250 research outputs found

    FPT algorithms for finding near-cliques in c-closed graphs

    Get PDF
    Finding large cliques or cliques missing a few edges is a fundamental algorithmic task in the study of real-world graphs, with applications in community detection, pattern recognition, and clustering. A number of effective backtracking-based heuristics for these problems have emerged from recent empirical work in social network analysis. Given the NP-hardness of variants of clique counting, these results raise a challenge for beyond worst-case analysis of these problems. Inspired by the triadic closure of real-world graphs, Fox et al. (SICOMP 2020) introduced the notion of c-closed graphs and proved that maximal clique enumeration is fixed-parameter tractable with respect to c. In practice, due to noise in data, one wishes to actually discover “near-cliques”, which can be characterized as cliques with a sparse subgraph removed. In this work, we prove that many different kinds of maximal near-cliques can be enumerated in polynomial time (and FPT in c) for c-closed graphs. We study various established notions of such substructures, including k-plexes, complements of bounded-degeneracy and bounded-treewidth graphs. Interestingly, our algorithms follow relatively simple backtracking procedures, analogous to what is done in practice. Our results underscore the significance of the c-closed graph class for theoretical understanding of social network analysis

    Enumerating Isolated Cliques in Temporal Networks

    Full text link
    Isolation is a concept from the world of clique enumeration that is mostly used to model communities that do not have much contact to the outside world. Herein, a clique is considered isolated if it has few edges connecting it to the rest of the graph. Motivated by recent work on enumerating cliques in temporal networks, we lift the isolation concept to this setting. We discover that the addition of the time dimension leads to six distinct natural isolation concepts. Our main contribution is the development of fixed-parameter enumeration algorithms for five of these six clique types employing the parameter "degree of isolation". On the empirical side, we implement and test these algorithms on (temporal) social network data, obtaining encouraging preliminary results

    Enumeration of s-d separators in DAGs with application to reliability analysis in temporal graphs

    Get PDF
    Temporal graphs are graphs in which arcs have temporal labels, specifying at which time they can be traversed. Motivated by recent results concerning the reliability analysis of a temporal graph through the enumeration of minimal cutsets in the corresponding line graph, in this paper we attack the problem of enumerating minimal s-d separators in s-d directed acyclic graphs (in short, s-d DAGs), also known as 2-terminal DAGs or s-t digraphs. Our main result is an algorithm for enumerating all the minimal s-d separators in a DAG with O(nm) delay, where n and m are respectively the number of nodes and arcs, and the delay is the time between the output of two consecutive solutions. To this aim, we give a characterization of the minimal s-d separators in a DAG through vertex cuts of an expanded version of the DAG itself. As a consequence of our main result, we provide an algorithm for enumerating all the minimal s-d cutsets in a temporal graph with delay O(m3), where m is the number of temporal arcs

    Enumeration of s-d Separators in DAGs with Application to Reliability Analysis in Temporal Graphs

    Get PDF

    Temporal Unit Interval Independent Sets

    Get PDF
    Temporal graphs have been recently introduced to model changes to a given network that occur throughout a fixed period of time. We introduce and investigate the Temporal ? Independent Set problem, a temporal variant of the well known Independent Set problem. This problem is e.g. motivated in the context of finding conflict-free schedules for maximum subsets of tasks, that have certain (changing) constraints on each day they need to be performed. We are specifically interested in the case where each task needs to be performed in a certain time-interval on each day and two tasks are in conflict on a day if their time-intervals overlap on that day. This leads us to considering Temporal ? Independent Set on the restricted class of temporal unit interval graphs, i.e., temporal graphs where each layer is unit interval. We present several hardness results for this problem, as well as two algorithms: The first is a constant-factor approximation algorithm for instances where ?, the total number of time steps (layers) of the temporal graph, and ?, a parameter that allows us to model some tolerance in the conflicts, are constants. For the second result we use the notion of order preservation for temporal unit interval graphs that, informally, requires the intervals of every layer to obey a common ordering. We provide an FPT algorithm parameterized by the size of minimum vertex deletion set to order preservation

    Distance-generalized Core Decomposition

    Full text link
    The kk-core of a graph is defined as the maximal subgraph in which every vertex is connected to at least kk other vertices within that subgraph. In this work we introduce a distance-based generalization of the notion of kk-core, which we refer to as the (k,h)(k,h)-core, i.e., the maximal subgraph in which every vertex has at least kk other vertices at distance ≤h\leq h within that subgraph. We study the properties of the (k,h)(k,h)-core showing that it preserves many of the nice features of the classic core decomposition (e.g., its connection with the notion of distance-generalized chromatic number) and it preserves its usefulness to speed-up or approximate distance-generalized notions of dense structures, such as hh-club. Computing the distance-generalized core decomposition over large networks is intrinsically complex. However, by exploiting clever upper and lower bounds we can partition the computation in a set of totally independent subcomputations, opening the door to top-down exploration and to multithreading, and thus achieving an efficient algorithm
    • …
    corecore