L, where 0 is an mgu of

L and L', and cc is an mgu of H and H', then the latter depend clause can be excluded.

-68-

CHAPTER 6

A Comparative Evaluation

It is desirable to check the integrity of a database upon every transaction which alters its state.

The simplest approach to checking integrity in a database involves the evaluation of each

constraint whenever the database is updated. However, such an approach is too costly, especially

for large databases, and does not make use of the fact that the database satisfies the constraints

prior to the update. Different ways of maintaining integrity in definite databases which have been

proposed include generalisations of the simplification method [791 by Lloyd and Topor [661 ,
Decker [25] , and Bry et al. [101 ,a general theorem-proving technique by Sadri and Kowalski

[91] , using the Prolog not-predicate by Ling [60] , consistency proof method and a modified

program method by Asirelli et al. [3] and the path finding method. The objective of this chapter

is to evaluate the merits and demerits of these methods. As the proposed methods are concerned

only with static non-aggregate constraints and the underlying database is definite, the comparative

evaluation is made in such environments only. Hence, in this chapter, any further reference to the

term 'database' will refer to a 'definite database' and any reference to term 'constraint' will refer

to a 'static non-aggregate constraint'.

The arrangement of this chapter is as follows. Section 6.1 considers the different

forms of constraint representation used by different methods and their expressiveness. Section

6.2 introduces several methods in brief and illustrates each with a single database (database of

Example 5.1) to see their behaviour from the same view point. In section 6.3 the methods are

compared against each other and different aspects of the comparison are verified by practical tests

which have been carried out in a C-Prolog [17] environment running on a High Level Hardware

Orion computer.

-69-

6.1. Constraint Representation

The fo rmat used for expressing constraints varies according to the method studied.

Formats used include closed typed first order formulae, closed first order formulae with restricted

quantification, range form, IC-formulae and denials. Each of the expressions is described in turn.

In [661 , Lloyd et al. are concerned with a typed database [87,661 and the format

which they have adopted for representing a constraint is an arbitrary closed typed first order

formula. The requirement that the database is typed ensures that important kinds of integrity

constraints are maintained automatically. A formula F is said to be domain-independent [103] if

and only if its truth value does not depend on any domain element other than those occurring in

the relations that are explicitly mentioned in F. A formula is domain-dependent if and only if it

is not domain-independent. A domain-dependent constraint, such as Vxlcp(x), where x is a

variable of type c, can be checked by replacing the formula with Vx (p (x) +- r(x)) as a constraint.

This means that whenever a new constant a is entered into the domain of type r, a fact'T(a) is

maintained in the database and according to the constraint a fact p (a) will be inserted into the

database. Constraints are converted into a type free fon-nula and evaluated in a type free database.

Consider the constraint

Vx (Worker (x) --* 3y Superior (y, x)) (6.1)

The typed form of this constraint might be expressed as follows :

Vx IName (Worker (x) -ý 3y IName Superior (y, x))

where Name is a unary type predicate. The corresponding type free form is given by

Vx (Name (x) ---) (Worker (x) --ý 3y (Name (y)ASuperior (y, x))))

In [10] , Bry et al. have defined constraints as function-ftee, closed first order formulae

with restricted quantification which are expressed in normalised form [10]. In other words a

quantified formula or sub-formula has one of the forms

3x I ... 3x,, [A IA... A A.. AQ]

Vx I ... Vx,, [--, Alv --- v-nAvQ]

where A 1, ..., Am are atoms such that every variable x, occurs in at least one Aj, and Q is either

true or false, or some fortnula in which some or all x, are free. In this notation, the constraint

(6.1) can be written as

-70-

Vx [-, Worker (x) v 3y Employee (y, x)]

where A1 is Worker (x) and Q is 3y Employee (y, x). The variable x is free in

Decker [25] has considered a subset of domain- independent formulae, called range-
restricted formulae, for expressing constraints. A formula F in disjunctive minimisedform (dmf)

is range-restricted with respect to a variable x if and only if the variable x is existentially

quantified in the formula, and there is at least one non-negated x -literal in every conjunction in F

with an occurrence of x; or if the fon-nula is universally quantified wrt the variable x, and
&nflNot F) is range - restricted with respect to x. F is range- restricted if and only if it is range

restricted with respect to all the quantified variables occurring in F. This class of range - restricted
forTnulae is then represented in their equivalent range form. A range form has a range expression,

conclusion and remainder. The range form of (6.1) is given by

Vx (Worker (x) --- ý Superior (y, x)),

where Worker (x) is the range expression for the variable x and Superior (y , x) is the conclusion.

The remainder is empty in this case as there is no other literal in the constraint.

The constraint checking method put forward by Kowalski et al. [91,55] deals with

constraints in denial form. Denials must also be range- restricted. The method does not deal with

constraints like Vx (p (x)) since it is not possible to convert this kind of constraint to a denial form

which is range -restricted. It is also possible to deal with constraints that are in a more general

form than denials as described in section 4.1.4. The path finding method and the method of

Kowalski et al. both deal with the same class of constraint.

Ling [60] introduces a special form of closed first order formula, called an IC-formula,

which uses normal form (NF) negative formulae, to express constraints. An NF negative formula

Not (P) has the form

Not(A IA... AA,,, ANot (B 1) /,,, --- ANot(B,,)),

where each Ai is either a positive literal or an evaluable predicate and each Not(Bj) is an NF

negative fonnula. Using this, a constraint fonnula or IC-formula has been defmcd by Ling to be a

closed formula of the following form :

Al A ... AA,, ANot (B)A ... ANot (Bn) -ý CIv... v Cp, n, m, p ý! O

-71-

where each Ci has the same form as Bj. The constraint (6.1) is thus already in the form of an IC-

formula, where AI is Worker (x), m is zero, and CI is Superior (y, x)

Asirelli et al. 's modified program method deals with constraints of the form

T(X j,..., X,)

such that the left hand side has only distinct variables. A formula with more complex terms on

the left hand side can also be transformed to the above form and has been discussed by the

authors in their paper [3]. This form of formula has the problem of representing constraints

which involve negative conditions and is therefore more limited than the forms which can be

handled by the other methods. The constraint (6.1) can be written in the above form as

Worker (x) --> V(x)

by adding to the database the foRowing definition of W

4f(x) +- Superior (y ,x)

6.2. Constraint Checking Methods

In this section a number of methods for checking integrity in databases are described briefly and

the operation of each of the methods is expressed with the help of the following example.

Example 6.1

Database DI:

Relations :

same as Example 5.1

Rules :

same as Example 5.1

Facts :

F 1. Occupation (2, Service)

F 2. Occupation (3, Student)

-72-

F 3. Husband (1,2)

F 4. Father (1,3)

F 5. Sponsor (2,3)

F 6. Sponsor (2,1)

Integrity Constraints :

same as Example 5.1

Transaction :

insertfact Occupation (1, Service).

where 1,2,3, Student and Service are constants.

The integrity checking methods proposed thus far can be classified into the following

categories on the basis of their internal mechanisms:

Each constraint is evaluated whenever the database is updated (this method will be

referred to as Simple).

2. The constraint set is simplified using induced updates (the set of facts which are

implicitly or explicitly added to or deleted from a database due to a transaction to the

database) and only the relevant constraints are evaluated. This idea of simplification

of constraints was introduced by Nicolas [79] for checking integrity in relational

databases. The methods in [66,25,10] and the path finding method are based on this

idea of simplification of constraints, but they differ in the way these induced updates

are computed and the constraints are evaluated.

3. A generalised proof procedure is used to evaluate the constraints at the end of a

tran. saction. The method described in [55] is based on a proof procedure which

generalises the concept of SLDNF-resolution by reasoning forward from an update.

The proof procedure of [921 is used to evaluate constraints in the context of deductive

databases extended with default rules.

4. Derivation rules are modified to produce a modified database. This technique has

been followed in [3,40]

-73-

5. Constraints are evaluated only against the fact base by transfonning each constraint

into a fonn which is defined over the base facts only. This idea was first introduced in

[14] in the context of relational databases and later in [60] in the context of deductive

databases.

6.2.1. Method proposed by Lloyd et al.

The simplification method proposed by Lloyd et al. in [66] is based on a standard view of

constraint satisfiability. The correctness of the method was first proved for the class of definite

databases in [66) and later for the class of stratified databases [2] in [65]. An important task of

the simplification method is to capture the difference between a model for comp (D') and a model

for comp (D), where D and D' are databases and D' is obtained from D by the application of a

transaction T to D. By using only rules of the database and the transaction, the method computes

in stages the two sets of partially instantiated atoms POSD, D, and negD, D'- These two sets of

atoms represent respectively the part that is added to the model for comp (D) when passing from

D to D' due to a transaction and the part that is deleted. To preserve the consistency of the

updated database, constraints are instantiated appropriately with the two sets of atoms POSD, D'

and negD, D', and only affected constraints are evaluated. Instantiated constraints are evaluated

using the SLDNF proof procedure.

To apply the algorithm to example 6.1, the following two sets of atoms POSD, D, and

negD, D, are determined.

POSD, D' Occupation (1, Service), Employed (1), Dependent (x, 1), Guardian (1, x)

negD, D' Self (x), Dependent (1, y)).

The formulae for deriving the above two sets of atoms have been defined in section 5.3. The

following shows the different stages of determining the sets POSD, D, and negD, D'-

0 posD, D, -=
[Occupation (1, Service))

0
ne9, b, D": --0

I
POS6, D'=-- (Employed (1)

I ne9D , D'=[)

2
POSD, D, -- [Dependent (x, 1), Dependent (x,

-74-

2
negD, D--ý (Dependent (1, y), Self (x))

POSD3, D-=j Guardian (1, x))

3,
': --[Guardian (y, 1)) ne9D D-

4 POSD
, D'ý[

4.
-, ý I ne9D D,

At this point, no more new atoms can be generated. 2 the second atom In POSL5 , D',
Dependent (x, 1) is an instance of the first one and can be excluded while computing the atoms of

the next stage. The number of stages for calculating the two sets of atoms is always finite, even
in the presence of recursive rules, as at any stage a generated atom is excluded if it is an instance

of an atom which is already generated.

Using the two sets Of atOMS POSD, D, and negD, D', constraints are instantiated

appropriately. The only constraint affected is IC1 and an instance of this that has to be evaluated

in the database is the fonnula

Guardian (1, x) -) Sponsor (1, x).

This is evaluated using the SLDNF [16] proof procedure in the updated database. The above

instance is negated and chosen as a top clause. figure 6.1 shows the partial search space in which

at each step a leftmost literal is selected from a goal under the safe literal selection strategy. In

figure 6.2, the tree diagram illustrates the process of deriving the above two sets of atoms by a

depth-first approach. All positive literals belong to the Set POSD, D, and all negative literals

belong to the set negD, D'-

-75-

Not (Guardian (1, x) ?\-, Sponsor (1, x))
SUCCEEDS

if

Guardian (1, x)A--, Sponsor (1, x)
R 14 FAILS I

if

*-- Dependent (x, 1) A --, Sponsor (1, x)
FAILS

R8
,
'00'ý

r *U LA' rýLA:

R12 <-- Parent (1, x)AErnployed (I)AStudent (x) Sponsor (1, R12

FAILS if
R3

if

Father (1, x)AEmployed (I)AStudent (x)A-, Sponsor (1, x)
F4 I

if

FAILS

*-- Married (1, x)AEmployed (I)A-, Employed(X) A-, Sponsor (1, x)

<-- Employed (1)AStudent(3) A-, Sponsor (1,3) R7 Z\I FAILS
R8

R9 FAILS

; ýýif

I
if <-- Husband (1, x)AEmployed (I)A-, Employed(X) A Sponsor (1, x)

<-- Occupation (1, Service) AStudent (3) A-, Sponsor (1,3) F3 FAILS

Trm I FAILS
I

if

if <-- Employed (I)A--, Employed (2)A-, Sponsor (1,2)

<-- Student (3) A-, Sponsor (1,3) R9 FAILS

RIO, FAILS
I

if

if *- Occupation (1, Service) A-, Employed (2)A--, Sponsor (1,2)

<-- Occupation (3, Student)A-, Sponsor (1,3) Tran , FAILS
F2 I

if

FAILS

+- --, Sponsor (1,3)

NAF I FAILS

FAILURE

Which it does not

NAF I FAILS

SUCCESS

Which it does

Figure 6.1. Partial search space for evaluating the constraint in Lloyd et al. 's method by

SLDNF-proof procedure.

if

+- -n Employed (2) ,\ --, Sponsor (1,2)

-76-

Occupation (1, Service)

R9 I

Employed (1)

R 12

Dependent (x, 1) Dependent (1, y) Sey"(x)

R14 I R14 I

Guardian (1, x) Guardian (y, 1)

Figure 6.2. Illustration of the process of deriving the two sets of partially instantiated

atoms POSD, D, and negD, D' in Lloyd et al. 's method.

6.2.2. Method proposed by Decker

Like the previous method, the method proposed by Decker in [25] is also based on a standard

view of constraint satisfiability. The method is a generalisation of the simplification method put

forward by Nicolas [79] for relational databases. Decker's method simplifies the constraints with

induced updates and only affected constraints are evaluated. Each constraint F is represented in

the database as a set uc (F) of update constraints, each of which is either an insert constraint or a

delete constraint. An insert constraint has the form

insert UL only if UC

and a delete constraint has the fonn

delete UL only if UC,

where UL is an update literal and UC is an update condition which is in range form. When a

transaction T is performed on a database D the set of all update literals due to T are divided into

two sets of ground atoms, DT and DT, defined as follows. Let DT denote the set of clauses

obtained after execution of the transaction T on the database D. Then, DT =DT*-D* and

DT=D * -DT*, where '-' denotes the set difference and D* denotes the set of facts derivable from

D. Each element of DT has been called an include-fact and each element in DT has been called a

remove-fact. Intuitively, DT (DT) is the set of facts added to (deleted from) the database due to

the transaction.

-77-

Decker has proposed an algorithm which will evaluate all relevant simplified

constraints defined above for each fact in DT and DT. The elements of DT and DT are computed

in stages for each unit transaction of T. The algorithm is called with argument include (C)

(remove (C)) for each element include (C) (remove (C)) in T. The three-step algorithm

essentially does the following. In the first step the relevant insert (delete) constraints simplified

by each include (remove) fact of DC (DC) are evaluated, where DC (DC) is the set of facts added

to (deleted from) the database by the clause C itself. In fact, the set of all include (remove) facts

DT (DT) is the union of all DC (Dc), where C is in DT (D). If a simplified constraint is

falsified then an inconsistency occurs and the algorithm stops. In the second and third stages, the

algorithm is called recursively with arguments of the form include(R) or remove(R), where R is

an instantiated rule in D which could possibly add to or delete some facts from the database D

due to the facts of DC or DC.

To apply the algorithm to example 6.1, the following two sets of facts are determined.

The facts added to the database as a result of the transaction are

DT =(Occupation (1, Service), Employed(l), Dependent (3,1), Guardian (1,3)

The facts deleted from the database as a result of the transaction are

DT -"": (Sey (2)).

The fbHowing shows the different stages of detennining the sets DT and DT. DT (DT) is the

union of all D T' (DT,).

Initial Stage

D To
= Occupation (1, Service)

DTo =I

No constraint is affected by an atom in D To or DTo-

First Stage :

D T, (Employed (1)

DT, f Self (2))

No constraint is affected by an atom in D T, or DT, -

Second Stage :
D

T2

=(Dependent (3,1))

-78-

DT2 ý()

No constraint is affected by an atom in D T2 or DT2.

Third Stage

D
T3

=(Guardian (1,3)).

At this stage the fact Guardian (1,3) in D T3 matches a condition of the first constraint.

Therefore, the simplified constraint Sponsor (1,3) has to be evaluated in the updated database.

Clearly this is not evaluable in the updated database and hence the integrity is violated.

The tree diagram in figure 6.3 Mustrates the process of deriving the above two sets of

atoms and evaluation of constraints. All positive literals belong to DT and all negative literals

'belong to the set DT -

Occupation (1, Service)

R9 I

Employed (1)

3

Dependent (3,1) Self (2)

R14

Guardian (1,3) FAILURE

IC1 instantiation & evaluation

SUCCESS

Figure 6.3. Illustration of the process of deriving the two sets of ground atoms DT and DT

in Decker's method.

6.2.3. Method proposed by Kowalski et al.

The consistency method which was introduced by Sadri and Kowalski in [91] and later

fon-nalised in [55] by Kowalski et al., is based on the consistency view of constraint satisfaction.

The method is essentiaHy an attempt to construct a refutation tree (a refutation tree is a search

space in which at least one path ends at the empty clause) taking each of the updates in turn as a

-79-

candidate top clause. If all possible attempts fail to do so then integrity is preserved in the

updated database. The method uses a proof procedure which is an extension of the SLDNF proof

procedure and provides both forward and backward reasoning. In SLDNF the clause can only be

a denial and the set of formulae which appear in the derivation are either denials or the empty

clause. But to reason forward, the new proof procedure allows as top clause any clause, denial or

negated atom and the set of formulae appearing in the derivation may be any of these, the empty

clause or a formula of the form

Not(A) +- LIA... AL,, n>l,

where A is an atom and the Li are literals. The method selects literals through a safe literal

selection strategy. The method defines some metalevel rules for reasoning about implicit

deletions and a generalised resolution step for reasoning forward from negation as failure.

In the formalisation of the proof procedure a relation Refute (s, c) has been defined

which means that there is a refutation with s as input set and c as top clause. The relation has

been defined by five different rules. The first three formalise the process of resolution and

negation as failure [16]. The last two cater for the cases of implicit deletions resulting ft-om

additions and deletions.

To apply the algorithm to example 6.1, the update is taken as a candidate top clause

and a refutation tree is constructed. Part of the search space for this is shown in figure 6.4.

According to the order of clauses and constraints of database D 1, only the leftmost branch will be

followed. The rightmost branch of the search space shown in the figure implies an implicit

deletion of the fact Seýr (2) from the database. In the example, the method selects the leftmost

literal through a safe literal selection strategy. For ground negated atoms, the negation as failure

rule has been applied. A clause number, labelling an arc, is used for resolution purposes with the

selected literal.

-80-

Occupation (1, Service)

R9 I

Employed (1) f-

Rll R12 13

Dependent (x, 1) +- Parent (I, X) AStudent (x) Self (2)

R14

Guardian (1, x) +- Parent (I, X) AStudent (x) FAILURE

ici I

Sponsor (1, x)AParent (1, x)AStudent (x

R2 3

Sponsor (1, x)AFather (1, x)AStudent (x <----, Sponsor 1, x)AMother (1, x Student (x

F4 I Rl I

<-- --, Sponsor (1,3)AStudent(3) <-- -n Sponsor (1, X) A Father (z, x) A Married(z, 1) A Student (x)

NAF I

ý- Student (3)

RIO I

Occupation (3, Student)

F2 I

SUCCESS

F4 I

+- -, Sponsor (1,3) AMarried (1,1)AStudent (3)

NAF I

Married (1,1) A Student (3)

<-- Husband (1, I)AStudent (3) *-- Wife (1,1) AStudent(3)

R6

FAILURE <-- Husband (1, I)AStudent(3)

FAILURE

Figure 6.4. Partial search space generated by taking the update as the top clause in

Kowalski et al. 's method.

-81-

6.2.4. Method proposed by Bry et al.

The integrity checking method proposed in [101 by Bry et al. can be divided into two phases. The

first phase, called the preparatory phase, determines a set of potential updates which represent

possible ground updates induced by an update to the database and then generates expressions

called update constraints from potential updates and constraints. The set of potential updates is

determined in the same way as for the method described in section 6.2.1. An update constraint is

generated for every potential update which is relevant to a constraint. An update constraint has

the form

Update_Constraint (L, (-" Delta (U, L) v New (U, SI))),

where Delta (U, L) holds if and only if L is satisfied in U (D) (U denotes a ground single fact

update to a database D and U (D) denotes the updated database). New (U, F) denotes the

evaluation of the formula F over the updated database U(D). Another phase of the method,

called the evaluation phase, evaluates all the update constraints generated by the preparatory

phase.

Applying the method to example 6.1, in the first phase the set of potential updates is

deten-nined in the same way as in section 6.2.1 and consists of the union of the set of all atoms of

POSD. D, and the set of all negated atoms obtained by negating each of the atoms of negD, D, -
Also, in this phase the set of queries

(-, Delta (Occupation (1, Service), Occupation (1, Service)) v

New (Occupation (1, Service), (--, Guardian (1, y) v Sponsor (1, y))))

is obtained from generated update constraints. In the second phase the above set of queries is

evaluated and in this case inconsistency will be detected.

6.2.5. Method proposed by Asirelli et al.

Asirelli et al. [31 have proposed two methods. The first, called the consistency proof method, is

suitable for proving consistency of an existing database but is not very efficient for checking

consistency after each transaction. The second method, which will be referred to as the modified

program method, handles constraints with respect to a database (or program) D by finding a

database, called the modified database (mod(D)), whose minimal model is exactly the subset of

-82-

the minimal model of D which satisfies the constraints. If S is the set of atoms satisfying a set of

constraints 1, then it can be proved that the minimal model of mod (D) is a subset of S.

To apply the method to example 6.1, the constraint IC 2 has been excluded from the

constraint set as the method cannot deal with this constraint. lbe modified program for the
database DI and constraints IC I of example 6.1 can be constructed as follows. First add to the
database DI the foRowing definitions:

IP(u, v) (-- Not-Unify ([u, v], [x, y])

'P(x, y) (-- Sponsor (x, y)

where u, v are variables. Then IC I can be rewritten as

Guardian (x, y) -* T(x, y).

Thus the final database, ie the modified version of the database is given by

mod(D 1): RI-R13

Guardian (x, y) *- Dependent (y, X) A T(X, Y)

together with the above definition of T. Mod (D 1) is an internal fonn which generates correct

answers to queries of D 1, ie mod (D 1) is equivalent to DI constrained by IC 1.

6.2.6. Method proposed by Ling

Given a constraint Not (P) which contains some views (a view is a positive literal which appears

as the head of some clause), the method constructs a set of NF negative formulae

EXTRA (Not (P)) using rules of the database. The two-step algorithm for constructing this set
from a given constraint Not(P) operates as follows. The algorithm is first called with the set

consisting of the constraint Not(P). The first step of the algorithm replaces a negative formula

containing a view by a set of negative fon-nulae with the help of the definitions of the view in the

underlying database. The second step of the algorithm invokes the whole algorithm itself

recursively with the new set of negative formulae, if there is a view occurring in one of the

negative formulae of this set; otherwise, it stops. When a transaction is performed, the method

evaluates only the affected constraints from these sets.

The construction of the set of NF negative formulae corresponding to a constraint may enter an

infinite loop in the presence of recursive rules. However, in the case of example 6.1 this does not

-83-

create a problem and the NF negative forTnulae which represent constraints in this example are the

Mowing:

P: Not (Guardian (x, Y) A Not (Sponsor (x, y))),

: Not (Married (x, y) AStudent (x)).

The following two sets can be constructed with the help of rules.

EXTRA (Not (P)) =

f Not (Father (x, y) A Occupation (x, Service) A Occupation (y, Student) A Not (Sponsor (x, y))),

Not (Father (zy)AHusband (zx)AOccupation (x, Service)lý, Occupation (yStudent)ANot (Sponsor (xy))),

Not (Husband (x, Y) A Occupation (x, Service) A Not (Occupation (y, Service) /\ Not (Sponsor (x, y)))),

Not (Husband (y, x) /\ Occupation (x, Service)
-e\ Not (Occupation (y, Service) A Not (Sponsor (x, y))))

EXTRA (Not (Q)) =
f Not (Husband (x, y) AOccupation (x, Student)), Not (Husband (y, x)AOccupation (x, Student)) 1.

As a result of insertion of the fact Occupation (1, Service), incremental checking is required for

the NF negative formulas from the set EXTRA (Not (P)). They are unified appropriately by the

update literal and simplified. Since the simplified form of the first one is not true in the database,

integrity is violated due to the update.

6.2.7. Path finding method

The path finding method method has already been described in chapter 5. To apply the path

finding method to example 6.1, the update hteral Occupation (1, Service) is taken as a source.

Because of the insertion of this fact into the database, with the help of R9 one can say that the

fact Employed (1) is implicitly added to the database and so Employed (1) is the next literal of the

path. Continuing in this way one can construct the following success path (which ends at the

head of a constraint)

Occupation (1, Service) -4 Employed (1) -4 Dependent (3,1) -ý Guardian (1,3) -4 IC (1)

and the complete path space generated by the insertion is shown in figure 6.5. The leftmost

branch corresponds to the success path and this will be followed according to the order of the

clauses. The successor literal of Employed(l) along the second branch of the path space is

-, Dependent(l, y), by rule R 12. This shows that instances of Dependent(l, y) are likely to be

-84-

deleted from the database due to the implicit addition of Employed (1) to the database.

Occupation (1, Service)

R9

Employed (1)

RII R 12 13

Dependent (3,1) Dependent (1, y Se4(x)

R14 I R14

Guardian (1,3) -, Guardian (y, 1) FAILURE

ici

ic (1) FVLURE

I

SUCCESS

Figure 6.5. The complete path space traversed by the path finding method, taking the

update as the source.

6.3. Comparison

In this section, methods are compared from both theoretical and practical points of view. To

achieve the latter, the Simple method and the methods proposed in sections 6.2.1,6.2.2,6.2.3 and
6.2.7 have been implemented in a simple manner without going into much detail (e. g., if a

constraint is violated then the implementation simply reports this fact without showing any detail

of the cause of violation). The following paragraph discusses briefly the implementation issue.

The other methods have been excluded for various reasons. For example, the reason for

excluding Asirelli et al. 's method is its limited constraint expressiveness. Ling's method is

excluded because it cannot cope with recursive databases. The reason for excluding Bry et al. 's

method is its close similarity with Lloyd et al. 's method with the result that its performance

figures will be similar to those of Lloyd et al. in most cases considered here.

In the implementation of each of the methods, facts have been stored directly as

Prolog facts. Rules are stored directly as Prolog rules except in the method by Kowalski et al. in

-85-

this method rules (and also constraints) have been stored under a ternary predicate cl as

cl(Ref , Type, Clause), where Ref is an unique identification of the clause (rule or constraint),

Type is either a constraint or a rule, and Clause is a list of structures where each structure has the

form (Side, Sign, Atom) defined as follows. Side is either condition or conclusion, Sign is either

positive or negative and Atom is an atom occurring either in the head or the body of the clause

identified by Ref . Furthen-nore, a separate clause of the form depend (L, H <-B) for Decker's

method, depend(H, L) for Lloyd et al. 's method, depend(Ref , H, L) for the path finding

method and depend (Ref , I, S) for Kowalski et al. 's method has been maintained, where L is a

literal occurring in the body of the rule H +-B identified by Ref and S is a structure of the form

defined above corresponding to the literal occurring in the I -th position of the clause H <--.

Constraints are not distinguished from, rules for their representation in both Kowalski

et al. 's method and the path finding method. In Decker's method a constraint has been converted

to a set of update constraints and each update constraint is stored under the predicate

update_cons. In Lloyd et al. "s method each constraint has been stored under a separate predicate

ic. Transactions are stored under the predicate trans in an appropriate format to reason with two

database states, ie before and after the transaction.

The simplest way of maintaining consistency (ie the Simple method) is by evaluating

every constraint for each update; however, this is very inefficient since it ignores the assumption

that the database satisfies the constraints prior to the update. All the implemented methods do

take advantage of this assumption. To demonstrate the difference which this makes, consider the

following example (also, example 6.5 later in this section).

Example 6.2

Database D 2:

Rules :

as desuibed in database D 1.

Facts :

A list of the following 1095 facts not involving constants 1,2,3:

175 facts under the predicate Father,

228 facts under the predicate Husband,

620 facts under the predicate Occupation,

-86-

72 facts under the predicate Sponsor.

A list of 1085 facts of example 6.3.

A list of 1058 facts of example 6.4.

Occupation (1, Service)

Occupation (2, Service)

Occupation (3, Student)

Father (1,3)

Sponsor (1,3)

Integrity Constraints 12 :

Two constraints of example 6.1.

Occupation (x, y)AOccupation (x, z) -ý y =z

Transaction :

insertfact Husband (1,2)

insertfact Sponsor (2,3)

Database D2 satisfies 12 before the update. Each entry in table 6.1 denotes a method

and the time taken by that method to report inconsistency due to update. It is observed that the

time taken by the simple SLDNF approach is much greater than that for any of the other methods

because it does not take advantage of the assumption that the database D2 satisfies 12 prior to the

update. For example, it evaluates the last constraint in the updated database even though this is

redundant as it is not affected by any of the induced updates.

A disadvantage of Kowalski et al. 's method is that the degree of granularity [95]

required for the meta-interpreter is much finer than that required for the other implemented

methods. This is due to the fact that the former models the literal selection strategy. This should

result in a loss of efficiency. On the other hand the other implemented methods rely on the

strategy built into Prolog. For this reason, in some cases the time taken by Kowalski et al. 's

method to report inconsistency is considerably larger than the time taken by any of the other

methods for the same transaction. The literal selection strategy in this method can play an

important role in the efficiency of the method. The test results here are based on an

implementation of the method which selects (under safe selection) a literal from the condition

-87-

Method Time

Simple 336.1

Lloyd et al. 10.0

Decker 31.5(18.9)

Kowalski et al. 133.7(l. 1)

Pathfinding 18.4

Table 6. I. Times taken (in cpu seconds) by different methods

to report inconsistency in the case of example 6.2

part of the top clause, until no such literal remains. Another example of a literal selection strategy
is to select a literal from the conclusion part first, if there is a conclusion. In all the tables the

additional entry (within parentheses) corresponding to Kowalski et al. 's method is the time taken

by the method with this literal selection strategy (excluding rule R5 to avoid infinite loop). It has

been shown by Kowalski et al. that Decker's method, and the method of Lloyd et al. can be

approximated by considering respectively the previous two literal selection strategies. Due to this

fact, the test results of Kowalski et al. 's method with the former literal selection strategy behave

in the same way as those of Decker's method and test results with latter literal selection strategy

behave in the same way as those of Lloyd et al. 's method.

The path fmding method, Decker's method and the method of Kowalski et al. can

handle those recursive rules for which the underlying SLDNF- resolution terminates. The

simplification of constraints in both Lloyd et al. 's method and Bry et al. 's method are independent

of the evaluation method chosen. Each of these methods will work in the presence of recursive

rules if the underlying query evaluator handles recursion. Lloyd et al. 's method considers a typed

database and converts it to a type free database by some transformations. The other methods need

the database to be range restricted to evaluate a query correctly.

When a transaction is perfon-ned on the database the path finding method derives in

stages a set of fully instantiated atoms added to the database and a set of partially instantiated

atoms whose instances are likely to be deleted from the database. By contrast Decker's method

denves two sets of fully instantiated atoms. The first set is the set of atoms implicitly added to

the database and the second set is the set of atoms deleted from the database. The methods of

Lloyd et al. and Bry et al. derive two sets of partially instantiated atoms. nese represent

respectively the set of atoms likely to be added to the database and the set of atoms likely to be

-88-

deleted from the database. The approach taken by the path finding method is identical to that of
Decker when there is no implicit deletion in the database. When an implicit deletion occurs in a

stage, the method follows a similar approach to that of Lloyd et al. It can be observed from figure

6.5 that the rightmost two paths starting from the literal Employed(l) are similar to the paths in

the same position of figure 6.2. This is because these two paths do not show any implicit addition

to the database. It is also observed from figure 6.5 that starting from the root the leftmost branch

is similar to the branch in the same position in figure 6.3. This is due to the fact that this path
does not show any implicit deletion from the database.

The major difference between the path finding approach and the approach by Decker

on the one hand and those of Lloyd et al. and Bry et al. on the other is that, in the first kind of

approach instantiation and evaluation of constraints and the derivation of implicitly added or
deleted facts is done simultaneously, whereas in the latter approaches instantiation and evaluation

of constraints are performed after the derivation of the two sets of partially instantiated atoms.

Decker's method could be inefficient for a complex transaction which requires

reasoning with two database states (before and after update) to calculate the two sets of atoms

mentioned earlier. For each induced update, ie each fact which is implicitly added or deleted, the

method checks whether it is provable in the database before update or not. The method may

show better performance than the other methods when constraints are relevant to the induced

updates, but some of the induced updates are already provable in the database before update. In

all the tables the extra entry within parentheses corresponding to Decker is the time taken by the

method when this kind of checking (in the considered examples this is redundant) has been

excluded from the implementation of the method.

In both the approaches by Lloyd et al. and Bry et al., two sets of partially instantiated

atoms are always derived even if no ground instance of these atoms is true in the updated

database and hence may cause redundant partial evaluation of the constraints in the case of Lloyd

et al. 's method (Bry et al. 's method discards this possibility by using the Delta predicate).

Consider the following example.

Example 6.3

Database D3:

Rules :

-89-

as described in Database D 1.

Facts :

A list of following 1085 facts not involving constants 1,2:
177 facts under the predicate Father,

229 facts under the predicate Husband,

620 facts under the predicate Occupation,

59 facts under the predicate Sponsor.

Occupation (1, Service)

Occupation (2, Service)

Integrity Constraints 13:

Guardian (x, y) -ý Sponsor (x, y)
Sponsor (x, y)AGuardian (z, y) -* parent (x, y)

Transaction :

insertfact Husband (1,2).

Database D3 satisfies the constraints 13. Now if one wants to insert the fact

Married (1,2) to D 3, these two methods wifl derive the two sets of atoms

(Husband (1,2), Mother (2, y), Parent (2, y), Ancestor (x, y), Dependent (y, 2), Guardian (2, y),
Wife (2,1), Married (2,1), Sey'(1), Married(1,2), Dependent (2,1), Guardian (1,2), Sey'(2)) and I).

Derivation of these two sets of atoms is highly redundant as no ground instance of these atoms

under the predicate Guardian, which are simplifying the constraints, is true in the updated
database and hence will cause redundant evaluations of the instantiated constraints corresponding

to the atoms Guardian (2, y), Guardian (1,2). As no fact is implicitly added to the database

corresponding to the insertion of Married(l, 2), in both the approaches by Decker and the path
finding method, no constraint would be evaluated. The time taken by different methods to check

consistency when the above insertion is made to the database D3 in the presence of constraints 13

is given in table 6-2.

-go-

Method Time

Lloyd et al. 3.4

Decker 0.8(0.2)

Kowalski et al. 0.4(3.3)

Pathfinding 0.2

Table 6.2. Times taken (in cpu seconds) by different methods

to report consistency in the case of example 6.3

In the approach proposed by Lloyd et al. (and also that proposed by Bry et al.), it is

sometimes possible to have the evaluation of unsimplified constraints which may cause
inefficiency. For example, if one wants to delete (resp. insert) a ground instance of
Occupation (y Service) from (to) a database D containing rules described in Database D 1, then

Self (x) would be a member Of POSD, D' (negD, D') described in section 4.1. In that case if there is

a constraint C relevant to the atom Self (x) (--, Se#' (x)), no simplification for C is possible
before its evaluation. In Decker's method constraints are always simplified before evaluation as

the method always calculates two sets of ground atoms implicitly added to or deleted from the
database. In the above case of addition, the path finding method will foRow Decker's approach

and hence C will be simplified accordingly. But, in the above case of deletion, the method will

follow the approach of Lloyd et al. and hence will cause the evaluation of unsimplified C.

The path finding method and Decker's method suffer from the drawback that all

induced updates are computed, including those for which no constraints are relevant. Kowalski et

al. 's method can avoid this by proper literal selection strategy. On the other hand the methods of

Lloyd et al. and Bry et al. do not suffer from this drawback as they compute only potential

updates that represent possible ground induced updates. Consider the following example.

Example 6.4

Database D 4:

Rules :

as described in Database D 1.

-91-

Facts :

A list of following 1058facts not involving constants 1,3:
184 facts under the predicate Father,

226 facts under the predicate Husband,

600 facts under the predicate Occupation,

48 facts under the predicate Sponsor.

A list of 10 facts under the predicate Father with I as first argument.

Occupation (2, Service)

Occupation (3, Student)

Father (1,3)

Integrity Constraints 14:

Father (x, Z) A Father (y, z) --ý x =y

Transaction :

insertfact Husband (1,2).

Database D4 satisfies the constraints 14. Now if one wants to insert the fact

Husband (1,2) to D 4, these two methods will derive in stages the following set of atoms

f Wife (1,2), Married (1,2), Married (2,1), Mother (2, C), Parent (2, C), Ancestor (2, C),

Dependent (C, 2), Self (2), Guardian (2, C):

C is a constant and Father (1, C) is true in the updated database)

and, possibly, some more under the predicate Ancestor. It is clear that no constraint in 14 is

relevant to the above set of atoms and will cause redundant evaluation. The evaluation time in

this case depends mainly on the number of facts present in the database under the predicate
Father whose first argument is the constant 1. The time taken by the different methods to check

consistency when the above insertion is made to the database D4 in the presence of constraints 14

is given in the column corresponding to 'add' of table 6.3.

The entries in the column headed 'del' in table 6.3 are the times taken by different

methods to check consistency when the fact Husband (1,2) is deleted from the updated database

-92-

M th d
Operation

e o
add del

Lloyd et al. 0.7 0.7

Decker 62.9(38.5) 63.0(43.9)

Kowalski et al. >>100.0(0.5) >> 100.0(31.8)

Pathfinding 37.4 0.3

Table 6.3. Times taken (in cpu seconds) by different methods

to report consistency in the case of example 6.4

of example 6.4. In this case Decker's method calculates all the facts implicitly deleted from the

database due to the deletion of Husband (1,2) and these are precisely those which were implicitly

added to D4 by the addition of Husband (1,2). This calculation is redundant and the path finding

method avoids this by following Lloyd et al. 's approach.

In Lloyd et al. 's approach, an instance of a literal from any one of the two sets of

partially instantiated atoms may be evaluated more than once if that particular literal simplifies

more than one constraint. This will cause inefficiency. The path finding method also suffers from

this drawback but only when a negative literal simplifies a constraim On the other hand Decker's

method does not have this drawback at all as the literal which simplifies the constraint is always

true in the database and hence it is removed from the unified constraint.

In the path finding method finding a path from an update to the head of a constraint is

similar to the problem of finding a refutation with an update literal as a top clause in Kowalski's

method. In the latter method finding a refutation means arriving at an empty head of the denial

form of a constraint from an update literal. In the path finding method constructing a success path

means reaching the head of a constraint from an update literal. The difference lies in the way in

which this is achieved - in the method put forward by Kowalski et al. the computation of positive

induced updates can be deferred by a proper literal selection strategy but the computation of

negative induced updates is essential, in the path finding method the computation of positive

induced updates is essential and the computation of negative induced updates is deferred.

As the database size increases, the times taken by some operations (eg. search,

unification) employed with constraint checking increase accordingly and in this kind of situation

the time taken by each of the methods to check consistency varies almost directly as the number

-93-

of relevant clauses present in the database. Table 6.4 shows the test results obtained by

performing the transaction of example 6.2 on the database of example 6.2 varying the number of
facts in the following way. Initially the database contains the 1095 facts of example 6.2. After

performing the tests another 1085 facts of example 6.3 are added and the tests are performed.
Final tests are performed by adding 1058 facts of example 6.4 to the database. No facts in the

database involve constants 1,2,3. It can be observed that the time taken by each method to

perform the transaction increases as the number of facts in the database increases.

M h d
No of Facts

et o
1095 2180 3238

Lloyd et al. 1.9 2.9 4.0

Decker 4.9(2.5) 15.1(8.6) 31.3(18.7)

Kowalski et al. 31.1(0.7) 74.5(0.8) 133.6(0.9)

Path finding 2.4 8.3 18.3

Table 6.4. Times taken (in cpu seconds) by different methods

in the case of example 6.2 varying the number of facts

Finally, from a more practical point of view, a test has been carried out using the

following example.

Example 6.5:

The database D 5, the set of constraints 15 and the transaction have been described in appendix 2.

Example 6.5 describes three different states of a database by varying the number of

facts but keeping the set of rules the same. Example 6.5 also describes a set of constraints

imposed on each of these three states of the database and a set of transactions to be performed on

each of these three states of the database. Each of the three states of the database D5 satisfies the

set of constraints 15. Table 6.5 contains the results obtained from applying the set of transactions

to each of the three different states of the database using the different constraint checking

methods.

-94-

d M th
No of Facts

o e
1010 3062 5119

Simple 37.0 311.5 860.6

Lloyd et al. 2.9 11.7 28.3

Decker 16.6(2.5) 54.0(12.3) 99.4(29.8)

Kowalski et al. 14.2(17.0) 58.6(67.8) 129.1(147.9)

Path finding 2.5 11.9 29.0

Table 6.5. Times taken (in cpu seconds) by different methods

in the case of example 6.5 varying the number of facts

-95-

CHAPTER 7

Negation as Possible Failure

This chapter presents a rule for inferring negative information, referred to as negation as possible

failure. By this rule, the concept of determining the truth functionality of a ground literal with

respect to an indefinite database is based on Clark's idea of the completed database. To define

the declarative semantics of negation as possible failure, an indefinite database is transformed to a

set of its possible forms and the semantics is given in terms of the completion of each of these

possible forms. A ground atom which can be derived from the completion of each of the possible

forms associated with the indefinite database will be taken as true in the database; if its negation

can be derived from the completion of each of them, it is taken to be false; otherwise, it is

indefinite. The procedural semantics is based on two mutually recursive resolution schemes.

These two resolution schemes coincide and reduce to the mechanism of simple SLDNF-

resolution when the database is definite. The implementation for query evaluation based on the

introduced semantics for negative information is considered. The implementation constructs

dynamically the set of definite databases associated with an indefinite database during the

execution of a query.

The chapter is organised as follows. The following section provides a brief review of

the field of semantics for negative infon-nation in indefinite databases. A detailed discussion

comparing different semantics, including the one proposed in this chapter, is beyond the scope of

the thesis. Section 7.2 introduces the idea of possible forms of an indefinite database. In section

7.3, the declarative semantics for negative information in an indefinite database is given. Section

7.4 provides the two resolution principles for implementing the declarative concept of an answer

to a query based on the semantics introduced in section 7.3. The rule negation as possible failure

has been introduced in section 7.5. The last section deals with a Prolog implementation of the

two resolution principles.

-96-

7.1. A brief overview of the field

Semantics for negative information in indefinite databases have already been studied by several

authors. Approaches include the Generalised Closed World Assumption (GCWA) by Minker

[77] , the Extended Generalised Closed World Assumption (EGCWA) by Yahya and Henschen

[107] , the perfect model semantics by Pr-zymusinski [84] , the Disjunctive Database Rule (DDR)

by Ross and Topor [90] , the weak completion theory for non-Hom programs by Lobo et al. [681

etc.

In the definition of GCWA, Nfinker has considered indefinite databases consisting of a

set of clauses of the form

Alv ... vAm 4-MIA ... A M,, mý: I, n>-O (7.1)

where Ai's, Mj's are atoms. Under the semantics of the GCWA a ground atom is true in a

database D if it is present in all minimal models of D, it is false if it is not present in any

minimal model of the database, and it is indefinite otherwise. The EGCWA is an extension of the

GCWA in which a disjunction of ground negative literals K may be inferred from a database D if

and only if the disjunction K is true in every minimal model for D.

Przymusinski's inference rule is based on perfect models. Suppose M and N are two

distinct models of an indefinite database D. Then N is preferable to M (or N <<M), if for every

ground atom A (under a predicate P) in N-M there is a ground atom B (under a predicate Q) in

M-N such that P <Q, where < is a predicate priority relation between the predicates of D. An

important result about such a relation is that D is stratified if and only if < is a partial order. A

model M of D is perfect if there are no models preferable to M. The Perfect Model Rule (PMR)

is that a sentence W may be inferred from D if W is true in every perfect model for D.

Ross and Topor propose an inference rule, called the Disjunctive Database Rule

(DDR), for inferring negative information from disjunctive databases, where a disjunctive

database is a set of clauses of the fon-n (7.1). Under the syntactic definition of DDR, a ground

atom A may be taken to be false in a disjunctive database D if A is in the greatest closed set of D

(gcs (D)), where the greatest closed set of D is defined as follows. Let S be a subset of HB (D).

Then S is a closed set of D if for every element A of S and for every ground instance C of a

clause in D such that A is in the head of C, there exists an atom B in the body of C such that B

is in S. The greatest closed set of D is the union of all closed sets of D. The DDR has been

extended to the class of layered databases, where a layered database is a pair (D, L) of an

-97-

indefinite database D and a level mapping L for D.

Lobo et al. have generalised Clark's completion definition for definite databases to

indefinite databases. Such completion has been used as a declarative semantics to study the rule

of negation, Negation As Finite Failure for Non-Horn program (NAFFNH). A sound

procedure, based on SLGNF- resolution, has been provided for answering queries in indefinite

databases. The idea is similar to the one proposed in this chapter but differs from it in a number

of respects, both in the deftiftion of declarative semantics and in the resolution procedures.

Several extensions [82,96,69,93] of Prolog-style theorem provers to ftffl first-order

logic have been proposed. Each of them can be extended suitably (e. g., capability for inferring

negative information without storing negative clauses explicitly) for implementing a query

evaluation system for indefinite databases. In the next chapter, nH-Prolog [69,93] has been

extended by the capability for inferring negative information according to the semantics provided

in this chapter.

7.2. Possible forms of an indefinite database

Recall that a database clause in an indefinite database has the form

v A. <-- L, A ... AL,, Mýtl (7.2)

An altemative form of the above clause which will also be used in this chapter is

AIv... v A. *- MI A ... AMp A--, Nj A--- A-, Nq m ý: 1, p, q >-O (7.3)

where Ai'S, Mj's and Nk's are atoms.

Unless otherwise mentioned, in the rest of the chapter the term 'database' will always

be taken to mean a 'general database', i. e. an 'indefinite database. Consider the following

example of an indefinite database.

Example 7.1 :

Database DI:

Rules :

-98-

Definite rules :

Staff (x) +- Clerk (x)

Staff (x) <-- Typist(x)

Employee (x) +- Officer (x)

Indefinite rule :

Typist (x) v Clerk (x) +- Employee(X) A --, Officer (x)

Facts :

Definite fact:

Employee (Das)

Indefinite fact :

Officer (Choux) v Clerk (Choux)

As for a definite database, negative facts are not explicitly represented in the database.

Instead, a special rule is introduced to infer negative facts from the database. This is somewhat

similar to the closed world assumption or negation as failure in the case of definite databases.

Definition : Let D be a database and R be a clause in D. Let A be an atom occurring in the head

of R. The possible form of R with respect to A denoted by pos (R , A) is the clause obtained

from R by replacing its head by A-

According to this definition, the possible form of a definite rule R with respect to the

only atom in its head is the rule R and the possible form of a definite or indefinite fact with

respect to the atom A appearing in it, is the fact A. The set of clauses comprising at least one

possible form of each of the clauses of D is called a possible form of the database D. For

exwnple, database DI has nine possible forms, one of which is the union of the set of all definite

clauses of DI with the following two possible forms

Clerk (x) <-- Employee (x)A-, Officer (x)

Officer (Choux)

corresponding to the two indefinite clauses of D 1.

-99-

A query relating to the database DI is

Who are the staff ?

and its representation in the above form is given by

(- Staff (x).

In the context of both relational and definite databases, a substitution for the variables

of a query makes the bound body of the query either true or false in the database. If the bound

body is true in the database then the corresponding substitution is called an answer substitution.

By contrast, an indefinite database may represent several possible worlds and in the context of

this kind of database, a substitution for the variables of a query can make the bound body of the

query neither true nor false in the database. The substitution corresponding to this possibility is a

possible answer substitution. The different possible worlds of an indefinite database arise from

different possible forms of the database. Hence, in an arbitrary database an answer to a query is

either definite or possible. The substitution [xlDas I to the query <-- Staff (x) in the context of

database D1 is a definite answer substitution whereas the substitution [xlChoux) is a possible

(or indefinite) answer substitution.

Due to the indefiniteness of an answer to a query in an indefinite database, two

different query evaluation mechanism are required, i. e. a possible query evaluation mechanism

which will return possible answers to a query and a definite query evaluation mechanism which

will return definite answers to a query. A possible answer to a query applied to an indefinite

database is an answer which is true in at least one of the possible worlds associated with it

whereas a definite answer is true in all possible worlds of the database.

7.3. The declarative semantics for negative information

Let D be a database and HB (D) its Herband base. Let (D1, ..., D,,) be the set of all possible

forms of D such that the completion of each Di is consistent. Then the Herband base HB (D) can

be partitioned into three subsets:

n

Def_true (D) r) (A : AEHB (D) and comp (Di) k A)
1=1

n

Def_false (D) r) [A :AE HB (D) and comp (D,.) A
i=l

Unknown (D) = HB (D) - Def-true (D) u Def_false (D)

. 100-

where the symbol '-' denotes set difference. The set of all facts in Def_true (D) can be taken as

definitely true in D whereas the set of all facts in Def jalse (D) are definitely false in D. The

facts in Unknown (D) are possibly true in D.

Clearly, when the database is definite the above definition of semantics reduces to

Clark's idea of a completed database. When the database is definite and hierarchical the set
Unknown is empty and the Herband base is divided between the two sets Def_true and
Defjalse. The SLDNF-resolution mechanism suffices to determine any element of the set

Def_true and hence any element of the set Def lalse. When all three subsets are non-empty, the j

situation is more complex. In this case the definite resolution mechanism determines the

elements of the set Def_true. The possible resolution mechanism will be able to determine the

set constituting of elements which are either in the set Unknown or in the set Def
_true.

An

element of the Herband base which cannot even be determined by the possible resolution

mechanism can be taken to be false and hence is a member of Defjalse.

7.4. The procedural semantics for negative information

The procedural semantics is based on two mutually recursive resolution schemes, one for possible

resolution and one for definite resolution.

7.4.1. Possible resolution

Definition :A computation rule is a function which maps a goal to a literal, called the selected

literal, in that goal.

Each derivation of a possible resolution constructs a sequence of positive databases

and a sequence of negative databases. A possible database corresponds to a possible form and

negative databases help to keep track of the ground negative atoms resolved during a derivation.

The marking process of clauses helps to construct different possible forms and also to avoid

redundant computations. All the clauses in the database are unmarked before the start of a

derivation.

Definition : Let D be a database, Ga goal, and Ra computation rule. Initially, none of the

clauses in D is marked as used possibly with respect to atoms occurring in their heads. A

possible derivation for Du(G)via R consists of a sequence D+=D, D+, D',
... of positive 012

-101-

databases, a sequence Do=[), D I-, D2 , ... of negative databases, a sequence GO=G, G I, G2,

of goals, a sequence C 1, C29 ... of variants of ground negative literals or program clauses from the

possible forms of D, and a sequence 01,02,
... of substitudons satis fying the fbHowing:

For each i, Gi is +-L A ... A L,, A ... A Lp, the selected literal L.. in Gi is

1) a positive literal and L. unifies with

A definite fact A in Dj' with an mgu Oj, j. Tben Cj, j is A, Dj' , and Di-,,

are respectively Dj+ and DI. and Gj+j is
<--(L IA---A Lm-, A Lm+j A ... A LP)O

I . +,.

The head of a definite rule H <. - B in Dj+ with an mgu 0, -+,. Then C,.,, is

H <-- B, Di++, and Di-+, are respectively Dj' and Dj-, and Gj, j is

+-(L I ,\... AL. -I /\ BA L,,,
+, A ... A LP)Oi+,.

An atom A occurring in an indefinite fact F of Dj' with an mgu Oj, j and F

has not been used possibly with respect to A. If for every member A' of
Dj-, Dj'u[pos(F, A))u[<--A'j has a finitely failed definite tree

(introduced in the next section) then Cj, j is pos (F, A), DI' , is Dj+U (A),

Di-+, is Dj-, and Gj, j is <--(L IA... A L,,,
-,

A Lm+l A ... A Lp)()i+,.

Finally, F is marked as used possibly with respect to A.

IV. An atom A occurring in the head of an indefinite rule R: F <-- B of Dj+

with an mgu Oj+j and R has not been used possibly with respect to A. If

for every member A' of Dj-, Di+u [pos (R, A)) uf ý- A') has a finitely

failed definite tree then Cj+j is pos (R, A), Dj++j and Dj-+j are respectively

Di+u [pos (R
,
A) I and Dj-, and Gj, j is

<--(L IA... A L,,,
-, ABA Lm+l A ... A LP)Oi+,. Again, R is marked as

used possibly with respect to A.

2) a ground negative literal --, A and Di+u [(-- AI has a finitely failed de finite tree

(introduced in the next section). In this case, Oj+j is an identity substitution, Ci

is --, A, Dj++j and Di-,, are respectively D, + and D, -u[Al, and G,. +, is

<--L IA... A Lm-1 A L,,,
+, /\ ... A Lp.

-102-

(b) If the sequence GO, G 1, ... of goals is finite, then the last goal G,, of the sequence is

either empty or has the form ý-L IA --- ALmA ... ALP, where L. is selected and

1) Lm is an atom and there is no program clause in D: for which any of the literals

occurring in its head undfies with Lm, or

2) L,,, is an atom and there are program clauses (R 1,
..., R1) in D: such that for

each j, one of the atoms A occurring in the head HJ of RJ unifies with L? n. But,

for each j, there exists a literal A' in Dn- such that Dn+U[POS(RJ, A)) uf <--A')

has a definite refutation (introduced in the next section), or

3) Lm is a ground negative literal of the fonn --, A and D, +u [<--A I has a definite

refutation.

When a goal is refuted by a possible resolution with an answer substitution 0, it can be

said that the goal bound with the answer substitution 0 is true in the last database of the sequence

of positive databases. The sequence of negative databases keep track of the ground negative

atoms occurring in goals which have been inferred false by step a. 2. Thus, a member of Dj- is

false in Di', for every i. To clarify the definition, consider the following database:

Example 7.2:

Database D2:

P (x) (-- Q (x) /\ -, R (x)A S(x)

R (a) f- S (a)

Q (a)

Q (b)

S (a) vS (b)

Query Q2 (possible resolution):

4-- P (x)

As each of the possible forms of D2 is hierarchical in nature, their completions are consistent.

Steps a. 1.1 and a. LII formalise the SLD-resolution principle for definite clauses and

hence in these two cases both positive and negative databases remain fixed. Step a. 2 is a negation

as failure which is concerned with keeping track of the inferred negative literal by adding it to the

-103-

latest negative database.

At the first step of execution of the query Q2 in the above example, the selected literal

P(x) is resolved with the first clause of D2 using ordinary SLD-resolutjon and producing
*- Q (x)A--i R (x)AS (x) as the next goal. The next selected literal from this goal, Q (x), unifies

with Q (a) yielding <-- --, R (a)AS(a). To execute step a. 2 on the selected negative literal

--, R (a), a refutation of the goal <- R (a) is attempted in the constructed positive database (which

is D2 itself). As this is not possible, --, R (a) is taken as true and the only literal remaining in the

goal is S (a). At this stage the positive and negative databases are respectively D2 and (R (a)).

To process the goal +- S (a), it is possible to resolve it against the first atom S (a) of the
inde finite fact S (a)vS (b). In this case, the positive database is updated by adding S (a) to it,

resulting in a definite refutation of the goal *- R (a) in the updated positive database, where R (a)

has been taken from the latest negative database. The second clause of D2 is the main source of

this refutation as it implicitly infers R (a) from S (a) which is inconsistent with --, R (a) which has

already been inferred from the database. The resolution of the goal +- Q (x)A-, R(X) AS (X)

with the fact Q (b) will lead to an answer substitution to the answer substitution [x1b) since the

inclusion of S (b) in the positive database does not infer implicitly R (b) at any stage.

The process of marking clauses in steps a. l. III and a. I. IV is necessary construct

different possible forms and also to avoid redundant answers. In the above example, when S (a)

is added to the positive database, it supersedes the indefinite fact S (a) vS (b). In any subsequent

use of S (a), the definite fact S (a) will be used rather than S (a) vS (b).

Referring to the above exw-nple, consider the case when the literal S (a) was selected
from the goal <-- -, R (a) AS (a), instead of --, R (a). In that case, the indefinite fact S (a) vS (b)

is the obvious candidate for resolving with the goal, causing the addition of the fact S (a) to the

positive database. It is quite clear that inferring the only negative literal selected from the

resolved goal ý- -n R (a) is not possible in the updated database due to the presence of the rule

R (a) <-- S (a) and the fact S (a).

Definition :A possible derivation is finite if it consists of a finite sequence of goals; otherwise, it

is infinite. A possible derivation is successful if it is finite and the last goal is the empty goal. A

successful possible derivation is called a possible refutation. A possible derivation is failed if it

is finite and the last goal is not the empty goal.

-104-

From the definition of possible derivation, a possible tree for DujG I via R is

defined in the usual way where each branch of the possible tree corresponds to a possible
derivation. A branch of a possible tree for which the terminating node is an empty goal is called a

success branch, a branch which does not terminate is called an infinite branch and a branch for

which the terminating node is other than an empty goal is called afailure branch. A possible tree

for which every branch is a failure branch is a finitely failed possible tree.

If each possible form of a database D is hierarchical, then the possible resolution in D

terminates, provided that, the definite resolution of step a. 2 for resolving negative literals

terminates.

7.4.2. Definite resolution

The definition of definite derivation can be adapted from the proof procedure SLGNF[681 or nH-

Prolog [69,93] (by extending the capability for inferring negative information). However, in this

section, the definition of a definite derivation has been given using a theorem proving approach

based on Robinson's resolution principle with a special rule for resolving any ground negative

literal under a user defined predicate and occurring in the body of a clause. This has the

advantage of simplicity of implementation.

First, the definitions of a clause and a goal have been generalised to allow a different

kind of literal in their body.

Definition : An extended clause has the form (7.2), where each L, - is either a negated or

unnegated atom or a deferred literal of the form Def A, where A is an atom. An extended goal

has the form

<-- L, AA Ln n ýtl (7.4)

where each Li is either a literal or a deferred literal.

Definition : Let R be a clause of the form (7.2). Then a definite form of R with respect to AP

hýp a5m, denoted by def (R, AP), is the extended clause

Ap<-LI A--- AL,, /\ Def AIA... ADef Ap_j ADef Ap, l A ... ADef A,

-105-

According to the definition, the definite form of a definite clause is the clause itself

Definition : Let R be a clause of the form (7.3). Then a contrapositive form of R with respect to

Mr, 1: 5r! ýp, denoted by con (R, M,), is the extended clause

Mr *--M IA... I'\
Mr-I A Mr+l A*** /\ Mp A--, NI A ... A--, Nq ADef A, A ... ADef A,,,.

The above clause is not exactly in traditional contrapositive form as the conclusion of the clause

remains Mr and not its negation.

According to the definition, contrapositive forms of facts as well as rules containing

only negative literals in their bodies are not defined.

Definition : Let G be a goal of the form (7.4). Then a contrapositive form of G with respect to a

positive (resp. deferred) literal L, 1: 5r: 5n, denoted by con (G, L,,), is the extended clause

A +-LIA A L,,
-l

A L,
+, AAL,,

where Lr is A (resp. Def A).

Definition : An extended computation rule is a function which maps an extended goal to either a

literal or a deferred literal, called the selected literal, in that goal.

Definition : Let D be a database, G an extended goal, and R an extended computation rule.

Without any loss of generality it can be assumed that the goal G has the form <-- M, where M is

an atom. A general goal can always be transformed to this form by using a transformation

mechanism similar to that described in [67). A definite derivation for Du[G) via R consists of

a sequence G ()=G, G 1, G 2, ... of extended goals, a sequence C 1, C2, ... of variants (either ground

negative literals or deferred literals or program clauses from the definite forms of D), and a

sequence 01,02, --- of substitutions satisfying the following:

(a) For each i, Gi is *-L I /\ ... A L,., A ... A Lp, the selected literal L,,, in Gi is a

1) positive literal and Lm unifies with a

a definite fact A in D with an mgu Oj+j. Then C, is A and G, -+j is

<-(L IA. .. /\ Lm
-,

A Lm+l A ... ALp)Oi+,.

-106-

the head of a definite rule H4-B in D with an mgu Oj+j. Then Ci is H+-B

and Gi +1 is +-(L IA... A L.
-I

ABA Lm+j A, **A Lp)Oi+l.

an atom Ap occumng in an indefinite fact F: AIv... vAp v vAl

of D with an mgu 0,
+,. Then Cj+j is def (F, AP) and G, +, is

*-(L IA... A L.
-I

A L..,, A ... ALP A

D ef Al A ... ADef Ap-, ADef Ap+jA --- ADef AP)Oi+,.

IV. an atom Ap occurring in the head of an indefinite rule
RAI v ... v Ap v---vA, 4-B of D with an mgu Oi,,. Then Ci, l is

def (R, Ap) and Gi, l is +-(L IA---AL,, -,
ABA L.

+, A ... A Lp A

Def AIA... ADef AP-1 ADef Ap+, A ... ADef AI)Oi+,.

V. an atom A with an mgu 0, where Def A (say, Ll') is occurring in

Gk 01 ... Oi (0:! -: Ik: 5i-1) and GkOl ... Oi has the form <-- L I' A ... A Lq'-

Then Ci, l is con (Gk, Def A) and Gj+j is

(-- (LI ^ ... A L.
-1 ^L l'^ ---^ Li-i', « LI, 1'^ ... ^ Lq', N L��, ^---^Lp)0.

2) ground negative literal -, A and Du(<-- A) has finitely failed possible tree. In

this case, Oj, j is the identity substitution, Ci is --, A, and Gj, j is

<--L IA... A Lm-1 A L,,,,, A ... A Lp.

deferred literal Def A and

there is a rule RA Iv... v A, <--BI A ... ABP /ý, --- AB, such that A

unifies with the atom Bp with an mgu Oj+j. Then Ci, l is con (R, Bp) and

Gj+j is <-- (L IA... A L.
-I

ABI /ý *- ABp-l ABp+l A ... ABs A

Def AA... /\ Def A, /\ Ln +, A ... A LP)OI.,,.

A unifies with a positive literal Ll' occurring in GtO, -- Oi (0!! ýk! ýi-l)

with an mgu 0 and GkOl ... Oi has the form ý- L 'A ... AL. '. Then

Cj+j is con (Gk, LI) and Gj+j is

<-- (L
IA... /ý L,

-l
AL '/\ ... A LI-I'I\ Ll,, 'A ... A Lq'A Lm+l A***ALp)0.

(b) If the sequence of goals Go, G 1, ... is finite, then the last goal G,, of the sequence is

either empty or has the form <--L IA--- /\ L,,, A ... ALP, where L,,, is selected and

-107-

L. is an atom and there is no program clause in D for which any of the literals

occurring in the head unifies with L. . or

2) Lm is a ground negative literal of the fonn -, A and there is a possible refutation

of Duf<-A), or

3) L,, is a deferred literal of the form Def A and there is no program clause in D
for which any of literals occurring in the body unifies with A.

To clarify the definition, consider the following database:

Example 7.3:

Database D3:

P (x) (-- Q (x) A -, R (x)

Q (a)
Q (x) S (x)

Q (x) T (x)

S (b) vT (b)

R (a) vR (c)

Query Q3 (definite resolution) :

(--

As each of the possible forms of D3 is hierarchical in nature, their completions are consistent.

As in the case of possible resolution, steps a. 1-I and a. I. Il fonnalise the SLD-

resolution for definite clauses and step a. 2 is a rule like negation as failure.

At the first attempt the goal +- P (x) is resolved with the first clause of D3 producing

as the next goal <-- Q (X) A -, R (x). The selected literal Q (x) in this goal unifies with the fact

Q (a) leaving only the literal -, R (a) in the resolvent, i. e. in the next goal. To resolve the goal

+- R (a), it is required to produce a finitely failed possible tree for the goal +- R (a) in the

database D 3. Due to the occurrence of R (a) in the indefinite fact R (a) vR (c), this goal has a

possible refutation and the derivation fails.

-108-

In the next, the literal from the goal <-- Q (X) A -n R (x) unifies with the only head of

the rule Q (x) <-- R (x). Resolving this goal using step a. MI, the next goal in this direction is

<-- S (X) A--, R (x). If S (x) is selected from this goal, it unifies with S (b) occurring in the

indefinite fact S (b) vT (b) to produce the next goal as <-- -n R (b) ADef T(b) using step a. I. Ill.

Note that the literals other than S (b) (in this case it is T (b)) in the head of the candidate clause
have become deferred literals (Def T(b)) in the resolved goal. If --, R (b) is the selected literal,

then since the goal <-- R (b) has a finitely failed possible tree in D 3, Def T(b) remains the only
(deferred) literal in the next goal. Step a. 3.1 states that, to resolve this goal, it is necessary to find

a clause from whose body one of the atoms unifies with T(b). The clause Q (x) <- T(x) serves

this purpose and the next goal can be inferred as <-- Def Q (b) using the rule a. 3.1. In a similar

manner, using the first clause, the next goal can be derived as <-- --, R (b)ADef P (b). The literal

R (b) can be resolved in the same way as done previously in this example and the goal is now

reduced to <-- Def P (b).

So far the only binding of a goal variable is [x1b) and hence by applying a. 3. H, the

goal <-- Def P (b) can be resolved against the body of the original goal bound with (x lb

Hence, there is a refutation of the original goal with an answer substitution (x lb

Definition : The tenns finite, infinite and successful definite derivations, definite refutation,

de nite tree, success, failure and in nite branches of a definite tree, and finitely failed definite tree fi

are defined in the usual way.

Definition : Let D be a database and Ga goal. A possible computation (resp. definite

computation) of Du(G) is an attempt to construct a possible derivation (resp. definite

derivation) of Du(G).

A possible (or definite) computation of D u[G) flounders if at some point in the

computation a goal is reached which contains only non-ground negative or deferred literals.

The restriction of allowedness on a deductive database D is introduced in order to

prevent floundering of any computation Du[G1, for some goal G. This notion of allowedness

[63] (or range- restriction [25,55]) for definite databases can be extended to apply to indefinite

databases too. When a goal G is allowed, no computation of Du[G) flounders.

Definition : Let D be a database and G be a goal <--W. An answer substitution for D u(G) is a

substitution for the variables of G. A possible computed answer (resp. definite computed answer)

0 for D u(G I is the substitution obtained by restricting the composition 01 ... 0,, to the

-109-

variables of G, where 01 '*' On is the sequence of substitutions used in a possible -refutation
(rr, sp. definite refutation) of Du(G).

When a goal G is allowed, every possible (or definite) computed answer for D u(G)
is a ground substitution for variables in G- Tbroughout the remainder of the paper, any further

references to the term 'database' will be taken to refer to an allowed database.

A possible computed answer (resp. definite computed answer) for D u[G I will also
be referred to as a possible answer substitution (resp. definite answer substitution) for the
possible-refutation (resp. definite-refutation) of DuIG).

UnUe possible resolution, definite resolution in a database D may not terminate, even
if each possible form of D is hierarchical. Consider the following example:

Example 7.4:

Database D 4:

Q (x)^ R (x)

(a) vR (a)

Query Q4 (definite resolution) :

4--

As each of the possible forms of D4 is hierarchical in nature, their completions are consistent.

Although each possible form of D4 is hierarchical, the query goes into an infinite

loop. This kind of situation can be avoided by imposing the following condition on the definite

resolution scheme. A goal G fails if it contains occurrences of an atom A and a deferred literal of

the form Def A. In such a situation the goal is a tautology and cannot be refuted. Applying this

rule in the above example, the goal ý- R (a) ADef R (a) of the second step of the derivation

fails.

In step 3 of the definite resolution scheme, selection of a non-ground deferred literal

sometimes causes an infinite derivation. To clarify this, consider the following example:

Example 7.5:

-110-

Database D5:

(x, y) e- Q (x, y) ^R (x, y)

(x, y) vR (x, z) (-- S (x, y, z)
S (a, b, b)

Query Q5 (definite resolution) :

(-- (X,

The database D5 is allowed. As each of the possible forms of D5 is hierarchical in nature, their

completions are consistent

The first step of execution will produce the goal +-- Q (x, y)AR (x, y) and if the

literal Q (X, Y) is selected from this goal, the following goal will be

<-- S (x, y, z)ADef R (x, z)AR(x, y). The execution will go into an infinite loop if

Def R (x, z) is selected from this goal and only deferred literals are selected from the subsequent

goals. Instead, if S (x, y, z) is selected and the goal is resolved with S (a , b, b), the next goal

wM be <-- Def R (a, b)AR (a, b). This goal is a tautology and hence the derivation fails.

When the underlying database is allowed, a deferred literal Def A (resp. a negative

literal -, A) occurring in a goal can be made ground at some stage of a derivation by selecting

some positive literals before the selection of Def A (resp. -, A). For querying a database

correctly, a negative literal is required to be ground before its selection.

Definition :A computation rule is safe if negative and deferred literals may only be selected for

evaluation if they are ground.

7.4.3. Rule for inferring negative information

Based on the two resolution strategies introduced in the previous two sections, the rule

(procedural semantics) for inferring negative information denoted by negation as possible failure

(NAPF), is defined as follows. The negation of a fact A is taken as true in a database D if

Duf ý-A I has a finitely failed possible tree.

The equivalence between the declarative and procedural concepts of negative

information in an arbitrarY database (at least when each possible form is hierarchical in nature)

follows in the same way as in the case of definite databases [16]. The result in the case of definite

-111-

databases establishes the fact that S LDNF- resolution can infer those items of information which
are declaratively given in terms of the completion of the database. In the context of indefinite
databases, the possible and definite resolution schemes can infer items of information which are
given in section 3 in terms of the completion of the possible forms of the database.

To illustrate the two resolution schemes together, consider the following example:

Example 7.6:

Database D 6:

Rules :

R 1. P (x) Q (x)

R 2. P (x) R (x)

R 3. Q (x) vR (x) (-- S (x) T (x)

R 4. T (x) <-- U (x) ^ -, V (x)

R 5. V (b) e- U (b) ^W (b)

Facts :

F 1. S (a)

F2. S(b)

F 3. S (C)

F4. U(a) v V(d)

F 5. U(b) v V(d)

F 6. U (C)

F 7. W(b)

Query Q6 (definite resolution):

*-

As each of the possible forms of D6 is hierarchical in nature, their completions are consistent.

Figure 7.1 shows one possible partial search space for finding definite derivations of

D 6u P W) . In the search tree, branches indicated by solid lines represent branches of a

definite tree whereas branches indicated by dashed lines represent a possible tree. A dotted line

indicates a subgoal generation due to the selection of a negative or a deferred literal from a goal.

-112-

Selected clause and sometimes variable bindings are also shown beside the respective branch.

NAPF represents an application of the negation as possible failure rule and NAF* represents

negation as failure like a rule in the transfon-ned database. For example, in the definite tree

generated from the goal <-- V(b) the fact U(b) has been taken as definite in the transformed

database although its occurrence is indefinite in D 6. The reason is its use as a possible form of

the indefinite fact U(b) v V(d).

The definite resolution is an adaptation of linear resolution (including ancestor resolution) to

incorporate negation as possible failure (NAPF) rule. Hence, by inheriting the completeness

property of linear resolution, the definite resolution becomes complete provided the incorporated

NAPF rule is complete. Also, its compatibility with the NAPF rule (i. e., negative facts inferred

by the NAPF rule is consistent with the database) follows naturally because the inferred negative

facts are consistent with every possible fonn of the database.

-113-

, E-- P (x)

11
ý""'

R2

*- Q (x) *--

pos (R 3, Q (x»

+- S(x) A--, T (x) ADef R (x)
-2

ct-- (: xýIýa.,

ýf
3 r-(x/c 1 1

ß--(xlb
(---nT(a)IýDef R(a) e- --, T (b) ^ Def R (b) T (c) ^ Def R (c)

NAPF

FAILURE

4-

R4:
I

<-- U (a) /,. --, V (a)

pos(F4, V (a))

<-- --,

NAF*

SUCCESS

<-- V(a)

1
i pos (F 5, U (b»
1

V(b)
NAF*

FAILURE
U(b)

R4

<-- U (C) A -, V (C)

<- U(b) AW(b)

F7

+- W (b)

<-- V(C)

FAILURE I FAILURE

SUCCESS

Figure 7.1. A Partial search space for the definite derivation of D6u(<-- P(x)).

The definite derivation in the middle of D 6u((-- P (x)) is given in table 7.1 and the

possible derivation for D 6u (<-- T (b)I is given in table 7.2.

NAPF

.. -- De R (b)

con (R 2, R (x»

T(b) e- Def P (b)

R4

...
I NAPF

FAILURE

(X)P
<-- T(c)

<-- U (b)A-, V (b) SUCCESS

F6

V (c)

NAF*

SUCCESS

-114.

Goals Variants Substitutions

GO=G (=M)=<--P(x)

GI= <-- Q (x) CI=RI=P (x) <-- Q (x) 01 = ()
G2 = ý- S(X) A--, T(x)ADef R (X) C2= def (R 3, Q (x)) = 02= 1)

G3=<---, T(b)ADef R(b)

G4=+-Def R(b)

G5=+-Def P(b)

IG6 =SUCCESS

Q (x) (-- S (x) ̂ -,
C3 =F2=S(b)
C4 ý -, T(b)

C5 = con (R 2, R (x» =

R (x) (-- Def P (x)

C6 -«: Mß

03 1--- (x lb 1

04 = 11

05 = (1

06ý 11

Table 7.1. A definite derivation for D 6u (*- P (x)).

+ Databases - Databases Goals Variants Subst.

D+ =D6 o D- 0 Go= <-- T(b)

D+ =D+ 10 D- =D- 10 G CR4 01

<-- U (b) A -, V(b) T(x) <-- U(x)A -, V(x)

D2+ =Dl+u(U(b)) Dj =Dý 21 G V(b) 2 = pos (F 5, U (b)) C2 02=

= U(b)

Table 7.2. The possible derivation for D6u(4- T(b)).

7.5. Prolog implementation

In the implementation, clauses are transformed to a set of definite clauses in such a way that the

transformed database is directly implementable in Prolog. In addition, in order to simulate the

behaviour of definite resolution introduced in section 4 some contrapositives are maintained. In

the implementation of definite resolution, only its input resolution [15] version is considered.

First the following few notions are introduced.

Let A be an atom. Then A S, QP, 'vn will represent the atom obtained from A by

increasing the arguments of A in its first position by a list [S, QPNR]. If R is:

-115-

(a) An indefinite clause of the form (7.3), then an expanded definite form of R with
respect to the i-th position atom Aj, denoted by def (Rs-QP-NR, Aj), 25i: <ý: m, is given
by

A P,, NR R) AM+, QP NR AA MP+'Q'p NR i',
Q <-- Control (Ref J, Q Ip IN I

Neg (N I, QPN) A ... ANeg (N,, QPN) A

Deferred De
_f

(Ref J, (A IA- AAi-, AAi, l A ... AA,,,), QPR)

whereas the expanded contrapositive form of R with respect to Mi, denoted by

con (R S, QPN R, Mi), 1! ýi --ýp , is given by

Mi-, def PNR
<-- M +, defPNR

... M. +, def PNR M +, def PNR
... +, def PNR IAA 1-1 A i+j A AM pA

Neg (N I, def PN) A ... ANeg (Nq, def PN) /\

Deferred_Con (Ref (A 1A---AA.), PR)

A definite clause of form (7.3), given by

A *-MIA ... AMp A--, NA... A --, Nq

then an expanded definiteform of R, denoted by R S, QPNR, is given by

A +, QPNR *- M +'Q'P'NR A ... AM +'Q'P'NR A Neg (N I, QPN) A ... /\ Neg (N QPN) Ipq

In the implementation each definite rule is converted to its expanded definite form.

For example, the expanded definite form of the first rule of database DI is

staff ([+, QPNRIX): -clerk([+, QPNR]X).

Each indefinite clause is converted to a set of clauses each of which is an expanded definite fon-n

with respect to an atom occurring in the head of the clause. For example, the set of expanded

definite fonns corresponding to the only indefinite rule in the database DI contains

clerk ([+, Q, PN, R], Y): -control (i Ip I, Q PNR), employee ([+, QPNR] X),

neg (officer (X), Q PN), deferred de
_

f(ilpl, typist(X), QP, R),

typist ([+, QPNR], X): -control (i Iv 2, Q P NR), employee ([+, Q, PN, R], X),

neg (officer (X), Q P N), deferred_def (i Ip 2, clerk (X), Q P, R).

Each rule is converted to a set of clauses each of which is an expanded contrapositive form with

respect to an atom occurring in the body of the clause. The set of expanded contrapositive fonns

-116-

of the only indefinite rule in the database DI contains

employee ([-, def PNR], X): -neg (officer (X), def PN),

deferred_con (i 1, (clerk (X), typist (X)), P R).

Also, to access all the definite facts in their expanded form a procedure of the form

p (X

is maintained for each user-defined n -ary relation p.

In the above representation the variable S is called the side of the literal and controls

the selection of the correct two literals of opposite sips from the goal and the called clause. The

variable Q, called the mode of the query, carries information about the kind of resolution (definite

or possible) which is in progress. A side could be either '+' or '-' and a mode is either 'pos'

representing possible resolution or 'def' representing definite resolution. Each of P and N is an

open ended structure of the form

«X, C 1), C 2), -- -),
Cn)

where X is variable and each Ci is a structure or an atom and will be described later in this

section. This helps to keep information regarding the dynamic construction of a definite form of

a database. All the literals which are still to be resolved to obtain a definite answer are

f accumulated in R through deferred con and deferre4 de

The procedure control helps to construct a new database by marking some indefinite

clauses in the database when a possible derivation is in progress. Under a possible derivation the

indefinite clauses which have been used for resolution purposes are marked so that some forms of

each can be treated as definite clauses for resolving negative literals in the subsequent part of the

execution. Storing a fact defcl(RefPosn) into P means the definite form with respect to the head

at a position Posn of the indefinite clause with identification Ref has been used. The three

f are defined as follows. procedures control, deferred_con and deferred de

control(-,
-,

def,
-, -) .

control(Ref, Posn, pos, P,
_):

-

in_clause(defcl(Ref, Posn), P),!.

-117-

control(Ref, Posn, pos, P, N): -

cl(Ref, Hs, B),

head (Posn,, Hs, H) ,
in_clause(NegL, N),

link(NegL, H, []),

de f (NegL, P, N) r
!, fail.

control(Ref, Posn, pos, p,
_): -

append_left(defcl(Ref, Posn), P).

def erred_con (Ref , Hs, P, R) :-

in-clause(defcl(Ref, Posn), P),

head (Posn, Hs, H) ,

add_go a1s (H, R) .

deferred_con(Ref, Hs, P, R): -

not in_clause(defcl(Ref,
-),

P),

add_goals (Hs, R) .

deferred_def (_,
_, _,

pos,
_,, _) .

deferred_def(Ref, Posn,
_,

def, P,
-): -

in_clause(defcl(Ref, Posn), P),!.

deferred_def(-,
-,

RestHs, def,
-,

R): -

add_goals (RestHs . R) .

The procedure 'neg' which resolves the negative goal is defined as follows.

neg (G, pos, P, N) :-

not de f (G, P, N) ,

append_lef t (G, N) .

neg (G, def , P, N) :-

not pos(G,, P,, N).

-118-

where head(I, HsH) means the atom in the I-th position of the disjunction of atoms Hs is H.

Also, appendJeft is a procedure which appends its first argument to the open ended structure

which is its second argument and is defi-ned as follows.

append-left(X, Y): -

var(Y), t�

Y=LIX).

append_left(X, (_, X»: -1.

appe nd-1 eft (X, (Y,
-)

): -

appe nd-1 eft (X, Y)

The two mutually recursive top-level procedures def and pos implement the two resolution

strategies in section 4. The goal pos(GPN) (def (GPN)) is satisfied if there is a possible

(definite) refutation of the goal <--G in the underlying database modified by P and N. They have

been defined in the following way.

def ((G, Gs) , P, N) : -! ,

def(G, P, N),

def (Gs, P, N)

de f (G, P, N) :-

expand (G. +f def, P, N, R,, ExpG)

call(ExpG),,

evaluate_deferred(R, G, P, N).

pos (Gs, P, N) :-

expand (Gs, +, pos, P, N,
_,

ExpGs) ,

call(ExpGs).

V
where the value of ExpG in the procedure expand(GS, QPNRExpG) is GS QJ NR

- The

procedure evaluate_deferred evaluates all the accumulated heads in the open ended structure R.

These are the same as either active or deferred heads as in nH-Prolog. The procedure

_
ferred is not allowed to backtrack as all the heads in R are ground and they do not evaluate de

create any new variable bindings. If all the heads of R are not resolved then the answer of the

goal is indefinite with the unresolved heads.

-119-

evaluate_deferred(R, -, -, -): -

var (R) ,I.

evaluate_deferred((RfRs), G, P, N): -!,

evaluate_deferred(R, G, P, N),

evaluate_deferred(Rs, G, P, N).

evaluate_deferred(R, R,
-, -): -!.

evaluate_deferred(R,
_, _,

N): -

in_clause (R, N) ,!.

evaluate_deferred(R, G, P, N): -

expand(R, -, def, P, N, Rev, ExpR),

call(ExpR),

evaluate_deferred(Rev, G, P, N).

-120-

CHAPTER 8

Integrity maintenance in indefinite databases

The problem of integrity maintenance in the context of relational databases has received much

attention and more recently attention has been given to definite databases, which has been

discussed in detail in chapter 6. The major problem is that the proposed methods for checking

integrity are unable to check integrity in indefinite databases. To overcome this problem, this

chapter proposes a generalisation of the path finding method for checking integrity in indefinite

databases. The generalised method is based on a new definition of constraint satisfiability in

indefinite databases. The syntactic property of this definition of constraint satisfiability is by the

negation as possible failure rule. The Prolog implementation of the method and a meta interpreter

of the extended nH-Prolog are described. The extended nH-Prolog infers negative information

from an indefinite database using the idea of negation as possible failure. The query evaluator

which is required for constraint evaluation operates on this extended nH-Prolog.

The organisation of the chapter is as follows. Ilie following section describes the new

definition of constraint satisfiability in indefinite databases. Section 8.2 presents the generalised

path finding method and the following section provides its implementation in the extended nH-

Prolog. In this chapter, the class of databases considered is indefinite and the constraints are

closed first-order formulae. Unless otherwise mentioned, any usage of the term 'database' will be

interpreted as 'indefinite database'.

8.1. Constraint satisfiability in indefinite databases

A possible fonn of an indefinite database has already been defined in chapter 7. The following

declarative definition of constraint satisfiability in indefinite databases is given in tenns of the

possible forms associated with the database.

-121-

Definition : (Declarative definition of constraint satisfiability) A database D is said to satis ya ,: f

constraint C if C is a logical consequence of the completion of each of the possible forms of D.
The database D is said to satisfy a set of constraints I if D satisfies each of the constraints of I;
otherwise, D violates I.

Consider the following example of a database to illustrate the definition of constraint
satisfiability.

Example 8.1 :

Database DI:

Rules :

Postgraduate (x) <-- MSc (x)

Postgraduate (x) *- PhD (x)

Student (x) *- Undergraduate (x)

MSc (x) v PhD (x) +- Student(X) A -nUndergraduate (x)

Facts :

Student (Subrata)

Supervisor (Howard, Subrata

Undergraduate (Choux) v MSc (Choax)

Integrity constraints II:

Vx (Postgraduate (x) -4 3y Supervisor (y, x))

From the introduced definition of constraint satisfiability if one wants to impose the constraint 11

on the database DI the integrity of the database would be violated as Choux can be proved to be

a postgraduate student in one of the possible forms of D1 without having a supervisor in that

possible form.

For the method introduced in the next section for checking integrity in a database,

each constraint is an allowed fon-nula expressed in denial form. If a constraint W is not in denial

form then it can be transformed to denial form by the same process as described in section 4.1.4.

When the database D is indefinite, the constraint W is a logical consequence of the completion of

each of the possible forms of D if and only if the transformed constraint <-- A is a logical

-122-

consequence of the completion of each of the possible forms of DT. This is true because the

difference between DT and D is only a set of definite clauses and they are part of each and every

possible fonn of DT. This justifies the transfonnation of a constraint to a denial.

As in the definite case, the syntactic definition of constraint satisfiability, which is

equivalent to the declarative definition, is as follows:

Definition : (Syntactic definition of constraint satisfiability) Let D be a database and <-- Ba

constraint in denial fonn.

1. If DuI +- BI has a finitely failed possible tree, then +- B is said to satisfy D

2. If Du(ý- BI has a possible refutation, then <-- B violates D.

8.2. The generalised path finding method

In the case of definite databases the path finding method computes a set of facts implicitly added

to the database and a set of partially instantiated atoms whose instances are likely to be deleted

from the database due to a transaction. These two sets of atoms are determined through the

computation of all possible paths from update literals. If a success path is found then the integrity

is said to be violated in the database. In the case of indefinite databases, the method has been

generalised by determining the following two sets:

(a) the set of facts implicitly added to the database and possibly true in the updated

database, and

(b) the set of atoms whose instances are likely to be deleted from the database.

These two sets are computed through all possible path calculations. The formal definition of a

possible path is as follows.

Definition : Let D be a database. A possible path in D is defmed as a chain of literals

R, R2 R.

Lo --->
L, -4 --- -* Ln

where LO is ca. Hed the source of the path, L,, its destination, n its length and R 1, ... ' R,, are clauses

from the union of the Possible forms of D used to construct the path from LO to L,,. If the source

LO is positive then it is ground. For any two consecutive literals Li and L,, j, Lj+j is called the

-123-

successor of Li in the path, and is obtained from Li in one of the following ways :

1. if

(a) Li is positive, and

(b) Li unifies with a positive literal L occurring in the body of the clause

R: A Iv... v Am <-- B, and

(c) a is an mgu of Li and L, and

(d) 0 is a possible computed answer for Du(G1, where G is the goal 4- B cc

then Li, l is the tennAjecO, 1: 5j<5tm, and Rj+j is pos(R, Aj).

If

Li is positive, and

(b) the negative literal --, L occurs in the body of the clause

Rj: A Iv... v Am <-- B such that Li unifies with L, and

a is an mgu of Li and L, and

--, Aja, 1: 5j<-m, is not an instance of anyone of the Lk's, where 05k5i

then Lj+j is the term --, Aj cc, 1: 5j<-m, and Rj+j is pos (R, Aj).

If

(a) Li is negative, and

(b) Li unifies with a negative literal L occurring in the body of the clause

Rj: A Iv... v Am <-- B, and

(c) ot is an mgu of L, and L, and

(d) 0 is a possible computed answer for Du(G), where G is the goal <-- B cc

then Li.,, is the term A, 0, l5j5m, and Ri, l is pos(R, Aj).

-124-

If

(a) Li is negative and has the form --, M, and

(b) M unifies with a positive literal L occurring in the body of the clause
Rj: A Iv---vA,,, <-- B, and

(c) 0 is an mgu of M and L, and

(d) --, Ajec, 1! ýja<: rn, is not an instance of anyone of the Lk'S. where 0: 5k: 5i

then Lj+j is the temi --, Aj (x, 1! ý-j <-m, and Rj+j is pos (R, Aj).

It is possible to construct more than one possible path starting from the same literal.

Furthennore, a positive literal on a possible path is always ground and possibly true in the

database. For simplicity, a path will sometimes be written without showing the clauses used to

construct the path.

Definition : Let D be a database and La literal such that if L is positive then it is ground. Let S

be the set of all paths with L as the source. The possible path space rooted at the literal L is a

tree defined as foHows :

1. Each node of the tree is a literal.

2. The root node is L.

3. If N is a node of the tree, then the set of all successors of N in the paths of S are the

only descendants of N in the tree.

Each branch of the path space corresponds to a path in the database with the root node

as the source and vice-versa. A path which ends at the head IC(No) of a constraint wiR be caUed

a possible success path; otherwise, it will be called a failure path. A path space containing at

least one branch which corresponds to a success path is referred to as a possible success path

space.

When the database D is definite, the definitions possible path, possible path space,

possible success path, possible success path space reduces to path, path space, success path,

success path space respectively.

-125-

As in the case of definite databases, to check integrity in an indefinite database when a

new constraint is added, its equivalent denial form is queried directly against the database to

make sure that the constraint is a logical consequence of the completion of each of the possible
fo rms of the database. If a constraint is deleted then this cannot cause any inconsistency. To

check integrity in the updated database D' as a result of the transaction t applied to D, the source
is taken as an update literal. An update literal of the transaction t applied to a database D may
be one of the following:

1. An atom occurring in a fact of t which is to be added to D.

2. The negation of an atom occurring in a fact of t which is to be deleted from D.

3. If an indefinite rule R: A Iv... v Am +-- B in t is to be added to D then for a

possible computed answer 0 for D'u (<-- B), the corresponding instance of an atom

occurring in the head of the rule R, i. e. AjO, 1: 5i-<-m, which is possibly implicitly

added to D due to the transaction.

4. If a rule R: A Iv... v Am <-- B in t is to be deleted from D then the negation of an

atom occurring in the head of the rule R, i. e. -, Aj, 1: 5i L<M, whose instances are likely

to be deleted from D due to the transaction.

To preserve integrity one must ensure that a possible success path space does not exist

with source as an update literal in the updated database. The different branches of the possible

path space from an update literal can be generated in a number of ways and the backtracking

mechanism is one of them.

A transaction is rejected if a possible success path is found in the updated database.

Modification can be considered as being accomplished by a deletion followed by an addition.

The method is illustrated by means of the following few examples.

Example 8.2:

Database D2:

Rules :

1. P (x, y) <-- Q (x, y) ^

R2. Q(X, Y)<--S(X, Y)A--, M(X)

-126-

R 3. R (x) U (x)

R 4. R (x) V (x)

R5. U(x)vV(x)(--T(x)^-nW(x)

R6. M(x)(--R(x)^N(x)

Facts :

N (a)

S (a, c)

S (b, c)

Integrity constraints 12 :

IC 1. IC (1) (-- P (X, y) A -, 0 (x)

Transaction :

insertfact T (a) vT (b)

As each of the possible forms of D2 is hierarchical in nature, their completions are consistent.

Before the transaction is applied, database D2 satisfies the constraint 12. Let D 2' be the updated

database.

As the transaction is the insertion of an indefinite fact T(a) v T(b), the set of update

literals is (T(a), T(b)). Taking T(a) as a source one can have, with the help of R5, either of

U(a) or V(a) as the next literal of the source. Considering U(a) first, the next literal of the path

is R (a). To find a successor of R (a) with the help of R 1, one has to find a possible computed

answer of D 2u [<-- Q (a, y)AR (a)). The fact Q (a, c) is an instance of Q (a, y) which is true

in one of the possible forms of D2 provided that M (a) is false in that possible form. R (a) could

be taken to be true in that possible form if M (a) was not provable with the help of R 6. Hence no

instance of Q (a, y)AR (a) is true in the constructed database and RI fails to generate a

successor for R (a). In the process of backtracking when V(a) is considered, the generated path

also becomes failed for the same reason. Backtracking further and considering T(b) as the

source, one can construct the possible success path

pos (R 5, U (x» R3R1 ic 1
T (b) U (b) ---> R (b) ---> P (b, c) -ý IC (1)

-127-

The two complete possible path spaces generated as a result of the transaction are shown in figure

8.1.

T(a)

pos(R5, U (9/
\pos(R5,

V (x»

U(a) V (a)

R31 I R4

R (a) R (a)

II

FAILURE FAILURE

T(b)

pos(R5, U (x) s(R5, V (x» \PO
U (b) V (b)

R31 1 R4

R (b) R (b)

RII 1 RI

P (b, c) P (b, c)

ici II ici

Ic (1) Ic (1)

II

SUCCESS SUCCESS

Figure 8.1. The two complete possible path spaces in the case of example 8.2

Example 8.3:

Database D3:

Rules :

Swne as database D2

Facts :

T(a)

T(b)

0 (b)

S (a, c)

S (b, c)

W(c) vW (a)

-128-

Integrity constraints 13 :

Same as example 8.2

Transaction :

deletefact W (c)vW (a)

Before the transaction is applied, database D3 satisfies the constraint 13. Since the transaction is

the deletion of an indefinite fact the set of update literals is the set of all literals obtained by

negating each atom occurring in the fact, i. e. 1--, W(c), -, W(a)). Taking -, W(c) as a source,

the rule R5 fails to produce the next literal of the path as T (c) is not even possibly true in the

database. Taking --, W (a) as a source and applying rule R 5, one can say that the next literal of

the path is one of U(a) or V(a). Applying R3 to U(a) yields R(a) which unifies with a literal

occurring in the body of RI and Q (a, c) is possibly true in the database. Hence, the successor of

R (a) is P (a, c). Unifying P (a, c) with a literal from the body of the denial form of the

constraint, one can obtain P(a, C)A-, O(a) and this is possibly true in the database.

Consequently the integrity is violated in the database due to the transaction. The complete

possible path space taking -, W (a) as a source is shown in figure 8.2.

Lloyd et al. 's simplification method can also be extended for checking integrity in

indefinite databases, as in the case of definite databases, by calculating a set of partially

instantiated atoms whose instances are likely to be deleted from different possible form s of the

database.

0 8.3. Prolog implementation

This section describes how the integrity checking method described in the previous section and

also the two resolution strategies described in chapter 7 may be implemented in Prolog.

A unique number has been assigned to each newly inserted constraint as an

identification. A constraint *- B numbered No is stored directly as a Prolog rule

ic (No): -B.

A rule or a constraint can be retrieved efficiently by using a reference which uniquely identifies

the corresponding rule or constraint.

. 129-

--i W (A)

pos(R5, U IX
ýýýýsR5,

V(x))

U (a) V (a)

R31 I R4

R

R11 IRI

P(a, c) P(a, c)

ici I lici

ic (1) Ic (1)

SUCCESS SUCCESS

Figure 8.2. The complete possible path space in the case of example 8.3

The top level C-Prolog goal for integrity checking (? -ic_vioIated(Tran).) can be
defined as

ic-violated(Tran): -

path (ic (No) , Tran, [], P, N) ,!.

where Tran represents an update literal and path (D, S, NegList, P, N) means that a possible

path is to be constructed from the literal S to the literal D and the set comprising the negation of

each literal of the list NegList are the only negative literals which have occurred so far in this

possible path construction. Each of P and N is an open-ended structure as described in the last

chapter and achieves the same purpose for keeping information regarding the dynamic

construction of a possible form of a database. With this convention if the database becomes

inconsistent due to the transaction Tran, then the first inconsistency is reported at a constraint

numbered No.

The possible path can be computed efficiently by maintaining additional infon-nation

for each rule and constraint in the database. For each literal L occurring in the body of a rule

RA Iv... v A,, <-- B and for each i, 1! ýi! ým, clauses of the fonn

-130-

depend (Ref , Ai, L)

depend (Ref , --, Ai, CompL),

have been maintained, where Ref is the reference which uniquely identifies the clause R. For

each literal L occurring in a constraint <-- B, a clause of the form

depend (Ref , ic (No), L).

has been maintained, where ic(No) is the head of the constraint and Re is the reference which

uniquely identifies the clause ic (No) +- B.

The task of finding a possible path from a source literal S to a destination literal D can

be achieved in Prolog with the help of the following meta-interpreter:

path(D, S,
-,

P, N): -

depend (Re f, D, S) ,

cl(Ref, Hs, B),

simplif y (B, S, SB) ,

simplify (Hs, D,

po s (SB, P, N) .

path (D, S, NegLi st, P, N) :-

depend (-, Via, S) ,

Via=(not A),

not instance_list(A, NegList),

path(D, Via, [AjNegList1, P, N).

path (D, S, NegLi st, P, N) :-

depend(Ref, Via, S),

not Via=(not

cl(Ref,, HsjB),,

simplif y (B, S, SB)

simplify (Hs, Via,
_)

po s (SB, P, N) ,

path(D, Via, NegList, P, N).

c1ause(H, B, Rej) means that H and B are unified respectively with the head and body of a clause

which is uniquely identified by the reference Ref The interpretation of simpU: fy(B, S, SB) is that SB

-131-

is an instance of B obtained by unifying one of B's body literals with S. instance(ANegList)

means that A is not an instance of any of the atoms occurring in the list NegList. This

corresponds to conditions 2(d) and 4(d) in the definition of a possible path and prevents a possible

generation of an infinite possible path from a negative literal in the presence of recursive rules.
The goal pos (SB, P, N) is satisfied if there is a possible refutation of the goal SB in the

underlying database modified by P and N. This procedure has already been defined in the
implementation section of chapter 7. However, the following is an alternative implementation

based on nH-Prolog [69,931.

In the implementation of a query evaluation system, nH-Prolog has been selected and

extended with the capability of deriving negative information from the database according to the

semantics of negation as possible failure. In this case the format used for storing a definite clause

[93] using the predicate nH is

nH (Head, Body)

whereas an indefinite clause is stored under the same predicate as

nH (ChosenHead, AuxiliaryHeads, Body, Ancestorbst).

Beside these a separate clause of the fonn

nH_index (Functor, Arity, RefList)

has been maintained to store all the references to clauses containing an occurrence of a particular

user-defined predicate in their heads, where the predicate is identified by Functor and Arity. In a

database the number of clauses defining a predicate could be very high and in such a situation

maintaining the above set of clauses would be both inefficient and wasteful of storage. Instead,

definite clauses have been stored under the predicate cl as

cl (StartRef , NextRef , Goal, Body)

and an indefinite clause as

cl (IndRef , Posn, StartRef , NextRef ,
Goal, AuxHeads, Body, NewAnc),

where StartRef is the unique reference (1,2,... etc) to the clause among the set of clauses, each of

which contains an occurrence of the predicate in its head defining Goal; NextRef is the same for

the next clause defining P with the same arity and this is represented by a unique reference (zero)

-132-

when there is no next clause. For indefinite clauses the two parameters IndRef and Posn denote

respectively a unique indefinite clause reference (il, i2,... etc) and a unique position (pl, p2,... etc)

of Goal in the head of the indefinite clause. Under the above convention the database DI can be

represented as follows :

cl (1,2, postgraduate (X), msc (X))

cl (2,0, postgraduate (X), phd (X))

cl (1,2, student (X), undergraduate (X))

cl (2,0, student (subrata), true)

cl (1,0, supervisor (howard, subrata), true)

cl (i 1, p 1,1,2, msc (X), [dh (phd (X), Y)], (student (X), notundergraduate (X)), Y)

cl (i 1, p 2,1,0, phd (X), [dh (msc (X), Y)], (student (X), notundergraduate (X)), Y)

cl (i 2, p 1,1,0, undergraduate (choux), [dh (msc (choux), X)], true, X)

cl (i 2, p 2,2,0, msc (choax), [dh (undergraduate (choux), X)], true, X)

The two mutually recursive top-level procedures def and pos corresponding to the two resolution

strategies in section 2 have been defined in the following way.

def(Goal, P, N): -

copy_query(Goal, OldGoal),

def-init((X, Goal), OldGoal, P, N),

var(X).

pos (Goal,
-, -)

:-

reserve(Goal),

call(Goal).

pos (not Goal ,Pf N) :-

not def(Goal, P, N),

append_left(Goal, N).

pos ((A, B) , P, N) :-

pos(A, P, N),

pos(B, P, N).

-133-

po s (Goal, P, N) :-

cl (-,
-,

Goal, Body) ,

po s (Body, Pf N) .

pos (Goal, P, N) :-

generator (Goal, Gen)

cl(IndRef, Posn,
_, _,

Gen,
_,

Body,
-),

not in_clause(defcl(IndRef, Posn), P),

in_clause(NegL, N),

link(NegL,, H, []),,

de f (Ne gL, P, N) ,

I j, fail.

pos(Goal, P, N): -

cl(IndRef, Posn,
_, _,

Goal,
_,

Body,
_),

append_left(defcl(IndRef, Posn), P),

po s (Body, P, N) .

where the procedure copy_query (Goal, OldGoal) means OldGoal is a copy of the query Goal

and generator (Goal, Gen) means the generator of the goal Goal is Gen. Also, appendjeft is a

procedure which appends its first argument to its open-ended structure second argument and has

already been defined in the implementation section of chapter 7.

The following four procedures def init, def solve, def restart and def restart-goal

are respectively the modified forms of nH_init, nH-solve, nH-restart and nH-restart-goal in

[931.

def-init(AnsList, OldGoal, P, N): -

AnsList = (-, Goal),

def_solve (Goal, 1, [anc(q, DH, init, P, N)

(DH = (-I-]

-> def-restart(AnsListjOldGoalfDH, PIN);

true).

-134-

def_solve(Goal,
_, _, _,

DH, DH,
_, _, -): -

reserve(Goal),

call(Goal).

def-solve(not Goal,
_,, _,, _,

DH, DH,
-,

P, N): -

not pos(Goal, P, N).

def_solve((A, B),
_,

Anc, AH, DH1, DH3, Can, P, N): -

def-solve(A, 1, Anc, AH, DH1, DH2, Can, P, N),

def-solve(B, 1, Anc, AH, DH2, DH3, Can, P, N).

def-solve(Goall-r-tGoal, DH, DH, yes,
_, -).

def-solve(Goal, StartRef, Anc, AH, DH1, DH3, Cancel, P, N): -

get_cl(IndRef. Posn, StartRef, NextRef, Goal, AuxHeads. Body, NewAnc),

NewAnc = [anc(Goal, NextRef)lAnc],

((var(IndRef) ; in_clause(defcl(IndRef, Posn), P))

-> def-solve(Body, l, NewAnc, AHfDHlfDH3, Cancel, P, N);

append(AuxHeads, DH1, DH2),

def_solve(Body, l, NewAnc, AH, DH2, DH3, Cancel, P, N)).

def-restart(AnsList, OldGoal, DH, P, N): -

DH = [dh(AH, Anc)IDH11,

men-Lber(anc (Re sGoal, StartRef) , [anc (not,
-)

I Anc]),

def-restart_goal(AnsList, OldGoal, ResGoal,

StartRef, Anc, AH, DH1, DH2, Cancel, P, N),

((DH2 = [-I-], Cancel == yes)

-> def-restart(AnsList, OldGoal, DH2, P, N);

(DH2 = (1, Cancel == yes)

-> true;

f ail) .

def_restart_goal(_,
_,,

not,
_, _,

AH, DH,, DH, yes,,
_,,

N): -

in_clause (AH, N) .

. 135-

def-restart_goal(_,
_,

Goal, StartRef, Anc, AH, DH1, DH2, Cancel, P, N): -

def-solve(Goal, StartRef, Anc, AH, DH1, DH2, Cancel, P, N).

def-restart_goal(AnsList, OldGoal, q,
_,

Anc, AH, DH1, DH2, Cancel, P, N): -

copy_query(OldGoal, Query),

append_left(Query, AnsList),

def_solve(Query, l, Anc, AH, DH1, DH2, Cancel, P, N).

The first seven parameters of the procedure def-solve are defined in the same way as in [93]. The

last two parameters P and N are open-ended structures. Each element in P has the form

defcl (IndR ef , Posn)

where the possible form of an indefinite clause identified by IndRef with respect to the head at the

position Posn has been used for a possible resolution and the def solve routine will consider those

clauses as definite clauses. Each element in N is an atom representing a negative fact false in the

database constructed dynamically.

In the new internal representation of clauses, a clause is retrieved with the help of the

fbHowing routine get-cl

No more clauses

get_cl (��O,
_, _, _, _, _)

: -! �fail.

% Retrieve a definite clause

get-cl(-,
-,,

StartRef, NextRef, Goal,
-,

Body,
_): -

cl (StartRef, NextRef, Goal, Body) -

Retrieve an indefinite clause

get_cl(IndRef, Posn, StartRef, NextRef, Goal, AuxHeads, Body, NewAnc): -

cl(IndRef, Posn, StartRef, NextRef, Goal, AuxHeads, Body, NewAnc).

Retrieve the next clause

get-cl(IndRef,, PosnfStartReffNextReffGoal, AuxHeads, BodyfNewAnc): -

generator(Goal, Gen),

(cl(StartRef, Via, Gen,
_);

cl(_,
_,

StartRef, Via, Gen,
_, _, _))#,

get_cl(IndRef, Posn, Via, NextRef, Goal, AuxHeads, Body, NewAnc).

-136-

CHAPTER 9

Formalising Aggregate Constraints

The proposed methods for integrity checking in deductive databases deal mainly with the class of

static non-aggregate constraints and confining constraints to this form they exclude some

important kinds of constraints from consideration. For example, constraints of the form

the total number of employees in a particular department may not exceed 100, or

a student obtaining an average mark greater than or equal to 50, passes the examination, etc.

cannot be expressed conveniently as closed first-order formulae and it is not possible to evaluate

them efficiently even if they are expressed so. To take account of this problem extensions of

Lloyd et al. 's simplification method as well as of the path finding method are proposed in the

context of definite databases which allow a set of aggregate predicates (e. g., Count, Sum,

Maximum) to be included within formulae representing constraints. The definition of constraint

satisfiability has been generalised to include these constraints.

The organisation of this chapter is as follows. The following section introduces the

notion of closed generalformulae to cover a more general class of constraints, called aggregate

constraints. Section 9.2 generalises the concept of constraint satisfiability in definite databases to

include aggregates. The Simplification method by Lloyd et al. and the path finding method have

been generalised in section 9.3 to check integrity in definite databases in presence of aggregate

constraints. The last section discusses implementation issues in Prolog using the setof predicate.

Repeated costly global compuations of the setof predicate can be replaced by more efficient

incremental modifications [49,51. In this chapter, the class of databases considered is definite and

hence any usage of the term 'database' will be interpreted as 'definite database.

-137-

9.1. General formulae and aggregate constraints

Definition : In extending clauses to include aggregate predicates, the following five have been

chosen as an initial set:

Count

Average

Sum

Maximum

Minimum

although this set can clearly be enlarged to include other such functions.

An aggregate atom is one of the fbHowing fonns :

Count (W, n)

Average (x, W, r)

Sum (x, W, r)

Maximum (x, W, r)

Minimum (x, W, r)

where W is a conjunction of literals (a goal written without <--) in which some of the variables are

free and the remaining variables are assumed to be existentially quantified in front of W. The

variable x is one of the bound variables of W, and variables n and r represent the result of the

function (as an integer or real number, respectively). The variable x can be replaced by an

identifier (e. g., an integer) which will identify uniquely the occurrence of x in W. For the sake of

readability, it has been considered as a variable. Thus Count (W, n) is interpreted as counting the

number of different answers to the query +- W which are true in D, and returning this value as n;

Average (x, W, r) computes the average of all the values of the variable x obtained from different

answers of the query <-- W which are true in D, and return this value as r; and so on. In each

case the query <- W is assumed to be allowed.

An aggregate literal is either an aggregate atom or the negation of an aggregate atom.

A general atom (resp. general literal) is either an atom (resp. literal) or an aggregate atom (resp.

aggregate literal). In each of the above aggregate atoms the formula W will be called the key

formula.

-138-

Definition :A generalformula may now be defined as fbHows :

(1) A general literal is a general formula.

(2) If A and B are general formulae, then so are --, A, AvB, A /\ B, A-4B and A +4 B.

(3) If A is a general formula and x is a variable, then 'Vx A and 3x A are general formulae.

(4) Nothing else is a general formula.

Definition : Given a formula consisting of the single general atom (x, then the general atom cc is

said to occur positively in the general formula (x. If a general atom (x occurs positively (resp.

negatively) in a general formula A, then cc occurs positively (resp. negatively) in 3x A and AAB

and AvB and B -ý A. If a general atom cc occurs positively (resp. negatively) in a general

formula A, then (x occurs negatively (resp. positively) in -, A and A -ý B.

Definition : Let X be an aggregate literal occurring in a general formula A. Then all the bound

variables of the key fon-nula W of X are said to be local to the aggregate literal X. Any other

variables occurring in X are said to be global variables of A.

Definition :A closed general formula F is a general forrnula with no free occurrences of any

global vanables.

Definition :A first-order constraint is a constraint, i. e. a closed first-order fonnula in the fonn of

a denial.

Definition : An aggregate constraint is a closed general formula F of the fonn

X, A---A Ä', --) (X, v

where (xl v ... v (x,,, is the conclusion of 17 and X, A ... A X, is the condition. Each eci is a

general atom and each Xj is a general literal and at least one of cc,, ..., Ccm, XII
... I

Xn is an

aggregate literal. Global variables occurring in the condition are assumed to be universally

quantified at the front of 1. Any variables in the conclusion which do not occur in the condition

are assumed to be existentially quantified at the front of the conclusion. Thus the example of

constraints given in the introduction can be expressed using this notation, as follows:

Dept (x)ACount (Employee (y, x, z), t) -ý t! ý 100,

Student (x, y, z) I\ Average (v, Marks (x, u, v), t)A t ý! 50 ---> Pass (x),

-139-

where x, y, z, t, u, v are variables. According to the definition, the variables x and t in the first

constraint are assumed to be universally quantified in front of the whole constraint, whereas the

variables y and z are assumed to be existentially quantified in front of Employee (y, x, z).

Definition :A constraint is either a first-order constraint or an aggregate constraint.

In fbHowing two subsections, the only aggregate predicate considered wiH be the

predicate Count. In subsection 9.4 this wiH be generalised, to other aggregate predicates from the

initial set.

9.2. Aggregate constraint satisfiability

Let D be a database and QD be the set of all queries. Consider the function XD : QD --> N, where

N is the set of all non-negative integers, defined in the fbHowing way:

For <-- WEQD, XD (<-- W) = card (W 0: comp (D)ýW 0 1,

where card X denotes the cardinality of the set X. Clearly the mapping is well defined, i. e. every

query *- W is mapped into a unique integer which is equal to the number of instances of W

which can be derived from comp (D). This asserts that the number of different instances of W

which are true in D is XD (ý- W). Thus if a constraint contains the aggregate atom Count (W, n)

and all global variables occurring in W are instantiated, XD (ý- W) represents n. In other words,

XD (<-- W) is the number of different computed answers of the SLDNF-derivation of DUW

provided that it is capable of returning all answers without going into an infinite loop.

Lemma 9.1 : Let D be a database and <-- Wa member Of QD. Let x 1, ..., x,, be all the variables

of W and DT be D u('Vx I ... Vx,, (P (x 1, ..., x.) <-- W)), where P is a predicate symbol not

occurring elsewhere in the database D- If XD : QD -ý N and XDT : QDT -ý N are the two

mappings defined as above, then XD ((- W) -ý
XDT(ý- P(X

P''-

Proof: This fbHows from the fact that comp(D)ýWO if and only if comp(D4p(X I, ---, Xn)O- 0

In view of the above lemma, the key formula of an aggregate atom under the predicate

Count occurring in a constraint wiH be assumed to be an atom.

Definition : The first-order equivalent of an aggregate atom Count(A, n) is the first-order atom

CountA (n, y 1, ..., yg) (or simply Count (n, y 1, ..., yg)), where n is a variable and y 1, ..., yg are the

-140-

arguments of A other than its local variables. Thefirst-order equivalentform of a generalformula

F, is obtained from r by replacing its aggregate atoms with their first-order equivalent form.

Definition : Let D be a database and Count (A, n) be an aggregate atom. Suppose, z 1, ... ' z, am

the local variables of A and y 1, ..., yg am the other attributes of A (some of which may be

constants). One can always assume that A has the form P (z 1, ..., zj, y 1, ..., yg), where P is a

first-order order predicate. Suppose there are a finite number of constant terms a 1, ..., an in the

language underlying the database. In the context of database D, the expansion of Count (A, n)

defining its first-order equivalent, denoted by Ex PD (Count (A ,n)) (or simply Exp (Count (A ,n

I In I (M
when D is clear from the context), is the following set of mg +m+2+

ml(ml-1)(ml-2)
3.2 + ... +I first-order clauses:

m9 clauses:
Count (0, y yg) +- yI =a IIA..., A yg =ag

IA

--, Count(l, yl,..., yg)A --- A--, Count(ml, y,,..., Yg)

where each ai' is equal to ap, for some p.

mI clauses:
Count (l, y I, ..., yg) <-- P (a a, 1, y 1, ..., Yg) A

-, Count (2, y 1, .--, yg)A ... A --, Count (m 1, Y1,
. -.,

yg)

where each a, ' is equal to ap, for some p.

mi mi-
clauses: 2

122 Count (2, y yg P (a a, ,y yg)AP (a a, y Yg) A

1 Count (3, y Yg) A ... A --, Count (m Y yg)

where each a, ý, k=1,2, is equal to ap, for some p, and
tk k'

for k #k'g 1!! ýk, V52, there exists p such tha aý %

mI (m I -1)(M
3.2 clauses:

Count (3, y 1, ..., yg) *- P (a 11 , ..., a, I, y1, ...,
Yg) A ... P(al 3,

..., a,
3, Y1, ...,

yg)

1
-, Count (4, y ..., Yg) A -, Count (m ,y yg)

where each a, k, k=l, 2,3 is equal to ap, for some p, and

-141-

for k A% 1: 5k, V53, there exists an p such that apk*aPk'

1 clauses:
I Count (m ,y yg) <- P (a a, y Yg) A ... AP (a a, ", y 1, yg

where each aik, k=1,2, ..., ml, is equal to ap, for some p, and
tk le for k #k', 1: 5k, k'<-m 1, there exists ap such tha aý *a;

When the above set of clauses has been added to the database, it would be said that the database

is expanded wrt the aggregate literal Count (A, n) and the expanded database is denoted as
Exp (D, Count (A, n)).

Lemma 9.2 : For all ground substitutions 0 of the variables in fy 1, ..., yg), at most one of

Count(l, yl, ..., yg)O, ...,
Count(mi, yl, ..., yg)o can be derived at a time from

comp (Exp (D, Count (A, n))).

Proof : Assume that both Count (M, y 1, .., yg)O and Count (N, y 1, ..., yg)O can be derived from

comp (Exp (D, Count (A, n))), for N*M. Without any loss of generality one can assume

0-<M<N-<jnl. Since Count(M, yl,..., yg)O is derivable from comp (Exp (D, Count (A, n))),

from the clauses defining Count (M, y 1, .. -, yg) one can say that none of

Count(M+l, yl, ..., yg)O, ..., Count(N, yl,..., Yg)o, ...,
Count(mi, yl,..., yg)O is derivable from

comp (Exp (D, Count (A, n))). This contradicts the initial assumption. Hence the lemma. 0

Lemma 9.3 : For all ground substitutions 0 of the variables in fy 1, ---, yg), XD (<-- A 0) = N, if

Count (N, y I, ..., yg)O is derivablefrom comp(Exp(D, Count (A, n))).

Proof : Suppose that only M different instances of A0 are derivable from comp(D) (i. e.

XD (<-- A 0)=M). The instances of A0 which are derivable from comp (D), occur in the body of

U 0, where U is a clause in Exp (D, Count (A, n)). The head of U is Count(M, y 1, ..., yg) and

Count (M, y 1, yg)O is derivable from comp (Exp (D, Count (A, n))). Hence, by Lemma 9.2,

M =N.

-142-

Definition : Let D be a database and F an aggregate constraint, and suppose that Count (A 1, n 1),
Count (AP, np) are the only aggregate literals occurring in IF. The expansion of D wrt 1,

denoted by Exp (D, F), is the set D uExp (Count (A 1, n 1))u ... UExp (Count (AP, np)). Let I be a

set of constraints and F1, ..., I'P be the only aggregate constraints in I. The expansion of D wrt 1,

denoted by Exp (D, 1), is the set D uExp (D, FI)u ... uExp (D , I' P

Lemma 9.4 : Let D be a database and I be a set of constraints with occurrences of aggregate
literals Count (A 1, n 1), ..., Count (AP, np). If comp (D) is consistent then comp (Exp (D , I)) is

also consistent.

Proof: For each integer n, suppose that Count (n, y 1, ..., yg)corresponding to Count (Pi, ni) for

some i=1,2, ..., p, is replaced by another atom Countni (y 1, ---, yg), where Countni does not

appear elsewhere in the database. Then the clauses added to D to obtain comp (Exp (D, 1)) can

be taken as satisfying the hierarchical constraint. Because of the hierarchical nature of the clauses

added to D and the fact that the added clauses define predicates which are not already defined in

D, comp (DT) is consistent. 0

Suppose IF is an aggregate constraint and G is its first-order equivalent. In view of

Lemma 9.3, D can be said to satisfy IF if G is a logical consequence of comp (Exp (D, n);

otherwise D violates 17. D is said to satisfy 1, where I is a set of constraints, if D satisfies each

constraint in I; otherwise D violates I.

An aggregate constraint F may be transformed to its first-order equivalent denialform

Gd by performing the fbHowing steps:

Each first-order atom A which occurs in the conclusion and which contains at least

one existentially quantified variable of the conclusion, is replaced by P (xj,
..., x,,),

where xj, ..., x, are the variables of A also occurring in the condition and the

predicate symbol P does not occur elsewhere in the database. At the same time D is

expanded by adding the clause P (X 1, --- Xn) <-- A to it- Let DT be the transformed

database and GT be the transformed aggregate constraint.

2. Convert GT to its first-order equivalent form Gf .

3. Gf is transformed to its equivalent denial form <-- Gd by simply adding the negated

form of each atom A occurring in the conclusion, as a conjunct of the condition.

-143-

When a first-order constraint <- W in denial form is considered, the standard method

of detennining whether a database satisfies or violates the constraint is by evaluating the query

4- W in the context of the database. If there is an SLDNF-refutation of Du(ý- WI via a safe

selection then D violates <-- W- If Du(<-- W) has a finitely failed SLDNF-tree, then D satisfies
W. When an aggregate constraint IF is considered, it is transfbimed to its equivalent first-order

denial form +- Gd in the above way by transforming the database D to Exp (DT, I-). Then one

can have the following syntactic definition of aggregate constraint satisfiability of C.

Lemma 9.5 : Let D be a database, F an aggregate constraint and Ra safe selection rule. The

terms DT and <-- Gd are defined as above. Suppose comp (D) is consistent. If there is an

SLDNF-refutation of Exp (DT, r)uf+- Gd) via R then D violates F. If Exp (DT, I')U(+- Gd)

has a finitelyfailed SLDNF-tree via R, then D satisfies IF.

Proof : Similar to the case of a first-order constraint. M

9.3. The extended simplification theorem

Lloyd et al. 's simplification method for checking integrity in definite databases has already been

described in chapter 5 and in chapter 6, and the four sets of partially instantiated atoms POSD", D',
NegD", D', POSD", D and NegD", D have been defined there. The generalised simplification

theorem to handle the case for an aggregate constraint is as follows.

Theorem 9.1: Let D be a database and T' an aggregate constraint such that D satisfies 1.

Suppose that t is a transaction consisting of a sequence of deletions followed by a sequence of

insertions such that when the sequence of deletions is applied to D, it produces the intermediate

database D", and when the sequence of insertions is applied to this, it produces the database D'.

Suppose that the completion of each of D and D' are consistent. If x x. are the global

variables of IF, thefollowing three sets can be defined:

E)=(O :0 is the restriction to xl, ..., xýn of an mgu of the atom A, where Count(A, n) is an

aggregate atom occurring in IF, and an atom in POSD", D'uNegD", D uNegD". D'UPOSD", D),

(D= (0 .-0 is the restriction to x 1, of an mgu of a first-order atom occurring negatively in F

(i. e. in the condition of IF) and an atom in POSD", D'uNegD", D), and

T= (4f : xV is the restriction to x 1, ..., x,, of an mgu of a first-order atom occurring positively in F

-144-

(i. e. in the conclusion of F) and an atom in NegD", D'UPOSD", D) -

Then D' satisfies IF if and only if D' satisfies lFg, for allgEE),,)(DuT.

Proof : Let E denote Exp (D, I-). If comp (D) is consistent, then by Lemma 9.4, comp (E) is

also consistent. Suppose that the transaction t produces E' when it is applied to E and produces

the intermediate database E". Recall that Count (n, y 1, ..., yg) is the first-order equivalent of an

aggregate atom Count (A, n), where y 1, ..., yg are the attributes other than the bound variables of

A. Suppose G is the first-order equivalent of I-. Consider the following two sets:

n, =[co : co is the restriction toy,,..., yg of an mg-u of an atom Count (n, y I, ..., yg) occurring in

the condition of G and an atom in POSE", FuNegE", E), and

02= ((t) : (j) is the restriction to y 1, ..., yg of an m gu of an atom Count (n ,y1, ..., yg) occurring in

the conclusion of G and an atom in NegE", E'UPOSE", EI-

Suppose Oe 8 and A'(=- POSD", D'uNegD", D such that A' unifies with A, where A has

the form P (z 1, ..., zj, y 1, ..., yg). Each yj is equal to xk, for some k, 1: 5k
-<-m.

Whatever the

bindings to the variables z 1, ..., z, corresponding to 0, Count (1, y 1, ..., yg)O,

Count (m yl,..., yg)O are members Of POSE", E'uNegE-, E, and Count(O, yl,..., yg)O,

Count (m - 1, y 1, ..., yg)0 am members of NegE", E'UPOSE", E-

Again, suppose (j)EQ I. This implies that P (a a, ', y 1, ..., yg)(o is a member of

POSE", E'UNegE", E Je. P (ali,..., all, y I, -, yg)(o is a member Of POSD", D'uNegD,,, D -

The above two paragraphs prove that, in the case of the addition of a fact, the

satisfiability of rO in D' is equivalent to the satisfiability of Go) in E. Similarly, in the case of

deletion. Hence,

E' satisfies G o), for all (O'F: OIUý22UOUýy 4=-: ý E' satisfies G ýt, for all gE E)u(DuT

Again,

D' satisfies F

E' satisfies G (by definition)

E' satisfies G o), for all wEQjUQ2U(DUT (by simplification theorem

E' satisfies G g, for all gEOkOu'F for first-order constraints)

-145-

ýý* D' satisfies G 0, for allOEE)u(DtjT. 0

The path finding method for definite databases can also be extended for checking

integrity in definite databases in the presence of aggregate constraints as follows. Suppose, at the

time of calculating a path P, a fact A' (or a negative literal -n A) occurring in it, unifies with the

key formula A of an aggregate atom Count (A, n) occurring in a constraint F. Let 0 be an mgu of

A and A'. Then, IFO' is evaluated in the updated database, where 0' is an unifier obtained from 0

by excluding any bindings to the local variables of Count(A, n). For efficiency purposes, all O's

are stored to avoid redundant evaluation of constraints.

9.4. Generalisation to other aggregate predicates

If an aggregate atom involving the predicate Sum occurs in a constraint, then the lemmas in the

previous section as well as the above simplification theorem still hold since an occurrence of an

aggregate atom of the form Sum (z, A, r) in a constraint can be replaced by Sum (r, y 1, ..., yg) by

adding the following clauses to the database (assuming that A has the form

P (z 1, ..., zj, y 1, ..., yg) and without any loss of generality z has been taken as z 1) :

I clause :
Sum (X, y 1, ---, yg) <-- Sum (-, X, y 1, ..., yg)

ml(ml-1) (ml-k+l)
clauses, for each k =1, ..., m1 k (k-1) ... 21

Ikk Sum (k, x, y yg) ý- P (a 11 a, ,y Yg) AAP (a I,... , a, ,yI, ..., Yg) A
Ik

x=al + +al

-, Sum(k+l,
_,

yl,..., yg)A --- A--, Sum(ml,
-,

Yl,..., yg)

where each af, p=l,..., k, is equal to a forsomeq, and q

for q #q', 1: 5q, q':! ýk, there exists an i such that aq; e-a iq

For an occurrence of the aggregate predicate Maximum, the set of clauses added is the following:

1 clause :
Maximum (x, y j,..., yg) (-- Maximum (-, x, y 1, ..., yg)

T: ý. - !%n, 4% L, -1 *"
I L, \/

I(MI-1)

. I -VI &-19--., 116 ,N -IN k (k-1) 21 clauses :

Maximum(k, x, y 1, ..., yg) <- P(a yl,..., yg) A- AP(a al
k,

y1,
..., Yg) A I

--

-146-

I. -1 +1 k
aj >aj A ... Aaj >aj Aaj >aj A ... Aaý >aj A

-, Maximum (k + 1,
_,

y 1, ..., yg)A... A--. Maximum (ml Y 1, ..., Yg)

where each aP, p =1, ..., k, is equal to a I q, for some q, and

for q *q', 1! 5q, q':! ýk, there exists an i such that a, q*a,. q'

The case of an aggregate atom involving the predicate Minimum is similar to the above case for

Maximum. The aggregate predicate Average can be defined as an extension of the predicate
Sum.

9.5. Prolog implementation

Let D be a database and F an aggregate constraint. Lemma 9.5 and theorem 9.1 states that the

simplified first-order equivalent denial form of IF would have to be evaluated in the updated

database E' to preserve consistency, where E' is obtained by applying the transaction to

E (=Exp (D , F), assuming that the existentially quantified variables have already been resolved).

However, in the Prolog implementation, the effect of the resolution in E' of a selected literal

Count (x, y 1, ..., yg) from a goal which is the first-order equivalent of an aggregate literal

Count(P(zl,..., zl, yl,..., yg), n), can be achieved by evaluating the Prolog goal

.2 -setof ([Z 1, . .., Z, 1, p (Z 1, ..., Z1, Y 1, ..., Yg), N) in D'. Hence, one does not need to expand the

underlying database D to E. In Prolog, the aggregate predicate Count (A, N) is represented by

count (p ([Z 1, ..., Z, 1, [Y1, ..., Yg 1), N), and defined as

count(P, N): -

P=.. [-IIZI-Ilf

setof(Z, P, ZL),,

length(ZL, N).

where the procedure length (ZL, N) returns the length of the list ZL into N. To get the correct

intended meaning of an aggregate constraint F, it is necessary to follow a generalised

computation rule, called generalised safe, which selects

I. a first-order negative literal, only when it is ground, and

2. an aggregate positive literal, only when its key fonnula is ground wrt to its free

variables, and

-147-

I an aggregate negative literal, only when it is ground wrt its global variables.

In Prolog's leftmost literal selection strategy, to get the effect of a generalised safe computation

rule an aggregate literal X (resp. negative literal L) can be placed after all the positive literals

containing all the occurrences of global variables of X (resp. variables of L). The other aggregate

predicates can be implemented efficiently using a similar mechanism.

-148-

CHAPTER 10

Handling Transitional Constraints

This chapter deals with transitional (or dynamic) constraints in definite databases. Static

constraints are concerned with a particular state of a database; by contrast, an imposed transitional

constraint relates different states of a database. Integrity can be verified for transitional

constraints in the same way as for static constraints, if the underlying language of the database is

extended with some action relations (or action predicates) to represent transitional constraints.

The expressible class of constraints using this extended language covers static as well as

transitional constraints. Using this concept of action relation, a formalism has been developed by

Nicolas and Yazdanian [80) in the context of relational databases to deal with transitional

constraints.

No formalism or method has been proposed so far for deductive databases to deal with

such constraints. In a deductive database an addition or deletion of a fact may cause a number of

implicit additions or deletions of facts while an update may cause a number of implicit updates as

well as implicit additions and deletions. An update in a deductive database is normally taken as a

deletion followed by an addition for the purposes of integrity checking described so far but this

approach will not be able to detect any implicit updates. Capturing all implicit updates as well as

all implicit additions and deletions (not through updates) due to a transaction in deductive

databases is an important issue for constraint checking in the presence of transitional constraints.

This issue has been resolved in this chapter for the class of definite databases. Unless otherwise

specified, in the rest of this chapter a constraint can either be static or transitional, and the term

'database' will be taken as definite database.

The organisation of this chapter as follows. The initial section defines formally the

facts explicitly and implicitly added to a database due to a transaction. Section 10.2 introduces

the concept of implicit updates with several examples. Section 10.4 gives the idea of different

kinds of action relations. The last two sections present the generalised path finding method and

-149-

its implementation respectively.

10.1. Basic Concepts

Definition : Let D be a database, M be a ground literal and A be a ground atom. Then M is said
to be required to prove A by a rule R: H <-- B in D (and a literal L occurring in B) if there

exists a substitution 0 such that the following conditions hold:

(a) R0 is ground, and

(b) A is H 0, and

(c) B0 is true in D and M is L 0.

The definition can be extended to its transitive closure by expanding the body of each rule in D.

The variables common to both L and H are called contributory variables of L to the nile R.

Consider the following example which clarifies this definition:

Example 10.1

Database D 1:

P (x, y) <-- Q (x, y, z)A -, R (y, z)

Q (a, b, d)

Q (a, c, d)

R (c, d)

In the above example, Q (a, b, d) (and also -, R (b, d)) is required to prove P (a, b) by the first

rule and the literal Q (x, y, z) (resp. -, R (y, z)). The variables x and y are the contributory

variables.

The concept of facts implicitly or explicitly added to or deleted from a database can

fonnally be defined as follows.

Definition : Let D be a database and ta transaction whose application to D produces the updated

database D'.

(a) If an operation of t is an addition of a fact A to D and A is not true in D, then A is

said to be afact explicitly added to D due to the transaction t.

-150-

(b) If an operation of t is a deletion of a fact A from D and A is present in D, then A is

said to be a fact explicitly deleted from D due to the transaction t if A is not true in

D'.

(c) A fact A is said to be implicitly added to D due to the transaction t if the Mowing

conditions hold:

1. A is not provable in D but provable in D', and

2. A is a not explicitly added to D.

(d) A fact A is said to be implicitly deleted from D due to the transaction t if the

following conditions hold:

1. A is provable in D but not provable in D', and

2. A is a not explicitly deleted from D.

(e) The set of all facts which are either explicitly or implicitly added to D are said to be

added to D due to the transaction t and will be denoted as ADDD, D'-

(f) The set of all facts which are either explicitly or implicitly deleted from D are said to

be deleted from D due to the transaction t and will be denoted as DELD, D'-

10.2. Implicit update

Definition : Let D be a database and ta transaction whose application to D produces the

database D'.

(a) A fact A has been updated explicitly by another fact A' in D due to the transaction t if

t contains an operation which is an update of A by A'.

(b) A fact F has been updated positive- implicitly by another fact F in D due to the

transaction t if the fbHowing conditions are met:

1. F is a fact which is added to D and F is a fact deleted from D due to the

transaction, and

. 151-

2. a fact A has been updated either explicitly or implicitly by A', and

3. A (resp. A') is required to prove F (resP. F) by a rule R: H +- B (resp.

R': H' <-- B') in D (resp. D') and a literal L (resp. L') occurring in B (resp. B'),

and

4. F unifies with H(xj, 1aj,,..., xj, 1a, -j, where are the only attribute

positions of A such that the attribute value at each position ii of A and A' are

equal and also each variable xi, is a contributory variable of the literal L to the

rule R.

(c) A fact F has been updated negative- UVlicitly by another fact F in D due to the

transaction t if the fbUowing conditions are met:

1. F is a fact which is added to D and F is a fact deleted from D due to the

transaction, and

2. a fact A' has been updated either explicitly or implicitly by A, and

A (resp. --, A') is required to prove F (resp. F) by a rule R: H +- B (resp.

R': H' +- B') in D (resp. D') and a literal L (resp. L') occurring in B (resp. B'),

and

4. F unifies with H'(xj. 1aj,,..., xj, 1aj, j, where are the only attribute

positions of A' such that the attribute value at each position ij of A' and A are

equal and also each variable xi
j

is a contributory variable of the literal L' to the

rule R.

(d) The set of all positive- implicit or negative-implicit updates due to a transaction is

called the set of implicit updates.

(e) The set of all implicit or explicit updates due to a transaction is called the set of

updates and is denoted by UPDD, D'. Each element of UPDD, D' is a binary tuple of

the form <R (T), R (T')> and is read as 'R (T) has been updated by R (T')'. Each of T

and T' is a string of terms separated from each other by commas, Le an abbreviated

form of the attributes of R.

-152-

The concept of implicit updates can be illustrated by the following series of examples

Example 10.2

Database D 2:

Employee (x, y, z) <-- EmpDept (x, Y) A EmpSal (x, z)

EmpDept (a, 50)

EmpSal (a, 10000)

Transaction:

update EmpSal (a, 10000) by EmpSal (a, 12000)

where 50,10000 are constants. Before the transaction is applied, the fact

Employee (a, 50,10000) is true in D2 but Employee (a, 50,12000) is not. The fact

EmpSal (a, 10000) (resp. EmpSal (a, 12000)) is required to prove Employee (a, 50,10000) (resp.

Employee (a, 50,12000)) in D2 (resp. in the updated D 2) by the only rule of D2 and the binding

of the contributory variable x is [x1a). The value at the attribute position x is a in both

EmpSal(a, 10000) and EmpSal(a, 12000). Since Employee (a, 50,12000) unifies with

Employee (x, y, z)fxla), it can be said that Employee (a, 50,10000) has been updated implicitly

by Employee (a, 50,12000) due to the explicit update of EmpSal(a, 10000) by

EmpSal (a, 12000).

Example 10.3

Database D 3:

P (x, y) ý- Q (x, y)AR (x, y)

P(X I, y I) <-- Q(X I, y I) A S(Y I)
P (X2, Y2) <-- T(X2, Y2) AQ (Z2, X2)

Q (a, b)

R (a, b)

S (C)

T(c, d)

-153-

Transaction:

update Q (a, b) by Q (a, c)

Before the transaction applied to the database, P (a, b) is provable from the database but neither

P (a, c) nor P (c, d). Also, Q (a, b) is required to prove P (a, b) in D3 by the first rule and

Q (a, c) is required to prove P (a, c) in the updated database by the second rule. In the first case,

the binding to the contributory variable x is [x1a 1, and the arguments of the update candidates

Q (a, b) and Q (a, c) matches only at the position of the contributory variable x of the literal

Q(x, y). Since P(a, c) unifies P(x, y)fxla), P(a, b) has been implicitly updated by P(a, c).

Although Q (a, c) is required to prove P (c, d) by the third rule in the updated database, P (a, b)

has not been updated implicitly by P(c, d) as P(c, d) fails to unify with P(x, y)[xla)

(condition (b). 4 in section 10.2).

The above example is a case of positive implicit update. The following example

demonstrates a case of negative implicit update.

Example 10.4

Database D 4:

P (x, y) +- Q (x, y)A-n R (x, y)
Q (a, b)

Q (a, c)
R (a, b)

Transaction:

update R (a, b) by R (a, c)

Before the update is applied to the database, P (a, c) is provable from the database but P (a, b) is

not. In the updated database, P (a ,b) is provable but P (a ,c) is not. In this situation, P (a, c

has been implicitly updated by P (a, b) due to the explicit update of R (a, b) by R (a, c).

In certain circumstances two different explicit updates may cause the same implicit

update. Consider the following example:

Example 10.5

-154-

Database D 5:

P (x, y) (--- Q (x) ^R (y)

Q (a)

R (b)

Transaction:

update Q (a) by Q (a') and

update R (b) by R (b')

Each of the updates in the transaction causes an implicit update of Q (a, b) by Q (a', b). Note

that in each of the updates there is no contributory variable positions which are carrying the same

values before and after the transaction.

The cases when an implicit update of a fact is by itself, have been discarded by

imposing conditions (b). 1 and (c). I in section 10.2. Consider the following example:

Example 10.6

Database D 5:

P (X, Y) <-- Q (X, Y, Z) AR (y, z)

Q (a, b, d)

Q (a, b, e)
Q (a, c, d)

Q (f , g, d)

Q (a, c, e)
R (b, d)

Transaction:

1. update R (b, d) by R (b, e)

2. update R (b, d) by R (g, d)

3. update R (b, d) by R (c, d)

4. update R (b, d) by R (b, e)

The first explicit update does not cause any implicit update as P (a, b) is not deleted from D5

due to the transaction. In the second case the implicit update is P (a, b) by P (f , g) and in each

-155-

of the last two updates, P (a, b) has been implicitly updated by P (a, c).

Definition : Let D be a database and ta transaction whose application to D produces the updated
database D'. Consider the following four sets:

UPD_ADDD, D' ": [R (T) : <R (T), R (T')> (=- UPDD, D')
UPD_DELD, D' R (T) : <R (T), R (T') >e UPDD, D'I
ADDD, D' = ADDD, D' UPD_ADDD, D'
DELý, D' = DELD, D' UPD_DELD, D'

or, in other words

I ADDD, D' = UPD_ADDD, D' u ADDD, D'

DELD, D' = UPD_DELD, D' U DELý, D'

Each element of UPD_ADDD, D' (resp. UPD_DELD act added (resp. deleted) due
, D')is called af

to update. Also, each element of ADDD, D' (resp. DELD, D') is called a fact added (resp. deleted)

II not due to update. The facts in ADDD, D' (resp. DELD, D') are the set of all facts under all

addition (resp. deletion) type action relations defined below, for the current transaction.

10.3. Action relations

The three different types of action relations, addition type, deletion type and update type, are

explained in this section, and examples of constraints with occurrences of one or more of these

types of relations are given.

Definition : Let D be a database and ta transaction whose application to D produces the updated
database D'. Corresponding to each n -ary relation R in D add another three relation names,

ADD_R (n-ary), DEL_R (n-ary) and UPD_R (2n-ary), into the language of the database D. The

relation name ADD_R is called an addition type action relation corresponding to R, DEL_R is

called a deletion type action relation, and UPD_R is called an update type action relation

corresponding to R.

When a transaction t is performed on D to produce the updated database D', for

constraint verification purposes the updated database is assumed to have been extended with the

instances of the action relation given in the three sets UPDD, D', ADD' I
D, D, and DELD, U-

-156-

10.3.1. Addition type

A fact A under an action relation ADD_R is taken as true if A is added to the database not due to
I update, i. e. A is true if it is present in the set ADDD, D'. A transitional constraint of the form

Initially, the loan amount is at least 1000

can be expressed in a first-order formula, using an addition type action relation ADD_Loan

corresponding to the relation Loan, as

Vx Vy (ADD_Loan (x, y) -ý yk 1000)

10.3.2. Deletion type

A fact A under an action relation DEL_R is taken as true if A is deleted from the database not
I due to update, i. e. A is true if it is present in the set DELD, D'- Consider the transitional constraint

Lay-off of employees whose annual salary is less than 10000 is not permitted

Using deletion type action relation DEL-Employee corresponding to the relation Employee it can

be represented as

Vx Vy Vz (DEL__Employee (x, y, z) --> z ýt10000)

10.3.3. Update type

A fact UPD_R (T, T') under an action relation UPD_R is taken as true if R (T) is updated by

R (T'), i. e. UPD_R (T, T') is true if <R (T), R (T')> is present in the set UPDD, D'. For example,

the transitional constraint

On updating, the salary of an employee should always increase

can be expressed, using an update type action relation UPD_., Employee corresponding to the

relation Employee, as a first-order formula

Vx Vy Vy'Vz,; ýz'(UPD__., Emp loyee (x, y, z, x, y', z') ^z #z' ----) z'> z)

-157-

If the above constraint is imposed on database D2 of example 10.2, the integrity of the database

will not be violated due to the transaction as the salary of the employee increases from 10000 to

12000 due the update. A transitional constraint which uses an update type action relation
UPD_R is the variation of some arguments (say V) while others (say 1) may stay invariant. If

any other arguments of R other than those in V and I are left then they are irrelevant to the

constraints. Based on the stated fact one can have the following relations: I(zX, Vc: X, InV=ý,

1 #0, V *0, where X is the set of all arguments of R. In the relation Employee (x, y, z) of the

above example transitional constraint, the sets I and V are respectively [x I and (z 1.

10.3.4. Mixed type

There are transitional constraints which combine different action relations or impose a

relationship between different actions. For example, the constraint

A change in grade must be accompanied by a change in income

is a relationship between two action relations UPD_Income and UPD_Grade corresponding to

the relations Income and Grade respectively. This constraint can be represented in the extended

language as

Vx Vy 'Vy'Vz 'Vz'(UPD_Grade (x, z, x, Z') AZ *Z' --* UPD_Income (x, y, x, y')Ay #y')

10.4. The generalised path finding method

Let D be a database, Ia set of constraints and ta transaction whose application to D produces

the updated database D'. The generalised path finding method for checking integrity in the

updated database D' in the presence of I is now divided into the Mowing two steps:

(a) Apply the path finding method by taking the set of all constraints of I without any

occurrences of action relations. If the integrity is violated then stop; otherwise

contmue.

(b) Compute the three sets UPDD, D', ADDD, D, and DELD, D'. The rest of the constraints

(with occurrences of at least one action relation of any type) are instantiated

appropriately with these three sets and then evaluated in the updated database.

-158-

10.5. Implementation

The calculation of the set ADDD, D' involves the calculation of a subset of the set of all facts

added to the database D due to the transaction, and the calculation of the set DELý, D' involves

the calculation of a subset of the set of all facts deleted from the database D due to the

transaction. By the time that step 2 of the algorithm is executed, the complete path space will

have been generated from the update literals through the path finding method in step 1. Let PS

be the set of all paths in such a case, and each of which has been collected during the application

of the path finding method.

The set UPDD, D' can be computed, efficiently and without reasoning much with the

original and updated databases, by using the literals on the paths of PS. Starting from explicit

updates and travelling along different paths, pairs of literals representing possible implicit updates

along with the rules used in the paths are computed. The irrelevant pairs can be discarded by

querying the instantiated bodies of the rules used in the paths. This can be explained in short by

considering the following simplified situation. Suppose that a fact A has been updated explicitly

by A' and the next literal along a path with source A' is another fact M. A possible member of

UPDD, D' is UPD_R (T, T'), where A' is required to prove R (T') and R (T') satisfies other

conditions. Hence, R (T) can be obtained from the original database by evaluating some

instantiated bodies of rules whose heads are under the predicate R. Once all partially instantiated

pairs of literals representing the set UPDD, D, are computed, the relevant pairs of ground atoms

can be obtained by querying in both D and D'. The two sets UPD_ADDD, D, and

UPD_DELD, D' can be computed using the set UPDD, D'-

The set of all facts added to the database due to the transaction and relevant to the

constraints can be obtained simply by collecting every positive literal occurring in every path of

PS, and unifying it with an addition type action relation which occurs in a constraint but not in

UPD-ADDD, D'-

The effect of the set of all facts deleted from the database due to the transaction and

relevant to the constraints can be obtained by collecting every negative literal occurring in every

path of PS, and unifying it with a deletion type action relation occurring in a constraint.

Before evaluating a constraint with an occurrence of at least one action relation, each

of its action relations is unified appropriately and simultaneously by considering all facts of the

three sets UPDD, D', ADDD, D, and DELD, D' which are true in the updated database. In the

-159-

instantiated constraint, an occurrence of a positive (resp. negative) literal under an action relation

is replaced by true (resp. false). The transformed constraint is evaluated in the updated database

D'.

. 160-

CHAPTER II

Integrity Constraint Manipulation Language

The function of SQL is to support the definition, manipulation and control of data in relational

databases. Imposing integrity constraints on a database is one of the ways of controlling data of

the database. Not all types of constraints, discussed in this thesis, can be specified by the data

manipulation language of standard SQL [21]. Extension is required to increase the capability of

SQL in expressing such constraints. This chapter proposes an extension of the data manipulation

language for integrity constraints in SQL.

The organisation of this chapter is as foRows. The Mowing section describes the

BNF-syntax for specifying constraints in standard SQL. Section 11.2 describes the extended

BNF-syntax summary. Section 11.3 presents an outline of the algorithm for converting

constraints, expressed in the extended SQL-syntax, to logical formulae (either first-order or closed

general). Different types of constraints are considered in the last section and their corresponding

representation in extended SQL-syntax and in logical fon-nulae are presented.

11.1. Constraints in SQL

Certain integrity constraints can be specified in standard SQL at the time of relation creation with

the help of the CREATE TABLE command which has the following syntax:

CREATE TABLE <base-table> (<base -table-element-comm alist>)

<base - table-el em ent> :: = <column-def> I <table-constraint-def>

<column-def> ". =

<column> <data-type>

[DEFAULT <literal> I USER I NULL I

-161-

[<column-constraint-def-list>]

<column-constraint-def> :: =
NOT NULL [UNIQUE I PRIMARY KEY]

I CHECK (<search-condition>)

I REFERENCES <base-table> [(<column-commalist>)]

<table- constraint- def> :: =
(UNIQUE I PRIMARY KEY I (<column-commalist>)

I CHECK (<search-condition>)

I FOREIGN KEY (<column-commalist>) REFERENCES <base-table> [(<column-commalist>)]

The undefined terms, e. g., <base-table>, <column>, have been elaborated in appendix 3.

Not all constraints discussed in this thesis can be expressed with the above syntax of
SQL. Only null, check, unique, primary key, foreign key and reference constraints can be

expressed with the above defined syntax. Extensions of SQL are required to express aggregate

constraints, transitional constraints and more general forms of static constraints.

11.2. An SQL Grammar for Integrity Constraint Manipulation

An integrity constraint is inserted into and deleted from into a system using the following syntax:

<constramt-exp> :: =
IMPOSE CONSTRAINT <constraint-id> AS <constraint-spec>

I RELEASE CONSTRAINT <constraint-id>

A constraint can be specified as an equality or containment relationship between the results of two

queries [104] (pp. 349-355). Since a query in SQL represents a table (i. e. a set) of tuples, a

constraint has been expressed by a set inclusion relationship between the results of two SQL

quenes.

<constraint- spec> :: =

<query-exp> IS IN <query-exp>

I <query-exp> IS EMPTY

-162-

See appendix 3 for the syntax of <query-exp>. Intuitively, in the above constraint specification,

the second alternative covers the constraints which are already in denial form. For the sake of

users convenience, the first alternative has been specified to cover constraints which are more

general forms than denials. Such a constraint can always be converted to its equivalent denial

form by using transformations in section 4.1.4.

The above syntax of constraint specification can express static, transitional and

aggregate constraints. The effect of the actions relations for representing transitional constraints,
discussed in chapter 10, has been obtained by appending ON INSERTION, ON UPDATE etc.

after the name of relevant relations. The effect of the second order predicates Average, Sum,

Count, Maximum and Minimum, discussed in chapter 9, has been obtained respectively by using

the functions AVG, SUM, COUNT, MAX and NUN of SQL.

11.3. Translating constraints to logical formulae

The translation of a constraint, expressed in the language described in the previous section, to its

equivalent closed first-order (or closed general) logical formula can be performed mechanically.

Guidelines for developing an algorithm to achieve this are given below:

(a) If <constraint-spec> has the form <query-exp> IS IN <query-exp>, then it is translated

to Condition -ý Conclusion; otherwise, if <constraint-spec> has the form <query-

exp> IS EMPTY, then it is translated to Condition --ý, where Condition and

Conclusion are either closed first-order or closed general formulae. The symbol '-4'

denotes logical implication. The variables corresponding to the selected columns are

common to both Condition and Conclusion, and they are assumed to be universally

quantified in front of the whole formula Condition -+ Conclusion. Free variables in

Condition (resp. Conclusion) occurring in first-order literals are assumed to be

existentially quantified in front of Condition (resp. Conclusion).

(b) Simple queries of the form

SELECT <selection>

FROM <table-ref-commalist>

WHERE <search-condition>

. 163-

can be translated directly to a conjunction of atoms (general atoms, in the case when

one or more of the functions COUNT, SUM, AVG, MAX, MIN have been used in

<selection>). New variables should be introduced if arithmetic expressions have been

used in <selection>.

The variables other than those which are common between a query and a subquery

occurring within a query through <in-predicate> or <existence-test> are quantified

existentially in front of the subquery. The whole logical formula corresponding to a

subquery is negated in the case of a negative subquery.

(d) A new view is created in the database corresponding to each occurrence of a <group-
by-clause>, where the column references in the view correspond to the column

references occurring after GROUP BY in the <group-by-clause>. The predicate

corresponding to the newly created view is placed along with the aggregate predicate
in the logical formula form of the constraint. In examples 6-8, the view Department

has been created because of the occurrence of GROUP BY EM[P_DEPT in the query.

(e) In the case of a transitional constraint, the occurrence of the from R ON INSERT

(resp. R ON DELETE, R ON UPDATE) in a <from-clause> will correspond to the

action relation Ins-R (resp. Del-R, Upd_ýR) occurring in the translated constraint

(example 10-14). For a column reference X, OLD X and NEW X are two distinct

variables.

A closed general fonnula obtained by translating a constraint with the help of the

above algorithm falls within the category of closed general formulae that have been handled both

by the extended path finding method and the extended simplification method.

11.4. Examples

Examples of static non- aggregate(example 11.1), static aggregate (example 11.2) and transitional

(example 11.3) constraints are considered in this section. Further examples of each of the above

types can be found in appendix 4. The representation of each constraint in both SQL and closed

first-order (closed general, in the case of aggregate constraints) formulae have been considered.

Example 11.1:

-164-

Type: Static & Range

Constraint:

An employee's salary must be less than 10000

Closed formula:

Vx Vy Vz (Employee (x, y, z) --> z< 10000)

SQL Syntax:

IMPOSE CONSTRAINT SR AS

SELECT*

FROM EMPLOYEE

WHERE ENW-SAL >= 10000

IS EMPTY

Example 11.2:

Type: Aggregate on average

Constraint:

Average salary of any department must be less than 10000

Closed general formula:

Vx Vy (Department (x) AAverage (v , 3u 3v Employee (u, x, v), y) -4 y< 10000)

-165-

SQL Syntax:

IMPOSE CONSTRAINT AA AS

SELECT

FROM

GROUP

HAVING

IS EMPTY

DISTINCT EMP-DEPT

ENWLOYEE

BY EMP-DEFr

AVG(EM[P_SAL) >= 10000

Example 11.3:

Type: Transition on insertion

Constraint:

Initially, the loan amount is at least 1000

Closed formula:

Vx Vy (Ins-Loan (x, y) -ý y'21 000)

SQL Syntax:

IMPOSE CONSTRAINT TI AS

SELECT EMP-ID

FROM LOAN ON INSERT

WHERE LOAN-AMOUNT < 1000

IS EMPTY

-166-

CHAPTER 12

Conclusion

This concluding chapter summarises the concepts and results described in the previous chapters.

Deficiencies of some of the results and their possible improvements are also discussed in this

chapter. Different directions are considered for continuing research in this field.

Both model and proof theoretic views of relational databases have been presented.

Proof-theoretic views of definite databases have also been presented. A proof-theoretic view of

indefinite databases remains to be studied.

Definitions of constraints and different views of constraint satisfiability have been

given. A detailed classification of constraints has been proposed and examples have been

provided for each of these classes. A detailed classification of constraints gives a better

opportunity to study their behaviour within databases.

A method, called the path finding method, has been proposed for checking integrity in

definite databases. The path finding method reasons forward from an update until it reaches the

head of a constraint. The method derives in stages a set of fully instantiated atoms to be added to

the database and a set of partially instantiated atoms likely to be deleted from the database. The

approach is identical to that of Decker when there is no implicit deletion in the database. When

an implicit deletion occurs in a stage, instead of deriving a set of atoms deleted from the database,

the method follows a similar approach to that of Lloyd et al. and computes a set of partially

instantiated atoms likely to be deleted from the database. The main reason for this is to avoid

reasoning with two database states, i. e. before and after update. This contrasts with Decker's

approach which reasons with two database states corresponding to times before and after update

to exclude all induced facts which were provable in the database before update.

A comparative evaluation has been performed of several methods proposed for

checking integrity in definite databases. To summarise the performance of the path finding

-167-

method against the methods of Lloyd et al. and Decker, the following four different cases have to
be considered.

None of the constraints is simplified by an atom of Pos, where Pos is the set of

partially instantiated atoms computed by the method of Lloyd et al. which represents
the set of facts added to the database due to a transaction.

2. Some constraints can be simplified by the atoms of Pos but no instance of any one of
the atoms of Pos is true in the updated database.

3. None of the constraints is simplified by an atom of Neg, where Neg is the set of

partially instantiated atoms computed by the method of Lloyd et al. which represents

the set of facts deleted from the database due to a transaction.

4. Some constraints can be simplified by the atoms of Neg but no instance of the

complement of any one of the atoms of Neg is true in the updated database.

In the first case, the method of Lloyd et al. will have an advantage over both Decker's

method and the path finding method as the latter methods will redundantly construct the set of

facts which are implicitly added to the database. In the second case, the method of Lloyd et al.

may suffer from a redundant constraint evaluation and the performance of both Decker's method

and the path finding method will depend on the number of implicitly added facts. In the third

case, both the method of Lloyd et al. and the path finding method will have an advantage over

Decker's method as the latter will redundantly construct the set of facts which are implicitly

deleted from the database. In the last case, both the method of Lloyd et al. and the path finding

method may suffer from a redundant constraint evaluation and the performance of Decker's

method in this case will depend on the computation of the number of implicitly deleted facts,

performing more efficiently than the former two if the number of implicitly deleted facts is small,

but less efficiently than the other two if it is not.

in the path finding method finding a path from an update literal to the head of a

constraint is similar to the problem of finding a refutation with an update literal as a top clause in

Kowalski's method. In the latter method finding a refutation means arriving at an empty head of

the denial form of a constraint from an update literal. In the path finding method constructing a

success path means reaching the head of a constraint from an update literal. The difference lies in

the way in which this is achieved - in the method put forward by Kowalski et al. the computation

of positive induced updates can be deferred by a proper literal selection strategy but the

-168-

computation of negative induced updates is essential, in the path finding method the computation

of positive induced updates is essential and the computation of negative induced updates is

deferred. Also, the literal selection strategy in Kowalski et al. 's method can play an important

role in the efficiency of the method. Earlier selection of a literal whose instances are not true in

the database may reduce the computation time. The method of Kowalski et al. models the literal

selection strategy as well as the inference mechanism for forward reasoning. This may result in a
loss of efficiency. On the other hand the path finding method relies mainly on the backward

reasoning mechanism built into Prolog.

A new rule, referred to as negation as possible failure, has been introduced for

inferring negative information from indefinite databases. To define the declarative semantics of

negation as possible failure, an indefinite database has been transformed to a set of possible forms

and the semantics is given in terms of the completion of each of these possible forms. The

procedural semantics is based on two mutually recursive resolution schemes, the definite

resolution scheme and the possible resolution scheme. The way in which the negation as possible
failure rule infers negative facts demonstrates its conciseness, efficiency, consistency and
inclusiveness [90]. Let R denote the above rule for inferring negative facts from the database and
R (D) be the set of negative facts that can be inferred from D by the application of R. Then R is

(a) Concise, i. e. the set of facts R (D) is relatively large compared to D. In a typical

database the number of facts which are true is much less than the whole Herband base

associated with the database. In the case of the database D3 in chapter 7, there are 15

facts in the Herband base and the number of facts in Def-true(D), Def galse(D)and j

Unknown (D) are respectively 3,5 and 7.

(b) Efficient, i. e. the decision procedure of R (D) should be relatively efficient. It has been

shown in the implementation of the procedural semantics of R in section 5 that the

truth value of a ground fact can be detennined efficiently.

(c) Consistent, i. e. D uR (D) should be consistent. This follows from the fact that a

ground atom is taken as false if it is not true in any of the possible forms of D.

(d) Inclusive, i. e. R should interpret disjunction inclusively rather than exclusively. This

is true because to obtain all possible forms of a database it is necessary to consider all

possible combinations of possible forms of each of its indefinite clauses. For

example, the possible forms of the database (P, PvQI are [P) and [P, Q). Hence

-169-

there is a world of the database where both P and Q are true.

The null value [48,61,62,86,1081 problem can also be solved by the introduced

semantics as follows. A null value can be regarded as a Skolem constant [35] representing a

missing data item. For example, the fact P(o)) in a database D, where (o is a null value, can be

represented by a formula of the forTn 3xP (x). If the domain of the database D consists only of
[a,, ..., a, 1, then the fact P(o)) can be represented by the fon-nula P (a I)v ... vP(a,,). Thus a

null value can be treated as an indefinite fact.

It has been shown that a query evaluation system for indefinite databases based on the

introduced semantics can be implemented efficiently in Prolog using the definite resolution

scheme. An extension of this implementation is required to represent nuH values and to process

queries relating null values.

The path finding method has been generalised to check integrity in indefinite

databases. The generalisation is based on a new definition of constraint satisfiability which, in

turn, is based on the concept of negation as possible failure. This definition of constraint

satisfiability in indefinite databases is a direct generalisation of the theoremhood view of

constraint satisfiability in definite databases.

Analogous to the generalised theoremhood view, a generalised consistency view of

constraint satisfiability in the case of indefinite databases can also be defined as follows. A

database D is said to satisfy a set of constraints I if the set of constraints I together with the

completion of the union of all possible form of D is consistent.

The definition of constraint satisfiability in indefinite databases which has been

introduced here may seem restricted in the sense that each constraint has to be a theorem of the

completion of each of the possible forms of the database. An alternative view, which is more

relaxed, can be defined as follows. A set of constraints I is said to be satisfied by a database D, if

there exists at least one possible form Di of D such that each constraint in I is a theorem of

comp (D,). However, this view has a drawback. Following this view, one can no longer use the

imposed constraints for deriving new facts. The following example will demonstrate this

problem.

Consider a database D which contains a single indefinite fact

Undergraduate (Choux) v MSc (Choux) and an imposed constraint on D in denial form is

<-- MSc (Choux). The constraint states that Choux cannot be an MSc student. FoHowing the

-170-

alternative relaxed view, the constraint does not violate D as the constraint is satisfied by a

possible form of D, i. e. (Undergraduate (Choux)). By using the constraint, the definite fact

Undergraduate (Choux) can be derived from the database; which means that fact

Undergraduate (Choux) is no longer indefinite, as it is in D.

Closed general formulae have been used to express aggregate constraints, i. e.

constraints involving operations like count, average, maximum etc. The path finding method has

been generalised to check integrity in databases in the presence of aggregate constraints. The

proposed class of closed general formulae can express constraints which are not conveniently

expressible by closed first-order fon-nulae.

In the presence of transitional constraints in a database, the underlying language of the

database has been extended with some action relations. Integrity checking in definite databases in

the presence of transitional constraints is handled in the same way as in the presence of static

constraints. The path finding method has been extended to compute facts which are in the action

relations and evaluate constraints with occurrences of action relations. Transitional constraints

have been defined by relating only two states of a database. Generalisation is required to deal

with constraints relating more than two states.

The class of databases and constraints handled by the path finding method and its

different possible generalisations; are shown in table 12.1. The generalisations; 1,4 and 5 have

been carried out respectively in chapters 8,9 and 10. Regarding generalisation 2, an appropriate

extension seems possible to maintain integrity in an environment, where both the database is

indefinite and the imposed constraints are beyond first-order, by composing the two

generalisations of the path finding method proposed in chapters 8 and 9 respectively. The

generalised path finding method for handling aggregate constraints and the extended path finding

method for handling transitional constraints can be combined together (i. e. generalisation 6) as

the actions relations are like any other first-order relations in a database. Hence the generalised

path finding method proposed for handling aggregate constraints will also be able to handle

transitional constraints if an extra step is added to the generalised method for computing facts

which are in the action relations and also for evaluating constraints with occurrences of action

relations. To generalise the path finding method in indefinite databases and in the presence of

transitional as well as aggregate constraints (i. e. generalisations 3 and 7), it is necessary to

generalise the definition of implicit update in the context of indefinite databases.

-171-

M h d
Databases Constraints

et o
Definite Indefinite Static Aggregate Transitional

Path finding yes no yes no no
Generalisation I yes yes yes no no
Generalisation 2 yes yes yes yes no
Generalisation 3 yes yes yes no yes
Generalisation 4 yes no yes yes no
Generalisation 5 yes no yes no yes
Generalisation 6 yes no yes yes yes
Generalisation 7 yes yes yes yes yes

Table 12.1. The class of databases and constraints handled by

the path finding method and its different possible generalisations

A typical implementation of a constraint verification program in a database system

exploits the query evaluation system of the database. The constraint verification program takes

the form of a meta- interpreter which calculates implicitly added or deleted facts, simplifies the

constraints etc. In chapters dealing with constraints in definite databases implemented in the

Prolog system, different Prolog meta-interpreters have been developed to serve the purpose of

constraint verification programs. In chapter 8, meta-interpreter (extended nH-Prolog) has been

developed for evaluating queries in indefinite databases and constraint verification program work

on this meta-interpreter. In a database system, implemented in a conventional type of machine,

each constraint is instantiated and evaluated, in turn. Here this has been done with the help of the

backtracking mechanism, built into a Prolog system. When a set of constraints is imposed on a

database system, their properties are independent from each other and hence, the evaluation of an

instantiated set of constraints can be made simultaneously. In such cases the efficiency would be

considerably bigber.

In a parallel machine containing a number of processing elements, this concept of

simultaneous evaluation of constraints can be described by considering the following example of

hierarchical definite database (rules only) and a set of static constraints imposed on it.

-172-

Example 12.1

Database niles:

S (x) (-- P (x) AQ (x)

P (x) e-- R (x)

u (x, y) (-- v (x, y) w (x)

Constraints in denial form:

IC (1) (-- S (x) ^R (x)

IC (2) (- U (x, y) A -i

A network, given in figure 12.1, has to be established with the help of the rules and

constraints. The network has a source node (the node in the bottom layer), a sink node (the node

in the top layer), seven predicate nodes (nodes in the last but bottom layer), two constraint nodes

(nodes in the next to top layer) and three rule nodes(the nodes in the third and the fourth layers).

There are as many predicate (resp. constraint and rule) nodes as the number of relations (resp.

constraints and rules) in the database. The source node distributes the set of facts, either

(implicitly or explicitly) added to and deleted from the database due to the transaction, to the

appropriate predicate nodes. The predicate node supplies a literal (positive, if it is an added fact,

and negative, if it is a deleted fact) to the appropriate rule or constraint nodes. For example, the

set of all added facts under the predicate V is sent to the rule node representing the rule

U(x, y) <-- V(x, y)A-, W(x), as this may implicitly add some facts under the predicate U and

they, in turn, may violate constraints with the help of the constraint identified by 2. The set of all

deleted facts under the predicate V is not sent to the same rule node, although they may delete

implicitly some facts under the predicate U and eventually will not cause any constraint

violation. The constraint violation is reported when the control of execution reaches the sink

node.

In the actual implementation each node of the network would be considered as a

processing element. Each rule (resp. constraint) node would be capable of evaluating an

instantiated body of a rule (resp. constraint). The produced literals (ground, in the case of implicit

additions) are streamed to the appropriate processing elements.

The penultimate chapter proposes an extension of SQL to increase its constraint

expression capabilitY. Some guidelines have been given to develop an algorithm for translating

-173-

SINK

++

pRSUw

SOURCE

Figure 12.1. The network for constraint evaluation in the case of example 12.1.

-174-

IC (1) (-- S (x) ^R (x) IC (2) 4- U (x, y) ^ -, S (y)

1

constraints expressed in the extended SQL to their equivalent logical formulae. Irrespective of

the type of database and its query evaluator, the constraints expressed in the intermediate logical

formulae form will ease the simplification process of constraints and some optimisations.

A substantial theory of integrity constraints has been summarised and developed in

this thesis. Some interesting unsolved problems are listed below for continuing research in this

field.

(a) A comparative evaluation of the two views (i. e., whether the set of constraints is

satisfied in at least one possible form of the database or in every possible fonn) of

constraint satisfiability in indefinite databases.

(b) A syntax for a more general class of formulae to express constraints like

the maximum of the average salary of the departments must be between 10000 and 15000

no more than two tests may have an average mark of less than 50

For example, one possible representation of the above constraints in a further general

class of formulae might be

Vu (Maximum (t, 3t 3y (Department (y)A

Average (z, 3x 3z Employee (x, y, z), t)), u) -+ u ý: 10000 /ý u: M000)

Vx Vu Vv (Student (x)A Count (3y (ExamType (Y) A

Average (t, 3t ExamMarks (x, y, z, t), u), u <50), v) -ý v:! ý2)

The path finding method should also be generalised accordingly.

(c) An efficient method for computing the three sets UPDD, D', ADD' I
D, D, and DELD, D'

mentioned in section 10.4.

(d) A formal algorithm for translating constraints, expressed in the language described in

section 11.2, to their equivalent closed first-order (or closed general) logical fonnulae.

(e) A generalisation of the path finding method in indefinite databases and in the presence

of transitional as well as aggregate constraints.

(f) The soundness and completeness result of the negation as possible faflure rule with

respect to the declarative semantics given in section 7.3.

-175-

APPENDIX I

Relation Schemas

The appendix describes the detail of all the relation variables used throughout the thesis. For each

unary relation of the form P(x) will mean, 'x has the property P', e. g., Student(x) means 'x is a

student'. Other relations are as follows:

Age(Person, Age)

Ancestor(Ancestor, Descendent)

Award(Student, Paper Awarded On

Budget(Department, Budget Amount)

CivilStatus(Person, Age, Sex, Occupation

Dependent(Dependent, Provider)

EmpDept(Employee, Department)

EmpSal(Employee, Salary)

Employee(Employee, Department, Salary)

ExamMarks(Student, Exam Type, Paper, Marks)

Father(Father, Child)

Grade(Employee, Grade)

Guardian(Guardian, Subordinate)

Husband(Husband, Wife)

Incorne(Employee, Income)

Loan(Employee, Amount)

Manager(Manager, Subordinate

Marks(Student, Paper, Marks Obtained

Married(Spouse, Spouse

Mother(Mother, Child)

Occupation(Person, Occupation)

Parent(Parent, Child

Sex(Person, Sex)

Sponsor(Sponsorer, Beneficiary

Tax(Tax Payer, Tax Paid For)

Wife(Wife, Husband)

-176-

APPENDIX 2

Example Database

The following is a summary of the contents of the three states of the database, integrity

constraints and transaction used in example 6.5.

Database D5:

Rules :

Age (x, y) +- CivilStatus (x, y, p, q)

Sex (x, y) +- CivilStatus (x, p, y, q)

Occupation (x, y) <-- CivilStatus (x, p, q, y)

Mother (x, y *- Father (z Y)AHusband (z , x)

Parent (x, y <-- Father (x, y)

Parent (x, y ý- Mother (x ,y)
Dependent (x, Y) <-- Parent (y, x) /,, Occupation (y, Service) A Occupation (x, Student)

Facts :

The following facts not involving 1,2,3 in the first attribute domain of CivilStatus :

600 (1800 in state2,3020 in state3) facts under the predicate Civilstatus,

169 (518 in state2,860 in state3) facts under the predicate Father,

220 (669 in state2,1120 in state3) facts under the predicate Husband,

21 (75 in state2,119 in state3) facts under the predicate Tax.

Integrity Constraints :

CiVilStatUS (X, Y 1, Z 1, t 1) ACivilStatus(x, Y2, Z2, t2) ---)Yl7-y2 A Zl--, ZZ2 A tl",: t2

Father (x 1, y)A Father (X 2, Y) -ý XI --'zX 2

-1 T7-

Husband (x, y I)AHusband (x, y 2) -4 Y ff-Y 2

Husband (x 1, y)AHusband (X 29 Y) -ý X I=X 2
CivilStatus (X, Y, Z, t) -4X>O A X<100000 A Y>O A Y< 125A ZE (MaleFemale) A

t (-= [Student, Retired, Business, Service I

CivilStatus (x, y, z, Student) -4 y <25

CivilStatus (x, y, z, Retired) -4 y >60

Father (x, y) ---> Sex (x, Male)A Sex (y, Male)

Husband (x, y) --> Sex (x, Male) A Sex (y, Female)

Husband (x, y) A Age (x, p) A Age (y, q) -* p'a20 /ý q ý! 20

CivilStatus (x, y, z, t) AY <20 -+ t =Student

Dependent (x, y) --> Tax (y, x)

Transaction :

insertfact CivilStatus (1,50, Male, Service),

insertfact CivilStatus (2,45, Female, Business),

insertfact CivilStatus (3,19, Male, Student),

insertfact Husband (1,2),

insertfact Father (1,3),

insertfact Tax (1,3).

where Male, Female, Student, Retired, Business, Service are constants.

-178-

APPENDIX 3

BNF Syntax

<query-exp> :. =

<query-teml>

I <query-exp> UNION [ALL I <query-ten-n>

<query-tenn>:: =

<query-spec>

I(<query-exp>)

<query-spec> --. =
SELECT [ALL I DISTINCT] <selection> <table-exp>

<selection> :: =

<scalar-exp-commalist> I*

<table-exp> :: =

<from-clause>

<where-clause>

<group-by-clause>

<having-clause> I

<from-clause> -. *=
FROM <table- ref-com m al ist>

<scalar-exp-commalist> :: =

<scalar-exp> [, <Scalar-exp-commalist>]

-179-

<table- ref-commalist> :: =

<table-ref> [, <table-ref-commalist>]

<table-ref>: -=

<table> [<range-variable>][ON INSERT I ON DELETE I ON UPDATE <column-ref> I

<where-clause>:: =
WHERE <search-condition>

<group-by-clause> :: =
GROUP BY <column- ref-commalist>

<column-ref-commalist> :: =

<column-reb [, <column-ref-commalist>]

<having-clause> :: =
HAVING <search-condition>

<search-condition> :: =

<boolean-tenn>

I <search-condition> OR <boolean-tenn>

<boolean-term> :: =

<boole an- factor>

I <boolean-tenn> AND <boolean-factor>

<boolean- factor> :: =

[NOT] <boolean-primary>

<boolean-primary>:: =

<predicate>

I(<search-condition>)

<predicate> : *. =

-180-

<comparison-predicate>

I <between-predicate>

I <like -predicate>
I <test-f6r-nuU>

I <in-predicate>

I <all-or-any-predicate>

I <existence-test>

<comparison-predicate> --. =

<scalar-exp> <comparison> (<scalar-exp> I <subquery> I

<compaii son> :: =

=I<>I<, >I<=I>=

<between-predicate> :: =

<scalar-exp> [NOT] BETWEEN <scalar-exp> AND <scalar-exp>

<like-predicate> :: =

<column-ref> [NOT I LIKE <atom> [ESCAPE <atom>]

<test-for-nuH> :: =
<column-ref> IS [NOT] NULL

<in-predicate> :: =

<scalar-exp [NOT I IN (<subquery> I <atom> [, <atom-commalist>]I

<atom -comm ali st> :: =

<atom> [, <atom-commalist> I

<aH-or-any-predicate> :: =

<scalar-exp> <comparison> [ALL I ANY I SOME I <subquery>

<existence-test> :: =
EXISTS <subquery>

-181-

<subquery> :: =
(SELECT [ALL I DISTINCT] <selection> <table-exp>)

<scalar-exp> :: = <terTn> I <scalar-exp> f+I-) <term>

<term> :: = <factor> I <term> (*I/I <factor>

<factor> :: = [+I-] <primary>

<pnmary> :: = <atom> I <column-ref> I <function-ref> I <scalar-exp>

<atom> :: = <parameter-ref> I <hteral> I USER

<parameter-ref>:: = <parameter> [[INDICATOR] <parameter>]

<function-reb :: = COUNT(*) I <distinct- function- reb I <aU- function- reb

<distinct- function- ref> :: = (AVG I MAX I MIN I SUM I COUNT I (DISTINCT <column-ref>)

<aH-function-ref>:: = f AVG I MAX I NUN I SUM I COUNT I([ALL I <scalar-exp>)

<table> :: = <base-table> I <view>

<base-table> :: = [<user> .] <identifier>

<view> :: = (<user> -I <identifier>

<user> :: = <authorization-identifier, >

<column-ref>:: = [OLD I NEW][<column-qualifier>.] <colwnn>

<column-qualifier> :: = <table> I <range-vari able>

-182-

APPENDIX 4

Examples of Integrity Constraints

Example 11.4:

Type: Static & Domain

Constraint:

Name of a department belongs to the domain (Fin, 4&nin, Comp)

Closed formula:

Vx Vy Vz (Employee (x, y, z) ---> y ='Fin' vy =Admin' vy ='Comp')

SQL Syntax:

U"POSE CONSTRAINT SD AS

SELECT *

FROM EMPLOYEE

WHERE EMP-DEPT NOT IN ('Fin', 'Admin', 'Comp')

) IS EMPTY

Example 11.5:

Type: Static & Existential or Inter-relational or Referential

Constraint:

Every worker has a manager

-183-

Closed formula:

Vx (Worker (x, y) -ý 3z Manager (z, x))

SQL Syntax:

IMPOSE CONSTRAINT SE AS

SELECT

FROM

IS IN

WORKER-ID

WORKER

SELECT

FROM

)

Example 11.6:

WORKER-ID

MANAGER

Type: Static & Functional dependency or Check

Constraint:

A child cannot have more than one father

Closed formula:

Vx Vy (Father (x, Z)AFather (y, z) ---> x =y)

SQL Syntax:

IMPOSE CONSTRALNT SF AS

SELECT Fl. FATHER-ID, F2. FATHER-ID

FROM FATHER F 1, FATHER F2

WHERE Fl. CHILD-ID = F2. CHILD-ID

AND NOT Fl. FATHER-ID = F2. FATHER-ID

IS EMPTY

-184-

Example 11.7:

Type: Static & Check

Constraint:

If one of the parents of an unemployed person is employed then the person must be

dependent on that parent

Closed formula:

Vx Vy (Parent (x, y) AEmployed (x) /\ --, Employed (y) --ý Dependent (y, x))

SQL Syntax:

Il"POSE CONSTRAINT SC AS

SELECT P. CHILD-ID, P. PARENT-ID

FROM PARENT P, EMPLOYED E

WHERE P. PARENT-ID = E. EMP-ID

AND P. CHILD-ID NOT IN

SELECT EMP-ID

FROM EMPLOYED

)
IS IN

SELECT

FROM

Example 11.8:

Type: Aggregate on sum

Constraint:

DEPN-ID, PROV-ID

DEPENDENT

Total salary of all the employees in a department must be less than the budget of the

department

-185-

Closed general formula:

Vx Vy (Department (x) ABudget (x, y)ASum (v, 3u 3v Employee (u, x, v), z) -ý z <y)

SQL Syntax:

IMPOSE CONSTRAINT ASU AS

SELECT

FROM

WHERE

GROUP

HAVING

IS EMPTY

Example 11.9:

Type: Aggregate on count

Constraint:

EMIP-DEPT, EMP-SAL, BUD-AMOUNT

EMPLOYEE, BUDGET

EMP-DEPT = BUD-DEPT

BY BUD-DEPT

SUM(EMP_SAL) >= BUD-AMOUNT

Maximum number of employees in a department is 100

Closed general fonnula:

Vx (Department (v) ACount (3u 3w Employee (u, v, w), x) --ý x< 100)

SQL Syntax:

USAPOSE CONSTRAINT AC AS

SELECT DISTINCT EMP-DEPT

FROM EMPLOYEE

GROUP BY EMP-DEPT

HAVING COUNT(EMP-ID) > 100

IS EMPTY

-186-

Example 11.10:

Type: Transition on deletion

Constraint:

Lay-off of employees whose income is less than 10000 will not be permitted

Closed formula:

Vx Vy Vz (Del-Employee (x, y, z) --* z klO0M)

SQL Syntax:

IMPOSE CONSTRAUýT TD AS

(
SELECT EW-ID

FROM EMPLOYEE ON DELETE

WHERE EMP-SAL < 10000

) IS EMPTY

Example 11-11:

Type: Transition on update

Constraint:

On updating, salary of an employee should always increase

Closed formula:

Vx, Vy Vz Vy, vz, (Up4_Employee (x, y, z, x, y', z') Az #z' --> z'>z)

SQL Syntax:

-187-

IMPOSE CONSTRAINT TU AS

(
SELECT EVIP-ID

=OM K-x%, EMPLOYEE ON UPDATE EMP-SAL

WHERE OLD SALARY >= NEW SALARY

) IS EMPTY

Example 11.12:

Type: Transition on insertion

Constraint:

Maximum loan an employee can be given is five times his salary or the employee has

been given a special loan permission

Closed fon-nula:

Vx Vy (Ins_Loan (x, y) ^ Employee (x, u, v) ^ -, SpeciaUoan (x) ^w =5*v --+ y: 5w)

SQL Syntax:

EMPOSE CONSTRAINT T12 AS

(
SELECT LOAN-AMOUNT, ENIP-SAL

FROM LOAN L ON INSERT, EMPLOYEE E

WHERE L. EMP-ID = E. EMP-ID

AND E. EMP-ID NOT IN

(
SELECT EMP-ID

FROM SPECIAL-LOAN

AND LOAN-AMOUNT > 5*E. SALARY

) IS EVEPTY

-188-

Example 11.13:

Type: Multiple actions on transition

Constraint:

A change in grade must be accompanied by a change in salary

Closed formula:

Vx Vy Vy'Vz Vz'(Updý-Grade (x, y, x, 'Y')Ay; ty' -+ Up4-Employee (x, u, v, x, U', V') AV *V "

SQL Syntax:

IWOSE CONSTRAINT TM AS

(
SELECT EMP-ID

FROM GRADE ON UPDATE EMP-GRADE

WHERE OLD EMP-GRADE <> NEW EMP-GRADE

IS IN

SELECT EMP-ID

FROM EMPLOYEE ON UPDATE EMP-SAL

WHERE OLD ENV-SAL # NEW ENIP-SAL

"131 ý

-189-

References

I. P. B. Andirws, An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, Academic Press, Inc., (1986).

2. K. R. Apt, H. A. Blair, and A. Walker, '7owards a theory of declarative knowledge, "

J. Minker (ed.): Foundation of Deductive Databases and Logic Programming, pp. 89-

148, Morgan Kauffnan Publishers, Inc, (1988).

3. P. Asirelli, M. D. Santis, and M. Martelli, "Integfity constraint in logic databases, "

Journal of Logic Prograrmning, Vol. 3, pp. 221-232, (1985).

4. F. Bancilhon and N. Spyratos, "Update semantics of relational views, " ACM

Transactions on Database Systenu, Vol. 6, No. 4, pp. 557-575, (December 198 1).

5. P. A. Bernstein, B. T. Blaustein, and E. M. Clarke, "Fast maintenance of semantic

integrity assertions using redundant aggregate data, " Proceedings of the 6th

International Conference on Very Large Data Bases, pp. 126-136, (1980).

6. E. Bertino and D. Musto, "Correctness of semantic integrity checking database

management systems, " Acta Informatica, Vol. 26, pp. 25-57, (1988).

7. G. S. Boolos and R. C. Jeffrey, Computability and Logic, Cambridge University Press,

(1988).

I. Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley Publishing

Company, (1986).

M. L. Brodie and F. Manola, "Database management: A survey, " IMylopoulos and

M. L. Brodie (eds.): Readings in Artificial Intelligence and Databases, pp. 10-34,

Morgan Kaufmann Publishers, Inc., (1989).

10. F. Bry, H. Decker, and R. Manthey, "A unifon-n approach to constraint satisfaction and

constraint satisfiability in deductive databases, " Proceedings of Extending Database

Technology, pp. 488-505, Venice, (1988).

-190-

11. C. R. Carlson, A. K. Arora, and M. M. Carlson, "Tbe application of functional

dependency theory to relational databases, " The Computer Journal, Vol. 25, No. 1,

pp. 68-73, (1982).

12. M. A. Casanova, L. Tucherman, and A. L. Furtado, "Enforcing inclusion dependencies

and referential integrity, " Proceedings of the 14th International Conference on Very

Large Data Bases, pp. 38-49, (1988).

13. A. K. Chandra, "Theory of database queries, " Proceedings of the 7th ACM SIGACT-

SIGMOD-SIGART Symposiwn on Principles of Database System, pp. 1-9, Austin,

Texas, (March 1988).

14. C. L. Chang, "DEDUCE 2: Further investigations of deduction in relational databases, "

H. Gallaire and J. Minker (eds.): Logic and Databases, New York, New York, (1978).

15. C. L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical Theorem Proving,

Academic Press, New York, (1973).

16. K. L. Claric, "Negation as failure, " H. Gallaire and JMinker (eds.): Logic and

Databases, pp. 293-322, Plenum Press, New York, (1978).

17. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer Intemational

Student Edition, (1984).

18. E. F. Codd, "A relational model for large shared data banks, " Communications of the

ACM, Vol. 13, No. 6, pp. 377-387, (1970).

19. I. M. Copi, Symbolic Logic, Macmillan Publishing Company Ltd, (1979).

20. C. J. Date, An Introduction to Database System, V612, Addison Wesley, (1985).

21. C. J. Date, A Guide to SQL Standard, Addison-Wesley Publishing Company, (1989).

22. C. J. Date, "Referential integrity, " Proceedings of the 7th International Conference on

Very Large Data Bases, pp. 2-12, (198 1).

23. C. J. Date, An Introduction to Database Systems, Vol], 4th edition, Addison Wesley,

(1986).

-191-

24. U. Dayal and P. A. Bernstein, "On the updatability of relational views, " Proceedings of
the 4th VLDN Conference, West Berlin, (September, 1978).

25. H. Decker, "Integrity enforcements on deductive databases, " LXerschberg (ed.):
Proceedings of the First International Conference on Expert Database Systems,

pp. 271-285, Charleston, South Carolina, (April 1986).

26. E. W. Elcock, Absys: The first logic programming language -A retrospective and a

commentary, Department of Computer Science, The University of Western Ontario,

Canada, Technical Report No. 210, (July 1988).

27. K. R. Apt and M. H. Van Emden, "Contributions to the theory of logic programming, "

Journal of the Association for Computing Machinery, Vol. 29, pp. 841-862, (July

1982).

28. H. B. Enderton, A Mathematical Introduction to Logic, Academic Press, Inc., (1972).

29. D. Maier and D. S. Warren, Computing with Logic - Logic Programming with Prolog,

Benjamin/Cummings Publishing Company, Inc., (1988).

30. K. P. Eswaran and D. D. Chamberlin, "Functional specification of a subsystem for

database integrity, " Proceedings of the First International Conference on Very Large

Data Bases, (1975).

31. R. Fagin, G. M. Kuper, J. D. URman, and M. Y. Vardi, "Updating logical databases, "

Advances in Computing Research, Vol. 3, pp. 1-18, JAI Press Inc., (1986).

32. R. Fagin and M. Y. Vardi, The theory of data dependencies -a survey, IBM Research

Laboratory, San Jose, Califomia, Research Report RJ 4321 (47149), (1984).

33. E. B. Femandez, R. C. Summers, and C. Wood, Database Security and Integrity,

Addison Wesley, (1981).

34. H. Gallaire, "Logic databases vs deductive databases, " Proceedings of Logic

Programming Workshop, pp. 608-622, Algarve, Portugal, (1983).

35. H. Gallaire, J. Minker, and J. -M. Nicolas, "Logic and databases -a deductive approach, "

ACM Computing Surveys, Vol. 16, No. 2, pp. 153-185, (1984).

-192-

36. G. Gardarin and P. Valduriez, Relational Databases and Knowledge Bases, Addison

Wesley, (1989).

37. A. Van Gelder, K. Ross, and J. S. Schlipf, "Unfounded sets and well-founded semantics
for general logic programs, " Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pp. 221-230, Austin, Texas, (March

1988).

38. M. Gelfond and V. Lifschitz, "The stable model semantics for logic programming, "

RA. Kowalski and K. A. Bowen (eds.): Proceedings of the 5th International Conference

and Symposium on Logic Programming, pp. 1070-1080, Seattle, USA, (August 1988).

39. M. Gelfond and H. Przymusinska, "Negation as failure: Careful closure procedure, "

Artificial Intelligence, Vol. 30, pp. 273-287, North-HoRand Publishing Company,

(1986).

40. R. Goebel, K. Furukawa, and D-Poole, "Using definite clauses and integrity constraints

as the basis for a theory formation approach to diagnostic reasoning, " E. Shapiro (ed.):

Proceedings of the 3rd International Conference on Logic Programming, pp. 211-

222, Springer-Verlag, London, U. K, (July 1986).

41. P. R. Halmos, Naive Set Theory, Springer- Verlag New York Inc., (1974).

42. I. N. Herstein, Topics in algebra, John Wiley & Sons, (1964).

43. D. Hilbert and W. Ackennann, Principles of Mathematical Logic, Chelsea Publishing

Company, New York, (1950).

44. W. Hodges, Logic - An Introduction to Elementary Logic, Penguin Books, (1988).

45. G. Hulin, A. Pirotte, D. Roelants, and M. Vauclair, "Logic and databases, " A. Thayse

(ed-): From Modal Logic to Deductive Databases, pp. 279-300, John Wiley & Sons,

(1989).

46. J. Jaffar, J-L. Lassez, and M. J. Maher, "Some issues and trends in the semantics of logic

programming, " E. Shapiro (ed.): Proceedings of the 3rd International Conference on

Logic Programming, pp. 223-241, Springer- Verl ag, London, UK, (July 1986).

-193-

47. K. Knight, "Unification: A multidisciplinary survey, " ACM Computing Surveys,

Vol. 21, No. 1, pp. 93-124, (1989).

48. R. Kocharekar, "Nulls in relational databases: Revisited, " SIGMOD Record, Vol. 18,

No. 1, pp. 68-73, (March 1989).

49. S. Koenig and R. Paige, "A transformational framework for the automatic control of

derived data, " Proceedings of the 7th International Conference on Very Large Data

Bases, pp. 306-318, (198 1).

50. P. G. Kolaitis and C. H. Papadimitriou, "Why not negation by fixpoint? " Proceedings of

the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pp. 231-239, Austin, Texas, (March 1988).

51. R. A. Kowalski, "Logic programming with integrity constraints, " Workshop on Logic

Programming, Imperial College, London, (1989).

52. R. Kowalski, "Algorithm = Logic + Contr-ol, " Communications of the ACM, Vol. 22,

No. 7, pp. 424-435, (July 1979).

53. R. A. Kowalski, Logicfor Problem Solving, North-Holland Publisher Co., (1979).

54. R. Kowalski and D. Kuehner, "Linear resolution with selection function, " Artificial

Intelligence, Vol. 2, pp. 227-260, (197 1).

55. R. A. Kowalski, F. Sadri, and P. Soper, "Integrity checking in deductive databases, "

Proceedings of the 13th VLDB Conference, pp. 61-69, Brighton, (1987).

56. K. Kunen, "Some remarks on the completed database, " RA. Kowalski and KA. Bowen

(ed. s.): Proceedings of the 5th International Conference and Symposium on Logic

Programming, pp. 978-992, Seattle, USA, (August 1988).

57. J. -L. Lassez, V. L. Nguyen, and E. A. Sonenberg, "Fixed point theorems and semantics:

A folk tale, " Information Processing Letters, Vol. 14, No. 3, pp. 112-116, (May 1982).

58. E. J. Lemmon, Beginning Logic, Thomas Nelson and Sons Ltd, Great Britain, (1977).

-194-

59. Y. Y. Leung and D. L. Lee, "Logic approaches for deductive databases, " IEEE Expert,

(Winter 1988).

60. T. -W. Ling, "Integrity constraint checking in deductive databases using the Prolog

not-predicate, " Data & Knowledge Engineering, Vol. 2, pp. 145-168, (1987).

61. W. Lipski, "On semantic issues connected with incomplete information databases, "

ACM Transactions on Database Systems, Vol. 4, No. 3, pp. 262-296, (September

1979).

62. W. Lipski, "On databases with incomplete information, " Journal of the Association for

Computing Machinery, Vol. 28, No. 1, pp. 41-70, (January 198 1).

63. J. W. Lloyd, Foundations of Logic Programming, 2nd, Extended Edition, Springer

Verlag, Symbolic Computation Series, (1984).

64. J. W. Lloyd, "An introduction to deductive database systems, " The Australian

Computer Journal, Vol. 15, No. 2, pp. 52-57, (May 1983).

65. J. W. Lloyd, E. A. Sonenberg, and R. W. Topor, Integrity constraint checking in stratified

databases, Department of Computer Science, University of Melbourne, Technical

Report 86/5, (1986).

66. J. W. Lloyd and R. W. Topor, "A basis for deductive database systems, " Journal of

Logic Programming, Vol. 2, No. 2, pp. 93-109, (1985).

67. J. W. Lloyd and R. W. Topor, "Making Prolog more expressive, " Journal of Logic

Programming, Vol. 1, No. 3, pp. 225-240, (1984).

68. A. Lobo, J. Minker, and A. Rajasekhar, "Weak completion theory for non-Horn logic

programs, 91 RA. Kowalski and KA. Bowen (eds.): Proceedings of the 5th International

Conference and Symposium on Logic Programming, pp. 828-842, Seattle, USA,

(August 1988).

69. D. W. Loveland, "Near-Hom Prolog, " E. Wada (ed.): Proceedings of the 4th

International Conference on Logic Programming, pp. 456-469, Springer-Verlag,

Tokyo, Japan, (July 1987).

-195-

70. D. W. Loveland, Automated Theorem Proving, North-Holland Publishing Company,

(1978).

71. M. J. Maher, "Equivalence of logic programs, " E. Shapiro (ed.): Proceedings of the 3rd

International Conference on Logic Programming, pp. 410424, Springer- Verlag,

London, U. K, (July 1986).

72. P. Mancarella and D. Pedreschi, "An algebra of logic programs, " RA. Kowalski and
K. A. Bowen (eds.): Proceedings of the 5th International Conference and Symposium

on Logic Programming, pp. 1006-1023, Seattle, USA, (August 1988).

73. A. Martelli and U. Montanari, "An efficient unification algorithm, " ACM Transactions

on Programming Languages and Systems, Vol. 4, No. 2, pp. 258-282, (April 1982).

74. E. Mendelson, Introduction to Mathematical Logic, Wadsworth & Brooks/Cole

Advanced Books and Software, California, (1987).

75. D. A. Miller and G. Nadathur, "Higher-order logic programming, " E. Shapiro (ed.):

Proceedings of the 3rd International Conference on Logic Programming, pp. 448-

462, Springer-Verlag, London, U. K, (July 1986).

76. J. Minker, "Perspectives in deductive databases, " Journal of Logic Programming,

Vol. 5, pp. 33-60, (1988).

77. J. Minker, "On indefinite databases and closed world assumption, " Readings for non-

Monotonic Reasoning, (1988).

78. G. Nadathur and D. A. Miller, "An overview of Lambda-Prolog, " RA. Kowalski and

K. A. Bowen (eds.): Proceedings of the 5th International Conference and Symposiwn

on Logic Programming, pp. 810-827, Seattle, USA, (August 1988).

79. J. -M. Nicolas, "Logic for improving integrity checking in relational databases, " Acta

Infonnatica, Vol. 18, pp. 227-253, (1982).

80. J. M. Nicolas and K. Yazdanian, "Integrity checking in deductive databases, "

H. Gallaire and J. Minker (eds.): Logic and Databases, pp. 325-344, Plenum Press,

New York, (1978).

-196-

81. M. S. Paterson, "Linear unification, " Journal of Computer and Systems Sciences,

Vol. 16, pp. 158-167, (1978).

82. D. A. Plaisted, "Non-Hom clause logic programming without contrapositives, " Journal

of Automated Reasoning, Vol. 4, pp. 287-325, (1988).

83. H. Przymusinska and T. C. Przymusinska, "Wealdy perfect model semantics for logic

programs, " RA. Kowalski and KA. Bowen (eds.): Proceedings of the 5th International

Conference and Symposium on Logic Programming, pp. 1106-1120, Seattle, USA,

(August 1988).

84. T. C. Przymusinski, "On the declarative semantics of deductive databases and logic

programs, " JMinker (ed.): Foundation of Deductive Databases and Logic

Programming, pp. 193-216, Morgan Kauftnan Publishers, Inc, (1988).

85. S. Raatz and J. Gallier, "A relational semantics for logic programming, " R. A. Kawalski

and K. A. Bowen (eds.): Proceedings of the 5th International Conference and

Symposium on Logic Programming, pp. 1024-1035, Seattle, USA, (August 1988).

86. R. Reiter, "A sound and sometimes complete query evaluation algorithm for relational

database with null values, " Journal of the Association for Computing Machinery,

Vol. 33, No. 2, pp. 349-370, (April 1986).

87. R. Reiter, "On the integrity of typed first order databases, " H. GallaireJ Minker and

J. -M. Nicolas (eds.): Logic and Databases, Vol. 1, pp. 137-157, Plenum Press, New

York, London, (19 8 1).

88. J. A. Robinson, "Computational logic: The unification computation, " B. Meltzer and

D Michie (eds.): Machine Intelligence (6), pp. 63-72, (197 1).

89. J. A. Robinson, "A machine -oriented logic based on the resolution principle, " Journal

of the Association for Computing Machinery, Vol. 12, pp. 2341, (1965).

90. K. A. Ross and R. W. Topor, "Infenring negative information from disjunctive

databases, " Journal of Autonzated Reasoning, Vol. 4, pp. 397-424, (1988).

-197-

I

91. F. Sadri and R. A. Kowalski, "An application of general purpose theorem-proving to

database integrity, " J. Minker (ed.): Proceedings of the Workshop on Foundations of

Deductive Databases and Logic Programming, (1987).

92. C. Small, "Guarded default databases: A prototype implementation, " Prolog and

Databases: Implementations and new directions, pp. 121-134, Effis Horwood Limited,

England, (1988).

93. B. T. Smith and D. W. Loveland, "A simple near-Hom Prolog interpreter, " R. A. Kawalsb

and K. A. Bowen (eds.): Proceedings of the 5th International Conference and

Symposium on Logic Programming, pp. 794-809, Seattle, USA, (August 1988).

94. L. Sterling and A. Lakhotia, "Composing Prolog meta-interpreters, " R. A. Kowalski and

K. A. Bowen (eds.): Proceedings of the 5th International Conference and Symposium

on Logic Programming, pp. 386403, Seattle, USA, (August 1988).

95. L. Sterling and E. Shapiro, The Art of Prolog, pp. 303-329, The MIT Press, Cambridge,

Massachusetts, (1986).

96. M. E. Stickel, "A Prolog technology theorem prover: implementation by an extended

Prolog compiler, " Proceedings of the 8th International Conference in Automated

Deduction, pp. 573-587, Oxford, England, (July 1986).

97. M. E. Stickel, "Resolution theorem proving, " Annual Review: Computer Science,

Vol. 3, pp. 285-316, (1988).

98. R. R. Stoll, Set Theory and Logic, W. H. Freeman and Company, (1963).

99. M. Stonebraker, "Implementation of integrity constraints and views by query

modification, " IMylopoulos and M. L. Brodie (eds.): Readings in Arti ficial Intelligence

and Databases, pp. 533-546, Morgan Kaufmann Publishers, Inc., (1989).

100. M. Stonebraker, E. Wong, P. Kreps, and G. Held, "Me design and implementation of

INGRES, " ACM Transactions on Database Systems, VOL 1, No. 3, pp. 189-222,

(1976).

-198-

101. S-A. Tarnlund, "Logic Programming - from logic point of view, " Proceedings of the

1986 Symposium on Logic Programming, pp. 96-103, IEEE Computer Society Press,

Salt Lake City, Utah, USA, (September 1986).

102. R. W. Topor, T. Keddis, and D. W. Wright, Deductive database tools, Department of

Computer Science, University of Melbourne, Technical Report 8417.

103. R. W. Topor and E. A. Sonenberg, "On domain independent databases, " JMinker (ed.):

Foundation of Deductive Databases and Logic Programming, pp. 217-240, Morgan

Kauftnan Publishers, Inc, (1988).

104. J. D. UUman, Principles of Database Systems, 2nd edition, Computer Science Press

International, Inc, Maryland, USA, (1984).

105. M. H. Van Emden and R. A. Kowalski, "The semantics of predicate logic as a

progrwnrning language, " Journal of the Association for Computing Machinery,

Vol. 23, No. 4, pp. 733-742, (October 1976).

106. M. H. Williams, J. C. Neves, and S. O. Anderson, "Security and integrity in logic

databases using Query-by-Example, " Proceedings of Logic Programming Workshop,

pp. 304-340, Algarve, Portugal, (1983).

107. Yahya and Henschen, "Deduction in non-Horn databases, " Journal of Automated

Reasoning, Vol. 1, pp. 141-160, (1985).

108. C. Zaniolo, "Database relations with null values, " Journal of Computer and System

Sciences, Vol. 28, pp. 142-166, Academic Press. Inc., (1984).

109. M. M. Zloof, "Query-by-Example: a database language, " IBM Systems Journal,

Vol. 16, No. 4, pp. 324-343, (1975).

-199-

