9 research outputs found

    Liver Segmentation for Hepatic Lesions Detection and Characterisation

    Get PDF
    The detection and characterisation of hepatic lesions is fundamental in clinical practice, from the diagnosis stages to the evolution of the therapeutic response. Hepatic magnetic resonance is a usual practice in the localization and quantification of lesions. Automatic segmentation of the liver is illustrated in T1 weighted images. This task is necessary for detecting the lesions. The proposed liver segmentation is based on 3D anisotropic diffusion processing without any control parameter. Combinations of edge detection techniques, histogram analysis, morphological post-processing and evolution of an active contour have been applied to the liver segmentation. The active contour evolution is based on the minimization of variances in luminance between the liver and its closest neighbourhood

    Relationship between primary liver hepatocellular carcinoma volumes on portal-venous phase CT imaging

    Full text link
    The liver is an important organ in the body. It is located under the rib cage on the right side. The liver performs many important functions, it processes food for nutrients that the body requires and also helps in the detoxification of harmful materials. Like any organ in the body, the liver is susceptible to diseases such as liver cancer. Liver cancer is the growth and spread of unhealthy cells of the liver. There are several risk factor for liver cancer, these are: Cirrhosis (scarring of the liver), long term hepatitis B and hepatitis C infection and diabetes patients with long term drinking problem. Hepatocellular Carcinoma is the most common form of liver cancer in adult population which begins in the main type of liver cell (hepatocyte). Because Hepatocellular carcinoma starts from the primary liver cell itself (hepatocytes), as such it is a primary liver cancer. About 30,000 Americans are diagnosed with primary liver cancer yearly, making it an important disease that plaques our society and therefore needs proper diagnosis. In clinical evaluation of primary liver cancer such as HCC, the use of medical imaging technology has been commonplace. Most medical facilities across the country and globally typically use Computed Tomography (CT) and/or Magnetic Resonance Imaging (MRI) in the diagnosis and treatment follow up of Hepatocellular carcinoma. The medical imaging devices are used to determine the extent and volume of the tumor of the cancerous liver cells. In clinical trials involving the imaging of HCC tumors, the typical protocol used in the CT imaging of HCC involves the use of contrast enhanced dual phase acquisition. This approach is based on the physiology of the blood flow through the liver. Since HCC tumors are hypervascular in nature, it would thus be more apparent in the arterial phase of an acquired CT image. The aforementioned characteristic was tested with a volume paradigm which measure and compare the volume of both the arterial phase and portal venous phase acquired images in the experiment. Overall this study helps in furthering goals to reduce the patient dose from the x-ray tubes during clinical trials. The results of the experiments (n = 19, t = 0.67, p = 0.26), indicates no significant difference between the volume of the HCC tumor images acquired both in the AP and PVP

    Liver Segmentation from CT Images Using a Modified Distance Regularized Level Set Model Based on a Novel Balloon Force

    Get PDF
    Organ segmentation from medical images is still an open problem and liver segmentation is a much more challenging task among other organ segmentations. This paper presents a liver egmentation method from a sequence of computer tomography images.We propose a novel balloon force that controls the direction of the evolution process and slows down the evolving contour in regions with weak or without edges and discourages the evolving contour from going far away from the liver boundary or from leaking at a region that has a weak edge, or does not have an edge. The model is implemented using a modified Distance Regularized Level Set (DRLS) model. The experimental results show that the method can achieve a satisfactory result. Comparing with the original DRLS model, our model is more effective in dealing with over segmentation problems

    Simplificación Automática de las Imágenes a Partir de Expresiones Semi-Analíticas

    Get PDF
    Las etapas de simplificación de las imágenes, eliminación del ruido y realce de los bordes, son esenciales para las tareas posteriores de segmentación. Estas técnicas de procesado requieren, normalmente, de la sintonización de sus parámetros de control, situación incompatible con la segmentación automática. Esta ponencia trata de emplear un procesamiento, basado en difusión no lineal, capaz de auto sintonizarse mediante el uso de expresiones analíticas que relacionen los tiempos de difusión con el módulo del gradiente. Se exponen dos métodos numéricos y se presentan resultados experimentales en 1D, 2D y 3D

    Liver Segmentation and its Application to Hepatic Interventions

    Get PDF
    The thesis addresses the development of an intuitive and accurate liver segmentation approach, its integration into software prototypes for the planning of liver interventions, and research on liver regeneration. The developed liver segmentation approach is based on a combination of the live wire paradigm and shape-based interpolation. Extended with two correction modes and integrated into a user-friendly workflow, the method has been applied to more than 5000 data sets. The combination of the liver segmentation with image analysis of hepatic vessels and tumors allows for the computation of anatomical and functional remnant liver volumes. In several projects with clinical partners world-wide, the benefit of the computer-assisted planning was shown. New insights about the postoperative liver function and regeneration could be gained, and most recent investigations into the analysis of MRI data provide the option to further improve hepatic intervention planning

    Desarrollo de algoritmos de procesamiento de imagen avanzado para interpretación de imágenes médicas.

    Get PDF
    La imagen médica se ha convertido en los últimos años en una potente herramienta de ayuda al diagnóstico. Gracias a los avanzados escáneres y software de reconstrucción de imágenes disponibles es posible la identificación de distintos órganos y tejidos, así como la obtención de datos que ayuden a caracterizar y cuantificar las patologías. Los radiólogos son los responsables del uso e interpretación de dichas imágenes y demandan herramientas que les permitan localizar órganos y tejidos con mayor precisión y rapidez, así como la identificación y caracterización cuantitativa de las patologías presentes en ellos, con el fin de realizar un diagnóstico preciso. Por otra parte, el cáncer de hígado es una de las principales causas de muerte por cáncer en todo el mundo. Las técnicas invasivas utilizadas para su diagnóstico, tales como biopsias quirúrgicas, a veces pueden ser reemplazadas por técnicas no invasivas con imagen médica como la tomografía axial computerizada (TAC o CT, en sus siglas en inglés) y la resonancia magnética (RM o MRI, en inglés), con claros beneficios para el paciente. Con el fin de ayudar a los radiólogos y cirujanos en una planificación fiable de la intervención, son necesarios nuevos métodos y herramientas para localizar y segmentar adecuadamente el órgano de interés y las patologías presentes. La segmentación (delimitación) automática del hígado es un problema complejo. Se han alcanzado resultados parciales principalmente sobre imágenes obtenidas mediante CT. La técnica de MRI ofrece mayor información para fines de diagnóstico. Sin embargo, la segmentación del hígado en imágenes de MRI representa un desafío debido a la presencia de artefactos característicos de dicha tecnología de adquisición, como es el caso de los volúmenes parciales, el ruido, y en general, la baja nitidez y el escaso contraste existente entre órganos, de manera que el límite entre los diferentes tejidos suele ser confuso. Existen menos desarrollos sobre imágenes de MRI, aunque éstos han ido en aumento progresivo en los últimos años. En este trabajo, se presenta un nuevo método para la segmentación automática de hígado sobre imagen multicanal obtenida mediante resonancia magnética. El método propuesto consiste en la minimización de una superficie activa 3D mediante la aproximación dual a la formulación variacional subyacente del problema. Esta superficie activa evoluciona sobre un mapa de probabilidad que se basa en un nuevo descriptor compacto propuesto que contiene la información espacial y multisecuencia de cada píxel en relación a un modelo estadístico multivariable de hígado generado previamente. Esta superficie activa 3D integra de manera natural la regularización volumétrica. El descriptor visual compacto junto con el enfoque propuesto constituye un método de segmentación 3D rápido y preciso. El método fue probado en 18 estudios de hígado sano y los resultados se compararon con una segmentación de referencia realizada por expertos radiólogos. Las comparaciones con otros métodos del estado del arte se realizan mediante la obtención de 9 métricas establecidas. Los resultados obtenidos son comparables, incluso mejores en algunos casos, a los de otras técnicas del estado del arte. Se ha obtenido un coeficiente de similaridad de Dice de 98.59. Medical imaging has become in recent years a powerful tool to support diagnosis. Thanks to advanced scanners and image reconstruction software available, it is possible to identify different organs and tissues, as well as obtaining data that may help to characterize and quantify the pathologies. Radiologists are responsible for the use and interpretation of these images and require tools that allow them to locate organs and tissues with greater accuracy and speed, as well as the identification and quantitative characterization of the pathologies present in them, in order to make an accurate diagnosis. Moreover, liver cancer is one of the leading causes of cancer death worldwide. Invasive techniques used for diagnosis, such as surgical biopsies can sometimes be replaced by non-invasive techniques in medical imaging such as computed axial tomography (CT) and magnetic resonance imaging (MRI), with clear benefits for the patient. In order to assist radiologists and surgeons in a reliable intervention planning, new methods and accurate and efficient tools are needed to locate and segment properly the organ of interest and the pathologies inside. Automatic segmentation (delimitation) of the liver is a complex problem. Partial results have been achieved mainly on images obtained by CT. MRI technique provides more information for diagnostic purposes. However, liver segmentation in MRI images is a challenge due to the presence of characteristic artifacts, such as the partial volumes, the noise, and generally, the low sharpness and the low contrast between organs, so that the boundary between different tissues is often confusing. There are fewer developments on MRI, although these have been steadily increasing in recent years. In this thesis, we present a novel method for multichannel MRI automatic liver segmentation. The proposed method consists of the minimization of a 3D active surface by means of the dual approach to the variational formulation of the underlying problem. This active surface evolves over a probability map that is based on a new compact descriptor comprising spatial and multisequence information of every pixel which is further modeled by means of a liver multivariate statistical model that has been previously generated. This proposed 3D active surface approach naturally integrates volumetric regularization in the statistical model. The advantages of the compact visual descriptor together with the proposed approach result in a fast and accurate 3D segmentation method. The method was tested on 18 healthy liver studies and results were compared to a gold standard made by expert radiologists. Comparisons with other state-of-the-art approaches are provided by means of nine well established quality metrics. The obtained results are in line with the state-of-the-art methodologies, and are even better than them in some cases. A Dice Similarity Coefficient of 98.59 has been achieved

    Desarrollo de algoritmos de procesamiento de imagen avanzado para interpretación de imágenes médicas. Aplicación a segmentación de hígado sobre imágenes de Resonancia Magnética multisecuencia

    Get PDF
    216 p.En este trabajo, se presenta un nuevo método para la segmentación automática de hígado sobre imagen multicanal obtenida mediante resonancia magnética. El método propuesto consiste en la minimización de una superficie activa 3D mediante la aproximación dual a la formulación variacional subyacente del problema. Esta superficie activa evoluciona sobre un mapa de probabilidad que se basa en un nuevo descriptor compacto propuesto que contiene la información espacial y multisecuencia de cada píxel en relación a un modelo estadístico multivariable de hígado generado previamente. Esta superficie activa 3D integra de manera natural la regularización volumétrica. El descriptor visual compacto junto con el enfoque propuesto constituye un método de segmentación 3D rápido y preciso. El método fue probado en 18 estudios de hígado sano y los resultados se compararon con una segmentación de referencia realizada por expertos radiólogos. Las comparaciones con otros métodos del estado del arte se realizan mediante la obtención de 9 métricas establecidas. Los resultados obtenidos son comparables, incluso mejores en algunos casos, a los de otras técnicas del estado del arte. Se ha obtenido un coeficiente de Dice de 98.59

    Liver segmentation for hepatic lesions detection and characterisation

    No full text
    corecore