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Introduction: Assessing the stage of liver fibrosis during the diagnosis and follow-
up of patients with diffuse liver disease is crucial. The tissue structure in the fibrotic
liver is reflected in the texture and contrast of an ultrasound image, with the pixel
brightness indicating the intensity of the echo envelope. Therefore, the
progression of liver fibrosis can be evaluated non-invasively by analyzing
ultrasound images.

Methods: A convolutional-neural-network (CNN) classification of ultrasound
images was applied to estimate liver fibrosis. In this study, the colorization of
the ultrasound images using echo-envelope statistics that correspond to the
features of the images is proposed to improve the accuracy of CNN classification.
In the proposed method, the ultrasound image is modulated by the 3rd- and 4th-
order moments of pixel brightness. The two modulated images and the original
image were then synthesized into a color image of RGB representation.

Results and Discussion: The colorized ultrasound images were classified via
transfer learning of VGG-16 to evaluate the effect of colorization. Of the 80
ultrasound images with liver fibrosis stages F1–F4, 38 images were accurately
classified by the CNN using the original ultrasound images, whereas 47 images
were classified by the proposed method.
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1 Introduction

In diffuse liver disease, inflammation, necrosis, and regeneration of the liver parenchyma
are repeated in chronic infections caused by HBV and/or HCV, alcoholic hepatitis, and non-
alcoholic steatohepatitis. Diffuse liver disease is often associated with irreversible
fibrogenesis. The fibrous tissue occurs and develops around the necrotic parenchyma.
This eventually leads to liver cirrhosis and hepatocellular carcinoma [1, 2]. The progression
of liver fibrosis is the most important indicator of the patient’s prognosis. Liver fibrosis is
conventionally diagnosed quantitatively by liver biopsy, ultrasound transient elastography
(TE), and ultrasound shear wave elastography (SWE). Pathological examination using a liver

OPEN ACCESS

EDITED BY

Maria Filomena Santarelli,
National Research Council (CNR), Italy

REVIEWED BY

Vincenzo Positano,
Gabriele Monasterio Tuscany Foundation
(CNR), Italy
Matthew ManHin Cheung,
CUHK Medical Centre, Hong Kong SAR,
China

*CORRESPONDENCE

Shinnosuke Hirata,
shin@chiba-u.jp

RECEIVED 13 February 2023
ACCEPTED 26 May 2023
PUBLISHED 28 June 2023

CITATION

Hirata S, Isshiki A, Tai D-I, Tsui P-H,
Yoshida K and Yamaguchi T (2023),
Convolutional neural network
classification of ultrasound images by
liver fibrosis stages based on echo-
envelope statistics.
Front. Phys. 11:1164622.
doi: 10.3389/fphy.2023.1164622

COPYRIGHT

© 2023 Hirata, Isshiki, Tai, Tsui, Yoshida
and Yamaguchi. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 28 June 2023
DOI 10.3389/fphy.2023.1164622

https://www.frontiersin.org/articles/10.3389/fphy.2023.1164622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1164622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1164622/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1164622/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1164622&domain=pdf&date_stamp=2023-06-28
mailto:shin@chiba-u.jp
mailto:shin@chiba-u.jp
https://doi.org/10.3389/fphy.2023.1164622
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1164622


biopsy remains the gold standard for determining the stage of liver
fibrosis [3]. However, liver biopsy is a highly invasive procedure,
often accompanied by complications [4]. Furthermore, there is the
possibility of sampling errors [5]. In TE and SWE, shear waves are
induced inside the liver by a mechanical vibrator or an acoustic
radiation force impulse (ARFI). The elasticity of the liver is then
estimated non-invasively from the propagation speed of the shear
wave. However, congestion or inflammation, other than fibrosis, can
also increase the liver elasticity [6], and the shear wave speed is
physically affected by the viscosity of the medium.

The variation in the tissue structure because of liver fibrosis is
equivalent to the variations in the number density, distribution, and
scattering intensities of the scatterers that generate ultrasound echoes.
The tissue structure severely affects the texture and contrast of the
ultrasound image, whose pixel brightness indicates the intensity of the
echo envelope. Although the tissue structure and the ultrasound image
do not directly correspond because of the interference of echoes, the
progression of liver fibrosis can be evaluated by ultrasound image
analysis. Tissue characterization of the liver based on the features of
ultrasound images, such as echo-envelope statistics, co-occurrence
matrices, and size zone matrices, has been reported [7–13].

A convolutional neural network (CNN) using ultrasound images as
the input has been applied for segmentation, beamforming, noise
reduction, and classification [14–22]. The CNN classification of
ultrasound images by the stages of liver fibrosis has also been
reported [18–22]. In these studies, the original grayscale images
obtained using conventional ultrasound scanners were used and
classified. However, colored images are often used as the input in
the common pretrained CNNs, such as ImageNet, GoogLeNet, VGG,
and ResNet. Therefore, in this study, modulation and colorization of
ultrasound images using echo-envelope statistics were proposed to
improve the potential performance of CNNs. In the proposed
method, the ultrasound image is modulated at different moments in
the echo-envelope statistics. The colorized ultrasound image comprises
modulated and original images in the red, green, and blue (RGB)
representation. Colorization associated with liver fibrosis is a promising
method to improve the accuracy of CNN classification. In this study, a
combination of third- and fourth-order moments was used as an
effective echo-envelope statistic. Furthermore, the accuracy of liver
fibrosis estimation and the effect of colorization were evaluated via
transfer learning of VGG-16.

2 Materials and methods

2.1 Dataset

Clinical data from patients infected with HBV and/or HCV
obtained from the Chang GungMemorial Hospital, Linkou, Taiwan,
were used in this study. An ultrasound scanner (Model 3000;
Terason, Burlington, MA, United States) was used to acquire the
raw echo data on the liver. The center frequency of the ultrasound
transmitted from the convex array probe (Model5C2A; Terason)
was 3.5 MHz. The focal depth was fixed at 40 mm. The echo data up
to a depth of 80 mmwere stored at a sampling frequency of 30 MHz.

Pathological examinations were performed by liver biopsy and
blood tests in all patients. Physicians made a definitive diagnosis of
viral hepatitis and segmented the liver region from the ultrasound

image. The stages of liver fibrosis were assessed according to the
METAVIR scoring system as follows: normal liver (F0), early to
severe fibrosis (F1–F3), and cirrhosis (F4). The number of patients
with a METAVIR score of F0 was insufficient. Furthermore, if the
amount of data in each stage is different, a learning bias toward the
large-data stage can occur. Therefore, cases F1–F4 were used for
CNN classification. Twenty images, whose liver regions were
relatively large, were selected for each stage. Therefore, 80 images
were used in this study. Moreover, liver steatosis was classified
according to intracellular fatty deposition: grade 0, healthy (<5%);
grade 1, mild (5–33%); grade 2, moderate (34–66%); and grade 3,
severe (>66%) [23]. Of the 80 images, 39 were assessed as grade
0 and the remaining data were assessed as grade 1.

2.2 Formation of regions of interest

In this study, the envelopes of raw echo data without log-
compression were analyzed. The ultrasound images were
reconstructed by the scan conversion (rearrangement along the scan
line of the convex probe) of the envelopes. Pixel spacings in the lateral
and depth directions of the image were 64.9 and 63.3 μm, respectively.
An ultrasound echo attenuates as it propagates over a distance.
Therefore, the received signals are amplified with the propagated
distance (reception time) in an ultrasound scanner. However, the
amplification factors do not fully correspond to the actual
attenuation in tissues. Furthermore, the intensities of the echoes are
changed by the effects of transmission and reception focuses. In
Figure 1A, the region around a depth of 50 mm is brighter because
of these effects. In this study, these effects were cancelled by
normalization using locally estimated second-order moments. To
normalize each pixel, the second-order moment of the envelopes in
the region around the pixel was estimated, as illustrated in Figure 1B.
The region was ellipse-shaped, centered on the pixel, and 12 (4 × 3)
times the spatial resolution (2.4 mm× 1.9 mm) of the ultrasound image.
The envelope of the pixel was then divided by the root of the local
second-order moment. Pixels with normalized envelopes larger than
three were discarded. The process of estimating the moments and
discarding the pixels was repeated until a pixel with an envelope larger
than three disappeared, as illustrated in Figure 1C. The regions of
interest (ROIs) were extracted from the normalized image so that their
center pixels were within the ranges of −27–27 mm and 24–64 mm for
the lateral and depth sizes, respectively. Although the ROI size was
15 mm in the lateral and depth directions (231 × 237 pixels), it was
converted to 224 × 224 pixels before being input to the CNN. The
sliding intervals exceeded 1 mm, and an interval of 1 mm corresponds
to approximately 15 pixels in the input image. Therefore, for the VGG
network, the outputs of the first four convolution layers were least
uncorrelated, even in adjacent ROIs. Furthermore, in the extracted ROI,
pixels outside the liver region and those discarded by normalization
were <1%. All ROIs were rotated so that each vertical (depth) direction
in the center pixel followed the scan line, as shown in Figure 1D.

2.3 Echo-envelope statistics in ROIs

As indicated in Table 1, 27,046 ROIs were extracted from the
80 ultrasound images. Approximately, a hundred to a few hundred
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ROIs could be extracted from a single ultrasound image. First, the
moments in the echo-envelope statistics of all ROIs were
investigated. In each ROI, the first-, second-, third-, and fourth-

order moments were estimated from all pixels. The first-, third-, and
fourth-order moments were then divided by the root, three-half
power, and square of the second-order moment for normalization.

FIGURE 1
Normalization of ultrasound image and extraction of regions of interest; (A) envelopes of raw echo data, (B) local 2nd-order moments, (C)
normalized envelopes, and (D) extracted ROIs.

TABLE 1 Numbers of regions of interest (ROIs) (15 mm × 15 mm) extracted from segmented liver regions.

Fibrosis stage Subjects Numbers of ROIs per subject Numbers of ROIs

F1 20 171–797 7,326

F2 20 142–635 6,759

F3 20 148–490 6,461

F4 20 107–597 6,500

FIGURE 2
Moments estimated from all pixels in each ROI: (A) first-, (B) third-, and (C) fourth-order moments.
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The first-, third-, and fourth-order moments of all ROIs are shown
in Figure 2. All-order moments vary depending on the stage of liver
fibrosis. However, the dispersion of moments in each stage was high
compared to the interquartile range (IQR) of moments. If echoes
generated not from the liver parenchyma or fibrous tissues but from
the vessel walls or lipid droplets are included in an ROI, the
moments of the ROI do not correspond to the stage of liver
fibrosis. Therefore, such inadequate ROIs should be removed in
echo-envelope statistics-based analyses.

In this study, the moments of adequate ROI were estimated
from the liver fibrosis stages and inadequate ROIs were removed
using the thresholds of the moments. The probability density
function (PDF) of an ultrasound image of a fibrotic liver can be
approximated using various probability distribution models
[9–12]. The multi-Rayleigh model (MRM) is expressed by
two different Rayleigh distributions, which are associated
with those from the liver parenchyma and fibrous tissue
regions, as illustrated in Figure 3. The MRM is expressed
using Eq. 1:

pMRM x( ) � 1 − αH( ) 2x
σL

2
exp − x2

σL
2

( ) + αH
2x
σH

2
exp − x2

σH
2

( ), (1)

where x is the envelope in each pixel, the variance σL2 is the
energy of echoes from the liver parenchyma region, the variance
σH2 is the energy of echoes from the fibrous tissue region, and αH
is the rate of the fibrous tissue region. The theoretical first-order
moments corresponding to various stages of liver fibrosis can be
estimated by changing the variance ratio σH2/σL2 and fibrotic rate
αH of the MRMs, as illustrated in Figure 4. To determine the
thresholds of the first-order moments, the MRMs with σH2/σL2 of
2.2 and 4.2 were set. Then, the ranges of αH were set from 0.02 to
0.06 as F1, from 0.08 to 0.12 as F2, from 0.14 to 0.18 as F3,
and from 0.2 to 0.24 as F4. Consequently, 19,994 ROIs were
selected from 27,046 ROIs based on the thresholds. Furthermore,
approximately 128 ROIs were randomly selected in each
ultrasound image and 10,240 ROIs were used for CNN
classification, as shown in Table 2.

2.4 Colorization of ROIs

In this study, the third- and fourth-order moments
estimated from all the pixels were used for the colorization
of the ROIs. The third- and fourth-order moments of the
selected ROIs are shown in Figure 5. Both moments increase
depending on the stage of liver fibrosis. First, the moments were
normalized from −1 to 1 using the theoretical moments
estimated from the MRMs. In the case of the third-order
moment, the moments from 1.335 to 1.508, which were
estimated from MRM1 with the variance ratio of 2.2 and the
fibrotic rate of 0.02, and MRM2 with the variance ratio of

FIGURE 3
Probability density function of the multi-Rayleigh model with the variance ratio σH2/σL2 of 3 and fibrotic rate αH of 0.2.

FIGURE 4
First-order moments estimated from the multi-Rayleigh models
and thresholds to select ROIs.
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4.2 and the fibrotic rate of 0.24, were adopted to increase
from −1 to 1. In the case of the fourth-order moment, the
moments from 2.021 to 2.720, which were also estimated from
MRM1 and MRM2, were adopted to decrease from 1 to −1.

For colorization, the ROIs were modulated using normalized
third- and fourth-order moments. The modulated envelopes are
expressed using Eqs 2, 3:

I3,j,k � Îj,k*2
M̂3 , (2)

I4,j,k � Îj,k*2
M̂4 , (3)

where j and k denote the coordinates of the pixel, Îj,k is the
normalized envelope in each ROI, and M̂3 and M̂4 are the
normalized moments from −1 to 1. The color image was created
using the original image of Îj,k and the modulated images I3,j,k and
I4,j,k in the blue, green, and red layers, respectively. Examples of the
colorized ROIs are shown in Figure 6.

2.5 Learning and validation of CNN

The colorized and original ROIs were used for comparison to
train, validate, and test the VGG-16 pretrained network. In this
study, the VGG-16 in the Deep Learning Toolbox in MATLAB was
used for CNN classification. VGG-16 comprises 13 convolution
layers and three fully connected layers. To classify the METAVIR
scores from F1 to F4, the last fully connected layer was replaced with
a new layer (input: 4,096 and output: 4), as illustrated in Figure 7.
The weights of the new layer (fully connected 8) were initialized

using random numbers. In transfer learning, only the last two
convolutional layers (convolution 5-2 and 5-3) and three fully
connected layers (fully connected 6, 7, and 8) were trained to
prevent early overfitting. Training was performed using a
stochastic gradient descent with a mini-batch processing of
64 images. The dropouts between the fully connected layers were
70%.With a simple scheme for training, validation, and testing using
different datasets, it is impossible to avoid the effects of dataset bias.
Therefore, a five-fold cross-validation was performed. The
10,240 ROIs of 80 ultrasound images were divided into five sets,
with 2,048 ROIs from 16 ultrasound images in each set. Three of the
five sets were used as training sets with one used as a validation set
and the remaining used as a test set. Data augmentation was
performed on the training sets by horizontal flipping. The
learning rates were randomly varied from 5 × 10−6 to 5 × 10−5.
The training and validation of the 10 epochs were repeated 40 times
within the range of the learning rates. The trained networks were
saved at each epoch and learning rate. The network with the lowest
validation loss was selected as the test network. These processes were
performed for each fold of different combinations of sets.

3 Results and discussion

The results of the five-fold cross-validation for the CNN
classification of the original and colorized ROIs are listed in
Table 3. The confusion matrix of the predicted and true liver
fibrosis stages for all ROIs is shown in Figure 8. The accuracies
of the CNN classification of the original ROIs with the stages at F1,

TABLE 2 Numbers of regions of interest (ROIs) used for CNN classification.

Fibrosis stage Subjects Numbers of ROIs per subject Numbers of ROIs

F1 20 81–149 2,560

F2 20 128 2,560

F3 20 127–129 2,560

F4 20 95–139 2,560

FIGURE 5
Moments estimated from all pixels in used ROI and thresholds to normalize moments; (A) 3rd- and (B) 4th-order moments.
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F2, F3, F4, and total were 48.24%, 38.52%, 24.65%, 37.27%, and
37.17%, respectively, and the colorized ROIs were 85.98%, 25.35%,
41.33%, 50.78%, and 50.76%, respectively. The correlation
coefficients between the predicted and true stages of the original
and colored ROIs were 0.349 and 0.665, respectively. The total

accuracy and correlation coefficient were improved by colorization.
The colorized ROIs of F1 were accurately classified, whereas those of
F2 were poorly classified.

To investigate the effect of colorization on CNN classification,
the relationship between the predicted stages and third-order

FIGURE 7
Architecture of the partly replaced VGG-16.

FIGURE 6
Example of colorized ROI in 32 cases.
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moments was examined. The abscissa axis indicates the third-order
moment of each ROI, the ordinate axis indicates the number of
ROIs, and the colors in the bar charts indicate the predicted stages,
as shown in Figure 9. In the CNN classification of the original ROIs,
the predicted stages andmoments are almost uncorrelated, as shown
in Figures 9A–D. Therefore, the echo-envelope statistics of the
ultrasound images did not influence the CNN classification. The
colorized ROIs were classified based on the colors corresponding to
the moments, as shown in Figures 9E–H. The correlation
coefficients between the predicted stages and the third-order
moments increased from 0.440 to 0.806 after colorization.
However, in terms of moments, the difficulty of the classifying
F2 was confirmed. Some ROIs of F2 with low third-order moments

were classified as F1, whereas those with high third-order moments
were classified as F3.

In the proposed method, approximately 128 ROIs were
extracted from one ultrasound image and classified according
to the liver fibrosis stages. Therefore, voting for the predicted
stages of all ROIs in each image can be performed. The stage of
each ultrasound image was estimated by hard voting of the
predicted original and colorized ROIs. The confusion matrix
of the estimated and true liver fibrosis stages for all ultrasound
images is shown in Figure 10. In the case of original ROIs, the
accuracies of the images at the stages of F1, F2, F3, F4, and total
were 65%, 50%, 25%, 50%, and 47.5%, respectively. In the case of
colorized ROIs, they were 100%, 15%, 55%, 65%, and 58.75%,

TABLE 3 Results of five-fold cross-validation for the CNN classification of ultrasound images by liver fibrosis stages; (A) original grayscale ROIs and (B) colorized
ROIs.

(A)

Set 1 2 3 4 5

Learning rate 3.93 × 10−5 3.75 × 10−5 4.39 × 10−5 8.99 × 10−6 1.56 × 10−5

Minimum loss 1.263 1.331 1.306 1.304 1.273

Epochs 2 2 3 7 4

Accuracy of the test 37.60% 41.36% 31.35% 37.50% 38.04%

(B)

Set 1 2 3 4 5

Learning rate 1.98 × 10−5 9.04 × 10−6 4.82 × 10−5 3.65 × 10−5 9.65 × 10−6

Minimum loss 1.025 1.033 0.911 1.010 0.989

Epoch 3 2 4 2 6

Accuracy of the test 47.95% 49.37% 49.17% 53.03% 54.79%

FIGURE 8
Confusion matrix in the CNN classification of 10,240 ROIs by liver fibrosis stages; (A) original grayscale ROIs and (B) colorized ROIs.
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respectively. Except for the ultrasound images of F2, the accuracy
was improved by hard voting.

The performance of the proposed method was compared to that
of a previous method proposed by Huang et al. [21]. Both studies
used raw echo data obtained from similar devices without log
compression. The results, as the binary classification of stages of
liver fibrosis, were calculated according to a previous study, as
indicated in Table 4. The previous method, which uses
radiofrequency signals, is superior to the proposed method,

which uses a hard voting of ROIs. This was attributed to the
larger dataset used in the previous method. However, the
proposed method demonstrated superior specificity for ≥F2 and
higher accuracy and sensitivity for ≥F3. This was attributed to the
high accuracy of F1 in the proposed method and the low accuracy of
F3 in the previous method.

The only limitation to this study was that the amount of clinical
data used was small. If the amount of data in each stage is different, a
learning bias toward the large-data stage can occur. Therefore, the

FIGURE 9
Relationship between predicted stages and third-order moments in CNN classification; (A–D) original grayscale ROIs, (E–H) colorized ROIs, (A,E)
ROIs of F1, (B,F) ROIs of F2, (C,G) ROIs of F3, and (D,H) ROIs of F4.

FIGURE 10
Confusion matrix of estimated stages of liver fibrosis of 80 ultrasound images by the hard voting of predicted ROIs; (A) original grayscale ROIs and
(B) colorized ROIs.
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number of ultrasound images at each stage must be adjusted to
match the stage with the fewest number of images. However, the
contribution of this study was to investigate whether colorization
using echo-envelope statistics improves the performance of CNN
classification according to liver fibrosis stages. In this regard, it
achieved its intended purpose.

4 Conclusion

The CNN classification of ultrasound images colorized by echo-
envelope statistics has been proposed for the non-invasive and
accurate quantitative diagnosis of liver fibrosis caused by diffuse
liver disease. In this study, the ROIs extracted from the ultrasound
images were modulated by the third- and fourth-order moments of
the echo envelopes. Subsequently, the modulated and original ROIs
were synthesized for the color image in the RGB representation. The
colorized ROIs were classified by liver fibrosis stages from early
fibrosis of F1 to cirrhosis of F4 via transfer learning using VGG-16.
Finally, the stage of each ultrasound image was determined by hard
voting, the predicted stages of all ROIs from the image. In the CNN
classification of 80 ultrasound images, 20 ultrasound images at each
stage, the accuracy could be improved from 47.5 % to 58.75% by the
colorization of ROIs. Furthermore, as the binary classification
of ≥F2, ≥ F3, and ≥ F4, the accuracies of 91%, 80%, and 78%
were achieved.
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