22 research outputs found

    Application of Artificial Intelligence to Ultrasonography

    Get PDF
    The use of artificial intelligence (AI) technology in medicine has gained considerable attention, although its application in ultrasound medicine is still in its infancy. Deep learning, the main algorithm of AI technology, can be applied to intelligent ultrasound picture detection and classification. Describe the application status of AI in ultrasound imaging, including thyroid, breast, and liver disease applications. The merging of AI and ultrasound imaging can increase the accuracy and specificity of ultrasound diagnosis and decrease the percentage of incorrect diagnoses

    Ultrasound Liver Fibrosis Diagnosis using Multi-indicator guided Deep Neural Networks

    Full text link
    Accurate analysis of the fibrosis stage plays very important roles in follow-up of patients with chronic hepatitis B infection. In this paper, a deep learning framework is presented for automatically liver fibrosis prediction. On contrary of previous works, our approach can take use of the information provided by multiple ultrasound images. An indicator-guided learning mechanism is further proposed to ease the training of the proposed model. This follows the workflow of clinical diagnosis and make the prediction procedure interpretable. To support the training, a dataset is well-collected which contains the ultrasound videos/images, indicators and labels of 229 patients. As demonstrated in the experimental results, our proposed model shows its effectiveness by achieving the state-of-the-art performance, specifically, the accuracy is 65.6%(20% higher than previous best).Comment: Jiali Liu and Wenxuan Wang are equal contributio

    Ultrasound Detection of Subquadricipital Recess Distension

    Full text link
    Joint bleeding is a common condition for people with hemophilia and, if untreated, can result in hemophilic arthropathy. Ultrasound imaging has recently emerged as an effective tool to diagnose joint recess distension caused by joint bleeding. However, no computer-aided diagnosis tool exists to support the practitioner in the diagnosis process. This paper addresses the problem of automatically detecting the recess and assessing whether it is distended in knee ultrasound images collected in patients with hemophilia. After framing the problem, we propose two different approaches: the first one adopts a one-stage object detection algorithm, while the second one is a multi-task approach with a classification and a detection branch. The experimental evaluation, conducted with 483483 annotated images, shows that the solution based on object detection alone has a balanced accuracy score of 0.740.74 with a mean IoU value of 0.660.66, while the multi-task approach has a higher balanced accuracy value (0.780.78) at the cost of a slightly lower mean IoU value

    Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

    Get PDF

    Convolutional neural network classification of ultrasound images by liver fibrosis stages based on echo-envelope statistics

    Get PDF
    Introduction: Assessing the stage of liver fibrosis during the diagnosis and follow-up of patients with diffuse liver disease is crucial. The tissue structure in the fibrotic liver is reflected in the texture and contrast of an ultrasound image, with the pixel brightness indicating the intensity of the echo envelope. Therefore, the progression of liver fibrosis can be evaluated non-invasively by analyzing ultrasound images.Methods: A convolutional-neural-network (CNN) classification of ultrasound images was applied to estimate liver fibrosis. In this study, the colorization of the ultrasound images using echo-envelope statistics that correspond to the features of the images is proposed to improve the accuracy of CNN classification. In the proposed method, the ultrasound image is modulated by the 3rd- and 4th-order moments of pixel brightness. The two modulated images and the original image were then synthesized into a color image of RGB representation.Results and Discussion: The colorized ultrasound images were classified via transfer learning of VGG-16 to evaluate the effect of colorization. Of the 80 ultrasound images with liver fibrosis stages F1–F4, 38 images were accurately classified by the CNN using the original ultrasound images, whereas 47 images were classified by the proposed method

    Deep Learning Based Hybrid Classifier for Analyzing Hepatitis C in Ultrasound Images

    Get PDF
    Although liver biopsy is the gold standard for identifying diffuse liver disorders, it is an intrusive procedure with a host of negative side effects. Physician subjectivity may affect the ultrasonography diagnosis of diffuse liver disease. As a result, there is still a clear need for an appropriate classification of liver illnesses. In this article, an unique deep classifier made up of deep convolutional neural networks (CNNs) that have already been trained is proposed to categories the liver condition. The variants of ResNet and AlexNet are a few networks that are combined with fully connected networks (FCNs). Transfer learning can be used to extract deep features that can offer adequate categorization data. Then, an FCN can depict images of the disease in its many stages, including tissue, liver hepatitis, and hepatitis. To discriminate between these liver images, three different (normal/cirrhosis, perfectly natural, and cirrhosis/hepatitis) and 3 (normal/cirrhosis/hepatitis) models were trained. A hybrid classifier is presented in order to integrate the graded odds of the classes produced by each individual classifier since two-class classifiers performed better than three-class classifiers. The class with the highest score is then chosen using a majority voting technique. The experimental results demonstrate an high accuracy when liver images were divided into three classes using ResNet50 and a hybrid classifier
    corecore