10 research outputs found

    Activity recognition with cooperative radar systems at C and K band

    Get PDF
    Remote health monitoring is a key component in the future of healthcare with predictive and fall risk estimation applications required in great need and with urgency. Radar, through the exploitation of the micro-Doppler effect, is able to generate signatures that can be classified automatically. In this work, features from two different radar systems operating at C band and K band have been used together co-operatively to classify ten indoor human activities with data from 20 subjects with a support vector machine classifier. Feature selection has been applied to remove redundancies and find a set of salient features for the radar systems, individually and in the fused scenario. Using the aforementioned methods, we show improvements in the classification accuracy for the systems from 75 and 70% for the radar systems individually, up to 89% when fused

    Elderly care: activities of daily living classification with an S band radar

    Get PDF
    Falls in the elderly represent a serious challenge for the global population. To address it, monitoring of daily living has been suggested, with radar emerging to be a useful platform for it due to its various benefits with acceptance and privacy. Here, we show results from the use of an S band radar for activity detection and the importance of selecting specific frequency bins to improve its suitability for human movement classification. The use of feature selection to improve detection of key activities such as falls has been presented. Initial results of 65% are improved to 85% and further to 90% with the aforementioned methods

    Co-Creation Facilitates Translational Research on Upper Limb Prosthetics

    Get PDF
    People who either use an upper limb prosthesis and/or have used services provided by a prosthetic rehabilitation centre, hereafter called users, are yet to benefit from the fast-paced growth in academic knowledge within the field of upper limb prosthetics. Crucially over the past decade, research has acknowledged the limitations of conducting laboratory-based studies for clinical translation. This has led to an increase, albeit rather small, in trials that gather real-world user data. Multi-stakeholder collaboration is critical within such trials, especially between researchers, users, and clinicians, as well as policy makers, charity representatives, and industry specialists. This paper presents a co-creation model that enables researchers to collaborate with multiple stakeholders, including users, throughout the duration of a study. This approach can lead to a transition in defining the roles of stakeholders, such as users, from participants to co-researchers. This presents a scenario whereby the boundaries between research and participation become blurred and ethical considerations may become complex. However, the time and resources that are required to conduct co-creation within academia can lead to greater impact and benefit the people that the research aims to serve

    The Friendly Health Issue Network to Support Computer-Assisted Education for Clinical Reasoning in Multimorbidity Patients

    Get PDF
    Clinical reasoning in multimorbidity conditions asks for the ability to anticipate the possible evolutions of the overall health state of a patient and to identify the interactions among the concurrent health issues and their treatments. The HIN (Health Issue Network) approach, as Petri Nets-based formal language, is introduced as capable of providing a novel perspective to facilitate the acquisition of such competencies, graphically representing the network among a set of health issues (HIs) that affect a person throughout their life, and describing how HIs evolve over time. The need to provide a more immediate user-oriented interface has led to the development of f-HIN (friendly HIN), a lighter version based on the same mathematical properties as HIN, from which stems in turn the f-HINe (friendly HIN extracted) model, used to represent networks related to either real patients’ clinical experiences extracted from electronic health records, or from teacher-designed realistic clinical histories. Such models have also been designed to be embedded in a software learning environment that allows drawing a f-HIN diagram, checking for its format correctness, as well as designing clinical exercises for the learners, including their computer-assisted assessment. The present paper aims at introducing and discussing the f-HIN/f-HINe models and their educational use. It also introduces the main features of the software learning environment it was built upon, pointing out its importance to: (i) help medical teachers in designing and representing the context of a learning outcome; and (ii) handle the complex history of a multimorbidity patient, to be conveyed in Case-Based Learning (CBL) exercises

    Co-creation facilitates translational research on upper limb prosthetics

    Get PDF
    People who either use an upper limb prosthesis and/or have used services provided by a prosthetic rehabilitation centre, hereafter called users, are yet to benefit from the fast-paced growth in academic knowledge within the field of upper limb prosthetics. Crucially over the past decade, research has acknowledged the limitations of conducting laboratory-based studies for clinical translation. This has led to an increase, albeit rather small, in trials that gather real-world user data. Multi-stakeholder collaboration is critical within such trials, especially between researchers, users, and clinicians, as well as policy makers, charity representatives, and industry specialists. This paper presents a co-creation model that enables researchers to collaborate with multiple stakeholders, including users, throughout the duration of a study. This approach can lead to a transition in defining the roles of stakeholders, such as users, from participants to co-researchers. This presents a scenario whereby the boundaries between research and participation become blurred and ethical considerations may become complex. However, the time and resources that are required to conduct co-creation within academia can lead to greater impact and benefit the people that the research aims to serve

    A conceptual framework for integrating the home into patient-centered healthcare processes: Analysis, solution strategies and realization using health enabling technologies

    Get PDF
    Assistierende Gesundheitstechnologien (AGT) und technische Assistenzsysteme, auch ohne Medizinbezug, können das altersunabhängige Bedürfnis nach komfortablem und sicherem Wohnen in Wohlbefinden gewinnbringend adressieren. Die Einbindung der Wohnung in dieser gesamtheitlichen Perspektive ist nicht beschrieben und die Akteure der entsprechenden Professionen können, aufgrund fehlenden Wissens über sozio-technische Potentiale der Wohnung, im Aufbau von Versorgungsszenarien nicht auf ihre Fähigkeiten zurückgreifen. Ziel der Dissertation ist es, einen Rahmen aus Methoden, Lösungsstrategien und einem exemplarischen Integrationsszenario zur Einbindung der Wohnung in medizinische Versorgungsprozesse zu geben und dabei insbesondere ihre Funktion als neuartigen Gesundheitsstandort zu betrachten. Auf Basis eines sozi-technischen Rollenmetamodells wurden insgesamt elf Rollen herausgearbeitet. Die Wohnung als Messinstrument, Datenspeicher, Informationsquelle, Entscheidungsunterstützungssystem, Diagnostisches Instrument, Therapeut und Aktor, Sozialer Integrator, Präventionsinstrument, Pflegesystem, Gesundheitsmanager und Forschungssystem. Die Rollenhandlungen lassen sich aus den sechs Realisierungsprojekten in die Wirkungsfelder Komfort & Sicherheit, umfassende Pflege und erweiterte medizinische Versorgung mit den Methoden Infrastruktur, Dienstleistung und Netzwerk einteilen, eingefasst von den Prinzipien Öffentlichkeit, Nachhaltigkeit und Wissenschaft. Diese drei Dimensionen bilden das Rahmenkonzept für die "Modellstadtinitiative Braunschweig: Vision Wohnen 2031" als exemplarisches Integrationsszenario und Strategiedokument. Die Instanziierung zeigt, die Wohnung gibt Raum, handelt und verbindet. Sie schafft Beziehungen zwischen ärztlichen, pflegerischen und sozialen Akteuren inter- und multidisziplinärer Versorgungsprozesse mit dem Ziel eines mehrdimensionalen, ganzheitlichen Wohlbefindens. Sie ist transprofessionaler Akteur und Handlungsraum über die medizinische Domäne hinaus zur synergetischen Erfüllung von Zielen anderer Gewerke, wie der Energieoptimierung oder dem Gebäudeschutz.Health-enabling Technologies (HET) and assistive devices, even without medical purpose, can profitably address age-independent well-being in terms of comfortable, safe and healthy living. The integration of homes in this holistic perspective is not described and the actors of the corresponding professions cannot utilize the homes' abilities in the development of care scenarios due to a lack of knowledge about socio-technical potentials of homes. Objective of this dissertation is to provide a framework of methods, strategies and an exemplary integration scenario for integration of the home into healthcare processes and, in particular, to consider its function as a novel healthcare location. Based on a socio-technical role metamodel, a total of eleven roles were identified from six healthcare process models. The home as measuring instrument, data store, information source, decision support system, diagnostic instrument, therapist and actuator, social integrator, prevention system, nursing system, carepath manager and research system. The role actvities can be divided from the six implementation projects into the three application domains comfort & safety, comprehensive care and extended medical care, using the methods infrastructure, service and network, framed by three principles openness, sustainability and science. These three dimensions form the conceptual framework for the "Modellstadtinitiative Braunschweig: Vision Wohnen 2031" as exemplary integration scenario and strategy document. The instantiation shows, that the home gives space, takes action and connects. It creates relationships between medical, nursing and social actors in interdisciplinary and multidisciplinary care processes with the aim of multidimensional, holistic well-being. It is a transprofessional actor and room for action beyond the healthcare domain to synergistically fulfill goals of other domains, such as energy optimization or building protection

    Living Labs for Pervasive Healthcare Research

    No full text
    corecore