-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Enumeration of s-d Separators in DAGs with
Application to Reliability Analysis in Temporal
Graphs

Alessio Conte
Universita degli Studi di Pisa, Dipartimento di Informatica, Italy
conte@di.unipi.it

Pierluigi Crescenzi

Université de Paris, IRIF, CNRS, France

On-leave from Universita degli Studi di Firenze, DiMal, Firenze, Italy
pierluigi.crescenzi@irif.fr

Andrea Marino
Universita degli Studi di Firenze, DiSIA, Firenze, Italy
andrea.marino@unifi.it

Giulia Punzi
Universita degli Studi di Pisa, Dipartimento di Informatica, Italy
giulia.punzi@phd.unipi.it

—— Abstract
Temporal graphs are graphs in which arcs have temporal labels, specifying at which time they can be
traversed. Motivated by recent results concerning the reliability analysis of a temporal graph through
the enumeration of minimal cutsets in the corresponding line graph, in this paper we attack the
problem of enumerating minimal s-d separators in s-d directed acyclic graphs (in short, s-d DAGs),
also known as 2-terminal DAGs or s-t digraphs. Our main result is an algorithm for enumerating all
the minimal s-d separators in a DAG with O(nm) delay, where n and m are respectively the number
of nodes and arcs, and the delay is the time between the output of two consecutive solutions. To this
aim, we give a characterization of the minimal s-d separators in a DAG through vertex cuts of an
expanded version of the DAG itself. As a consequence of our main result, we provide an algorithm
for enumerating all the minimal s-d cutsets in a temporal graph with delay O(m?), where m is the
number of temporal arcs.

2012 ACM Subject Classification Theory of computation — Graph algorithms analysis
Keywords and phrases minimal cutset, temporal graph, minimal separator, directed acyclic graph
Digital Object Identifier 10.4230/LIPIcs. MFCS.2020.25

Funding A.C. and A.M. have been partially supported by MIUR under PRIN Project AHeAD
(Efficient Algorithms for HArnessing Networked Data). A.M. has been partially supported by
University of Florence under Project GRANTED (GRaph Algorithms for Networked TEmporal
Data).

Acknowledgements We would like to thank Gaurav Khanna and Lhouari Nourine for several useful

discussion by e-mail.

1 Introduction

A fundamental task to be accomplished while analysing the reliability of a network consists of
designing, analysing, and implementing efficient algorithms for the extraction of all minimal
cutsets [22]. Formally, given a (directed) graph G = (V, A) and two nodes s,d € V, a
minimal s-d cutset S C A is a minimal set of arcs whose removal disconnects s from d. The
enumeration of minimal cutsets in graphs has been a very active research area since the end
© Alessio Conte, Pierluigi Crescenzi, Andrea Marino, and Giulia Punzi;

37 licensed under Creative Commons License CC-BY
45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Kral’; Article No. 25; pp. 25:1-25:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/343692695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:conte@di.unipi.it
mailto:pierluigi.crescenzi@irif.fr
mailto:andrea.marino@unifi.it
mailto:giulia.punzi@phd.unipi.it
https://doi.org/10.4230/LIPIcs.MFCS.2020.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2

Enumeration of s-d Separators in DAGs

of the sixties [11]. It is now known that listing minimal cutsets can be done, with O(m)
delay, both in undirected [25] and directed graphs [21] (thanks to the characterization given
in [24]), where m denotes the number of arcs of the graph and the delay is the time between
the output of a minimal cutset and the successive one (reporting all the results obtained in
this field is clearly out of the scope of this paper).

Recently [7, 12], the minimal cutset technique for determining the reliability of a complex
system has been also applied to the case of temporal graphs (in particular, to the case of
delay tolerant networks [9, 13]). Several definitions of temporal graphs have been introduced
in the literature, even with different notation and terminology (see, for example, [5, 6, 15]):
here, we mostly refer to the definitions of [18]. A temporal graph is a pair G = (V, A),
where V is the set of n nodes and F is the set of m temporal arcs. A temporal arc a € A
is a triple (u,v,\), where u,v € V are the tail and head nodes of the arc, respectively,
and A € N is its appearing time. For example, the temporal graph G in the left part of
Figure 1 has five nodes and nine temporal arcs (which are listed below the graph). A
temporal u-v path in a temporal graph G = (V, A) from a node u € V to a node v € V
is a sequence {(u,z1,\1), (z1,2Z2,\2),...,(Tk—1,v, Ag)) of temporal arcs in A such that,
for each ¢ with 1 < i < k, A\; > A\;_1. For example, the temporal graph G in the left
part of Figure 1 contains the following four temporal s-d paths: 71 = ((s,a,1), (a,d,4)),
w2 = ((s,a,1),(a,c,2),(c,d,3)), m3 = ((s,b,2),(b,d,4)), and w4 = ((s,b,2), (b, a,3), (a,d, 4)).
We can now adapt the definition of minimal cutset to the case of temporal graphs. Given an
s-d temporal graph G = (V, A), a minimal s-d cutset is a minimal set S C A of temporal
arcs of G, whose removal breaks all temporal s-d paths. For example, with respect to the
temporal graph G in the left part of Figure 1, we have that S = {(s,a, 1), (b,a,3), (b,d,4)}
is a minimal s-d cutset.

In [12], the authors propose to enumerate all minimal s-d cutset in a temporal graph G,
by first transforming G into the corresponding s-d line graph (as suggested in [16]). Given a
temporal graph G = (V, A) and two nodes s,d € V, its corresponding (static) s-d line graph
contains a node for each temporal arc a € A, and, for any two nodes a; = (u1,v1, A1) and
as = (ug,v9, A2), contains the arc (a1, aq) if and only if v; = uy and Ay > A1 (with a little
abuse of notation, we denote by the same symbol the temporal arc of the temporal graph
and the corresponding node of the corresponding static line graph). Moreover, the line graph
contains two nodes s and d, and, for any arc a = (s, u, A) € A (respectively, a = (u,d, \) € A),
it contains the arc (s,a) (respectively, (a,d)). In the middle part of Figure 1, we show the
s-d line graph corresponding to the temporal graph in the left part of the figure. It is easy to
verify that the s-d line graph of a temporal graph is an s-d directed acyclic graph (in short,
s-d DAG) (also called, in the literature, st-digraph [4] or 2-terminal DAG [8]).

Given a (directed) graph G = (V, A) and two nodes s,d € V, a minimal s-d separator
S C V is a minimal set of nodes which disconnects s from d. From the definition of line
graph, it follows that there is a one-to-one correspondence between the minimal s-d cutsets
in a temporal graph and the minimal s-d separators in the corresponding s-d line graph. For
example, the s-d line graph in the center of Figure 1 contains the following seven minimal
s-d separators: {a1,as}, {a1,a4,08}, {a1,a7,as}, {az,as,ar}, {az,as,a7}, {as,ar,as}, and
{ag,ar,as}. By using the list of arcs, it is easy to find the seven corresponding minimal
cutsets in the temporal graph in the left part of the figure: for example, the minimal s-d
separator {ai,a4,as} corresponds to the minimal cutset {(s,a,1),(b,a,3),(b,d,4)}. The
problem of enumerating the minimal s-d cutsets in a temporal graph has thus been reduced
to the problem of enumerating the minimal s-d separators in a DAG. In [12], the
authors solve this problem by enumerating all minimal cutsets in the DAG and by then

A. Conte, P. Crescenzi, A. Marino, and G. Punzi

>

4
3 2

F=0

ay = (57 a, 1) as = (Cy a, 3)

az = (87 ba 2) a6 = (Cy d: 3)

as = (aa ¢, 2) a7 = (aa da 4)
((

Figure 1 A temporal graph with 5 nodes and 9 temporal arcs (left), its corresponding line graph
(center), which is an s-d DAG, and its corresponding expanded s-d DAG (right), without the node
ag (which cannot participate to any s-d separator).

transforming each cutset into a separator, possibly discarding cutsets that do not correspond
to any minimal separator, or that correspond to a minimal separator already listed. This
approach, however, does not guarantee any polynomial bound on the delay of the enumeration
algorithm. On the other hand, even if there are many results concerning the enumeration of
minimal s-d separators in undirected graphs (see [23] for the best delay bound, that is, O(n?)
where n is the number of nodes), as far as we know, no explicit results have been published
concerning the enumeration of minimal s-d separators in directed graphs or, more specifically,
in DAGs. The techniques of [23] seem to be tailored to undirected graphs and difficult to be
applied to directed graphs. It might be that the lattice-based techniques of [3] combined
with the algorithm for building lattices described in [20] could be applied to the case of
DAGs, but the space complexity of the enumeration algorithm would be exponential in the
number of nodes. Moreover, the lattice techniques have been used to enumerate all minimal
separators (not just the minimal s-d separators): indeed, in [3], the authors themselves pose
as an open problem whether the complexity of the two problems is the same.

Our main result is an algorithm for enumerating all the minimal s-d separators
in a DAG with O(nm) delay, where m is the number of arcs and n is the number of
nodes. To this aim, we basically reduce the problem of enumerating all the minimal s-d
separators in a DAG to the problem of enumerating all the minimal s-d cutsets in a DAG,

with the additional constraint that the cutsets have to be subsets of a specific set of arcs.

More precisely, the enumeration algorithm makes use of a characterization of the minimal
s-d separators in a DAG through vertex cuts of an expanded version of the DAG itself. This
characterization is similar to the one provided in [24] for enumerating all minimal cutsets in
a directed graph.

As a consequence of our main result, we provide an algorithm for enumerating all
the minimal s-d cutsets in a temporal graph with delay O(m3), where m is the
number of temporal arcs. We also mention that other papers have been devoted to studying

other aspects of cuts in temporal graphs, as the complexity of finding one minimum, i.e.

bounded size, separator [27] and one minimum cutset [2]. Our algorithm for enumerating
minimal cutsets in temporal graphs contributes to the general field of the enumeration
of topological structures in temporal graphs, such as temporal cliques [10, 26], temporal
k-plexes [1], temporal paths [14], and bicriteria temporal paths [19].

25:3

MFCS 2020

25:4

Enumeration of s-d Separators in DAGs

Notations, definitions, and preliminary results

A directed graph is a pair G = (V, A), where V is the set of n nodes and A is the set of
m arcs. An arc a € A is a pair (u,v), where u,v € V are the tail and head nodes of the
arc, respectively (in the following, we will denote by 7(a) and n(a) the tail and the head
of the arc a, respectively). The out-neighbor Ng (u) (respectively, in-neighbor Ng (u)) of a
node u € V is the set of nodes v such that (u,v) € A (respectively, (v,u) € A). Given a
set U C V, we will denote by G[U] the graph induced by U in G, that is G[U] = (U, A[U]),
where A[U] C A and, for any a € A, a € A[U] if and only if 7(a) € U and n(a) € U. A
u-v walk W from a node v € V to a node v € V is a sequence of arcs (aj,as,...,ax) such
that v = 7(a1), v = n(ax), and, for each ¢ with 1 < i < k, 7(a;) = n(a;—1). A u-v path
P is a u-v walk with pairwise distinct nodes. A directed acyclic graph (in short, DAG)
is a directed graph which does not contain any u-u walk, for any node u. Given a DAG
G = (V,A) and a node u € V, we will denote by succg(u) (respectively, pred,(u)) the set
of successors (respectively, predecessors) of u, that is, the set of nodes v such that G contains
a u-v (respectively, v-u) path (note that succg(u) Npreds(u) = 0).

s-d DAGs and s-d separators. An s-d DAG is a DAG G = (V, A) along with two specified
nodes s,d € V such that (1) there is no arc a € A such that n(a) = s or 7(a) = d, (2)
(s,d) ¢ A, and (3) for any node u € V, there exists an s-u path and a u-d path in G. By
applying standard graph visits, given a DAG and two nodes s and d, we can easily compute
the corresponding s-d DAG in time O(m). Indeed, after possibly deleting the arc (s,d), it
suffices to execute a “forward” traversal from s and a “backward” traversal from d, and to
then remove the nodes not “touched” in both traversals. For example, in the case of the
DAG of the center part of Figure 1, we have that the node ag can be removed, since there is
no s-ag path in the DAG. Given an s-d DAG G = (V, A) and a subset S C V of nodes of G,
G\ S denotes the DAG obtained by removing all nodes in S and all arcs a € A such that
{r(a),n(a)} NS # 0. A subset S CV is an s-d separator of G if {s,d} NS = () and there
is no s-d path in G\ S. An s-d separator S is minimal if no proper subset of S is an s-d
separator. For example, with respect to the s-d DAG G in the center part of Figure 1, we
have that S = {a1,a4,a7,as} is an s-d separator, but it is not minimal, since S\ {a4} and
S\ {ar} are also s-d separators.

Expanded s-d DAGs. Given an s-d DAG G = (V, A), the expanded s-d DAG E(G) =
(E(V),E(A)) contains, for each node u € V, two nodes u' and u” connected by the arc
(ut,u™) and, for any arc (u,v) € A, it contains the arc (u”,v?) (in the following, the nodes of
type u' will be called tail nodes, while the others will be called head nodes). For example,
in the right part of Figure 1 we show the expanded s-d DAG corresponding to the s-d
DAG in the center part of the figure. Given a set U C V of nodes of G, U" C E(V) is the
corresponding set of head nodes in E(G), that is, U" = {u" : u € U}. The following result
can be easily proved (in the following, given a set @ and a subset P C @, we will denote by
P the set Q\ P).

» Lemma 1. Given an s-d DAG G = (V, A), let E(G) = (E(V),E(A)) be the corresponding
expanded s-d DAG, and let U C V. For anyv € V, v € succG[ﬁ](s) if and only if

vh e SUCCy oy () (st).

2 Minimal s-d separator characterization through vertex cuts

Our algorithm for enumerating the minimal s-d separators of an s-d DAG G is based on the
recursive construction of a set X of nodes of the corresponding expanded s-d DAG E(G).
Such a set X will induce an s-d cut set in E(G) consisting of all arcs whose tail node is in

A. Conte, P. Crescenzi, A. Marino, and G. Punzi

X and whose head node is not in X. In order to guarantee that this cut set corresponds
to a minimal s-d separator in G, the set X has to satisfy some specific properties: the
goal of this section is to formally state these properties and to give a characterization of
the minimal s-d separators of an s-d DAG G. To this aim, we will refer to the concept of
vertex cut, similarly to what has been done in [24] for listing minimal cut sets. Given an
s-d DAG G = (V, A) and its corresponding expanded s-d DAG E(G) = (E(V),E(A)), let

X CE(V). The verter cut (X, X) in G is defined as (X, X) ={u €V :ut € X Au" € X}.

For example, with respect to the expanded s-d DAG in the right part of Figure 1, if we choose
X = {a},al,ak,al}, the corresponding vertex cut in the s-d DAG in the center of the figure
is given by (X, X) = {a1, a4, ar,ag}, which is an s-d separator. Clearly, not all vertex cuts
(X, X) are also s-d separators: for instance, if we choose X = {a},al}, the corresponding
vertex cut is (X, X) = {a1, ag}, which is not an s-d separator since, after removing a; and
ag, there is still an s-d path passing through nodes as, a4, and az.

» Definition 2. Given an s-d DAG G = (V, A) and its corresponding expanded s-d DAG
E(G) = (E(V),E(A)), a subset X C E(V) is said to be good if

G1 {st,s"} C X;

G2 {d',d"} C X; and
G3 for any u" € X, NE(G
» Lemma 3. Given an s-d DAG G = (V, A) and its corresponding expanded s-d DAG
E(G) = (E(V),E(A)), let X CE(V) be good. Then S = (X, X) is an s-d separator in G.

)(uh) C X.

Proof. Since {s?,s"} C X and {d*,d"} C X, we have that {s,d} NS =). Let us suppose, by
contradiction, that there exists an s-d path in G\S. Let ((s, u1),(u1, u2),. . . ,(ug—1, ug),(ug, d))
be such a path, where, for each i with 1 < i < k, u; € S. From the definition of expanded s-d

DAG, it follows that any arc (,y) in G corresponds to a pair (zf, z")(z",y?) of arcs in E(E).

Hence, ((s', s")(s", ub), (ul, ub), (ul, ub), (b, ub), . (ulh_y, uf), (i), o,) (', d)) s
a path in E(G). Because of property G1 of the goodness definition, we have that s" € X.
Because of property G3 and since u} € NE'(G)(sh)7 we have that u} € X. Since u; € S, we
have that u € X. By iterating this process, we can conclude that uz € X. Because of
property G3 and since d' € NIEL(G) (’U,Z), we have that d* € X, contradicting property G2. We
can thus conclude that there exists no s-d path in G\ S, and the lemma has been proved. <«

Note that, for a vertex set X, being good is not a necessary condition, for the corresponding
vertex cut (X, X), for being an s-d separator. For example, with respect to the expanded
s-d DAG in the right part of Figure 1, we have already seen that the set X = {a},d’,ak,al}
corresponds to an s-d separator in the s-d DAG in the center of the figure. However, X is
not good, since, for example, it contains neither s* nor s” and, hence, it does not satisfy
property G1 of the goodness definition. The next result shows that, by adding a few more
hypotheses, we can obtain a full characterization of minimal s-d separators in terms of
good vertex sets (in the following, I'(X) denotes the “neighborhood” of X in X, that is,
I(X)={u"e X :u € X}).

» Theorem 4. Given an s-d DAG G = (V, A), S CV is a minimal s-d separator if and only

if there exists an X CE(V) such that the following conditions are satisfied.

1. S =(X,X) and X is good.

2. succy(q)x](s) U{s'} = X (that is, the set of the successors of s* in the graph induced
by X in E(G) is equal to X).

3. T(X) C predy g% (d") U {d"} (that is, the set of the predecessors of d" in the graph
induced by X in E(G) includes T'(X)).

25:5

MFCS 2020

25:6

Enumeration of s-d Separators in DAGs

ag > a} al
sh af as
st ué a’SL a; dh
aéf at a}; dt
ag
ag

Figure 2 The proof of the necessity in Theorem 4: the gray nodes are in the minimal separator
S, the red diamond nodes are in S", and the green rectangle nodes are in X (hence, X consists of
the white circle and red diamond nodes).

Proof. Let us first prove the necessity. To this aim, let S C V be a minimal s-d separator.
We then define X = {s'} U SuCCE(G)[ﬁ](St)7 where S" = {u” : u € S} (see Figure 2). We
will now prove that this vertex set satisfies the required conditions.

X is good. Since s € S, we have that s" ¢ S": since (st,s") € E(A), it follows that
sh e succE(G)[ﬁ](st). Hence, both s* and s" belongs to X and property G1 is satisfied.
Since d ¢ S, we have that {d*,d"} N S" = (): if by contradiction d* € succE(G)[ﬁ](st),
(G)[ﬁ](st) (since (dt,d") € E(A)). From Lemma 1, it follows that d €

succg(q)v\s)(s), contradicting the fact that S is an s-d separator. Hence, neither d* nor d"
belongs to X, and property G2 is satisfied. Finally, if u" € X, then u" € succy

then d" € succy

(@Fm (+)
From the definition of S and since all out-neighbors of a head node are tail nodes, we
have that, for any u” € X, Nﬂg)(uh) N S" = (). Hence, for any v’ € Nﬂg)(uh), we have

(s'): that is, v* € X. Hence, N,

that vt € SUCCy) (3A] E(

also satisfied. We can conclude that X is good.

S = (X, X). First, we show that S C (X, X). Let u € S, and, by contradiction, suppose
that u ¢ (X, X). Note that by definition of S", we have that u” € S and, hence, that
ul ¢ succ (s'), that is, u" € X. Since u & (X, X), this implies that u* ¢ X, that
. Since E(G) is a DAG, there is no u”-u® path in E(G): hence, we

(s'). Since u! is the only in-neighbor of u”, this implies

G)(uh) C X and property G3 is

E(G)[5]
is, u' ¢ succE(G)[ﬁ](st)
have that u! & succ

h _ t
that u" ¢ SUCCy) (5L fuh)] (sY)
that is, reintegrating u in G does not produce any s-d path (since u is not a successor of
s in G[(V'\ S)U{u}]). This contradicts the minimality of S. Hence, u must belong to
(X, X): we have thus proved that S C (X, X). In order to prove the opposite inclusion,
let u € (X, X), that is, u* € X and u" € X. By contradiction, suppose that u ¢ S, which

implies that u" € S*. Since u' € X, we have that u! € succ (s*). By using the

arc (ut,u"), we have that u" € succ

E(G)[SMU{u"}]
. From Lemma 1, it follows that u ¢ succgiv\s)ufu}](5),

E(G)[S"]
E(G)[ﬁ](sh): that is, u" € X, which contradicts the

fact that v € X. Thus, we have that (X, X) C S, and, hence, that S = (X, X).

A. Conte, P. Crescenzi, A. Marino, and G. Punzi 25:7

this arc is in G[T"] since
ut € 8P and u ¢ TH

nodes in this nodes in this

path are in Sh path are in Sh

if of € §" N X
then vt € ShN X

Figure 3 The proof of the sufficiency in Theorem 4.

succy(g)x](s’) U {s'} = X. Clearly, succyg)x)(s’) € X. Let us show the opposite
inclusion. By contradiction, suppose that there exists x € X \ succE(G)[X](st). By
definition of X, there is an s*-z path in E(G)[S?]. Since z ¢ succy(g)[x](s’), this path
must contain a node of X: let y the first such node. We have then found a node y € X

such that y € succ]E(G)[ﬁ](st) C X, which is a contradiction.

['(X) € predy ¢ x (d") U {d"}. Suppose, by contradiction, that there exists u" € T'(X)
such that d" ¢ SUCCH (X (u). We now show that T = S\ {u} is an s-d separator,

thus contradicting the minimality of S. Suppose, by contradiction, that 7" is not an s-d
separator: that is, d € succG[T](s). From Lemma 1, it follows that there is an s*-d" path

7 in E(G)[T"], where T" = S"\ {u"}. On the other hand, since S is an s-d separator, from

Lemma 1 it also follows that d" & succ . This implies that m must pass through

s(e)) (*)
the node u”. All the nodes following " in 7 have to be in S* and they cannot be in X,
since otherwise they would reachable from st in E(G)[S”] thus contradicting the fact that
d" ¢ SUCCy () (s'). Hence, there exists an u”-d" path in E(G)[X], contradicting the

fact that d" ¢ SUCCy (%) (ul). This implies that all u* € T'(X) are in predy) ¥ (d").

We have thus concluded the proof of the necessity. Let us now prove the sufficiency (see
Figure 3). By Lemma 3, we have that S is an s-d separator. We only need to show that it
is minimal: to this aim, we now prove that, for any node u € S = (X, X), d € succ (s),
where T = S\ {u}. From the definition of vertex cut, we have that u’ € X and u" € X, that
is, u" € I'(X). Since u' € X, condition 2 implies that u’ € succg(q)x)(s’): note that, for
any v € S, v" € X, so that u € SUCCy (57 (s'). Since u" € T'(X), condition 3 implies that
dh e SUCCy o)(x] (u™): note that, for any v € S, v* € X and v* is the only in-neighbor of v",
so that d" € SUCCy)5 (uh)
path in E(G)[T"], where T" = S" \ {u*}. From Lemma 1, it follows that d € succh(s).
The minimality of S has thus been proved, and the proof of theorem is complete. <

. In summary, by using the arc (u?,u”) we then obtain an sf-d"

MFCS 2020

25:8 Enumeration of s-d Separators in DAGs

Algorithm 1 Enumeration of all vertex cuts (X, X) satisfying conditions 1-3 of Theorem 4.

1 Function cuts(X, F)
if I'(X) C F then output (X, X)
else
u® < arbitrary element in I'(X) \ F
cuTs(X,F U {u"})
Z ¢+ CLOSURE(X U {u"}, F)
if '(Z) C predy gz (d") U{d"} then cutrs(Z,F)

N 0 ok WN

8 Function CLOSURE(X, F)

9 C < haug(taug,(X), F)

10 while C' # X do

11 L X «+ C; C < haug,(taug,(X), F)

12 | return X

13 Function MAIN(G = (V,E), s,d)

14 | F {d"}UNgg (d'); X < CLOSURE({s', s"}, F)
15 | CuTs(X,F)

3 Minimal s-d separator enumeration

In this section, we will provide an algorithm for the enumeration of minimal s-d separators
in a given s-d DAG G = (V, A). The algorithm (see Algorithm 1) will employ a binary
partition scheme (see, for example, [17]), and its correctness proof will be based on the
characterization of Theorem 4. Before explicitly describing the algorithm, we need a few
preliminary definitions.

Given X, F CE(V) with X N F = @, we define the following two operations.

Tail augmentation: taugg(X) = X UU,nex Ng (g (u")-
Head augmentation: haug,(X,F) = X U (F(X) \ (predy), (d") U F))

Intuitively, the tail augmentation enforces property G3 of the definition of goodness, while
the head augmentation identifies nodes in I'(X) \ F' that do not have valid paths to d in
E(G)[X], and that must, hence, be added to X in order to satisfy condition 3 of Theorem 4.
With this in mind, we define the closure Cq(X, F) of X CE(V), for a fixed set F' C E(V),
as the smallest set containing X closed with respect to the two operations taug,(-) and
haug.(+,-) (that is, taug,(Ca (X, F)) = Cq(X, F) and haug,(Ca(X, F), F) =Ca(X, F)). A
direct computation of the closure of X is shown in function CLOSURE of Algorithm 1 (a
significantly more efficient implementation can be made).

We are now ready to describe our algorithm to enumerate all vertex cuts (X, X) satisfying
conditions 1-3 of Theorem 4 (see Algorithm 1). The algorithm maintains both the set
X and a set of forbidden head nodes F' C E(V), such that X N F = (. We start with
F = {d"} U Ng(g(d') and X = Cea({s", s"}, F). The algorithm makes X grow by considering
the possible choices in I'(X) \ F. Specifically, for each u” in I'(X) \ F, it applies the binary
partition technique, by partitioning the set of vertex cuts between the ones in which v € X
and the ones in which u” € X. In the first case, u” is added to F and the recursion continues.
In the second case, u" is added to X, the closure of the new set is performed, and the

A. Conte, P. Crescenzi, A. Marino, and G. Punzi

recursion proceeds only if condition 3 of Theorem 4 is satisfied (indeed, it is not difficult to
show that the closure operation can invalidate this condition). In both cases, the recursion
(if executed) continues generating all the vertex cuts (Y,Y) such that X CY and F C Y.
The invariant is that in any branch of the algorithm, (X, X) is always a solution (that is, it
is a vertex cut satisfying conditions 1-3 of Theorem 4), so that there are no dead-ends in the
recursion (that is, any branch will produce at least one solution).

Figure 4 shows one subtree of the execution of the algorithm with input the expanded
s-d DAG in the right part of Figure 1, while the other subtree is shown in Figure 5 (see the
caption for the semantics of the colors). Note that the leaves of the execution tree correspond
to the seven minimal s-d separators of the s-d DAG in the center part of Figure 1, that we
already listed in the introduction.

add u" to F add u" to I

add u" to X and
compute closure

add u" to X and
compute closure

add u" to X and
compute closure

~

see next figure

Figure 4 The recursion tree of our algorithm for the expanded s-d DAG in the right part of
Figure 1 (left subtree is shown in Figure 5). Green rectangle nodes are in X while red diamond
nodes are in F: hence, X includes white circle and red diamond nodes. A solution (X, X) is reached
when no green rectangle node is connected to a white circle node: the corresponding minimal s-d
separator for the s-d DAG in the center part of Figure 1 includes all nodes a; such that a! is a green
rectangle node and a! is a red diamond node.

25:9

MFCS 2020

25:10 Enumeration of s-d Separators in DAGs

Recall that X = E(V)\ X and that, for (X, X) to be a solution, the three conditions of
Theorem 4 must be satisfied. We will show in the proof of Theorem 6 that these conditions
hold at the beginning of the computation, and that they are preserved when making the
recursive calls. To this aim, let us first notice that, from the definition of Algorithm 1,
it follows that, at any invocation of the function cuTs, X N F = {, X = Cg(X, F), and
I'(X) C predy) ¥ (d")u{d"}. In order to prove Theorem 6, we first show that the goodness
of the set X is preserved by the closure operation.

add u” to F add u" to F

— e

add u” to X and
compute closure

add u" to X and
compute closure

add u” to F

add u" to X and
compute closure

Figure 5 The left subtree of the recursion tree of our algorithm for the expanded s-d DAG in the
right part of Figure 1.

A. Conte, P. Crescenzi, A. Marino, and G. Punzi

> Lemma 5. If {d"} U Ny, (d") C F, and if either X = {s',s"} or X is good, then, for
any u € T(X)\ F, Co(X U {u"}, F) is also good.

Proof. Note first that d* ¢ Cq(X U {u"}, F). Indeed, d* can never be added by a head
augmentation (which adds only head nodes). Moreover, d' can never be added by a tail
augmentation since all its in-neighbors are in F' and, hence, they will never be added
to X. Let us now prove that Co(X U {u”}, F) is good. Condition G1 is satisfied either

because X = {s*,s"}, or because X is good and adding nodes cannot break condition G1.

Furthermore, because of the assumption on F and because d* ¢ Co(XU{u"}, F), condition G2
is also satisfied. Finally, note that condition G3 is satisfied whenever X = taug,(X) (that
is, whenever X already contains all neighbors of its head nodes), and, thus, it is guaranteed
by the fact that Cq(X U {u"}, F) is closed with respect to the operation taugg(-). <

» Theorem 6 (Correctness). At any invocation of function cUTS of Algorithm 1, (X, X) is a
solution.

Proof. At the beginning of the computation, the call cuTs(X, F') is performed with X =
Co({st,s"},F) and F = {d"} U N (d"). Note that Co({st,s"}, F) = taug,({st,s"}),
since the graph is acyclic. From Lemma 5, it follows that X is good (that is, condition 1 is
satisfied). Moreover, since the tail augmentation only adds neighbors of s”, which is the only

neighbor of s*, we have that X = succg(g)[x(s") U {s'}: hence, condition 2 is also satisfied.

Finally, I'(X) € predy ¢ % (d") U {d"}, since otherwise the graph would contain a cycle.
Let us now consider a generic call of function cUTs, and assume that the corresponding
X satisfies all conditions of Theorem 4. Let u" € T'(X) \ F be the node chosen for the two
recursive calls. We will show that the properties are kept in the recursive calls. In the call
cuts(X, F U {u"}), the properties trivially hold since we do not change X. Let us then
consider the call cuTS(Z, F) with Z = Cq(X U {u"}, F). This invocation is executed only if
I'(Z) C predy ;)7 (d") U {d"} (line 7 of Algorithm 1): hence, condition 3 of Theorem 4 is
satisfied. By Lemma 5, it follows that Z is good: hence, also condition 1 of Theorem 4 is
satisfied. Moreover, since the two augmentation operations add only neighbors of nodes which

are already in their argument, and since s* € {s’, s"}, we have that X C succg(q)x)(s")U{s'}.

The opposite inclusion is trivial, thus implying that succg(eyx)(s*) U {s'} = X and, hence,
that condition 2 is also satisfied. The theorem is thus proved. |

» Theorem 7 (Completeness). Algorithm 1 outputs all solutions without duplicates.

Proof. Recall that (Y,Y) is a solution if and only if it satisfies the three conditions of
Theorem 4. We will show that, for any solution (YY), there is a path in the recursion
tree which outputs (Y,Y) such that, at each node of the path corresponding to some call
cuTs(X, F), the two conditions X C Y and F C Y hold.

At the beginning of the algorithm, it is easy to show that both inclusions hold because of
the goodness of Y: conditions G1 and G3 imply X = C({s',s"}, F) = taug,(st,s") C Y,
while F = {d"} U N[E_(G)(dt) C Y since, by conditions G2 and G3, Y cannot contain the
in-neighbors of d*. We now show that if the inclusions hold at one given call cuTs(X, F') (that
is, X CY and F CY), then they also hold in exactly one of the two subsequent recursive
calls. Indeed, let u" € T'(X)\ F be the node considered for the recursive calls. We have two
possibilities: either u" € Y, or not. If u* ¢ Y, then the two inclusions still hold for the call
cuts(X, F U {u"}), since we did not modify X, and the element added to F is in Y. On the
other hand, if u" € Y, we show that the call cuTs(Z, F) for Z = Cq(X U {u"}, F) is indeed
performed, and retains the inclusions. Note first that by definition of closure, and since

25:11

MFCS 2020

25:12

Enumeration of s-d Separators in DAGs

X U{u"} C Y, we have the inclusion Z = Co(X U{u"}, F) C Cq(Y, F) = Y. Assume now by
contradiction that I'(Z) € predy)z (d")u{d"}, thus failing the check on line 7. We remark
that such a check can only fail for nodes in I'(Z) N F', as nodes not belonging to F' with such
a property would have been included in Z by the closure, by definition. By contradiction
hypothesis, we are assuming that there exists at least one v" in T'(Z) \predE(G)[z] (d")yu{d"}.
Since I'(Y) C predy ;) (d")u {di} C predy)z (d")U{d"}. This implies that v" & T\(Y):
v, v are either both in Y, or in Y. Since v" € I'(Z), we have v* € Z C Y, meaning that
v" € Y. Recall now that we remarked that v € F C Y, leading us to a contradiction.
Therefore, as v € Y, the check at line 7 gives a positive response, and the subsequent call
retains the inclusions (we showed that Z C Y; while F is clearly still contained in Y).

It remains to prove that the execution path arrives at outputting the solution (Y,Y). To
this aim, we show that, at each invocation of the function cuTs, either X =Y, or there is
u" € T(X) belonging to Y. If X #Y, let y € Y \ X. By condition 2 of Theorem 4, there
exists an s’-y path in E(G)[Y]: let u be the first node in this path which does not belong to
X. Note that u cannot be a tail node, because of property G3 of the goodness definition
(recall that X is good). Hence, u is a head node in T'(X) N'Y. This implies the algorithm
eventually reaches a recursion node where X =Y and F C Y. From this, (Y,Y) can be
found by recursively taking the call on Line 5 until we reach a leaf, as X is not modified and
eventually F will contain I'(X).

Finally, absence of duplication is guaranteed by the fact that, on a recursive call considering
a certain u”, all solutions in one recursive subtree will have u” € X, while all the ones in the
other subtree will have u” ¢ X. <

» Theorem 8 (Complexity). Given a DAG G with n nodes and m arcs, Algorithm 1 has
O(nm) delay and O(m) space.

Proof. Since each leaf of the recursion tree outputs a solution, because of Theorem 6, the
delay between two consecutive solutions is bounded by the cost of a root-to-leaf path in
the recursion tree. The depth of the tree is O(n) as at each step a node is added to either
X or F. Thus, the cost per solution is equal to O(n) times the cost of one recursive call.
This latter cost depends on the execution time of the function CLOSURE. If we use the naive
implementation shown in Algorithm 1, this execution takes O(m?) time and O(m) space.
A more efficient implementation whose time and space are both bounded by O(m) can be
easily given. Furthermore, the space to store the recursion stack amortizes to O(m) if we
store just the differences of X and F' with respect to their parent recursive call. The theorem
thus follows. |

4 Application to temporal graphs and conclusion

In the introduction we have seen how the problem of enumerating all minimal s-d cutsets in
a temporal graph can be reduced to the problem of enumerating all minimal s-d separators
in the corresponding s-d line graph. It is easy to verify that the number nodes and arcs in
the line graph are respectively O(m) and O(m?), where m is the number of temporal arcs.
This observation along with Theorems 6-8 gives us the following result.

» Theorem 9. Given a temporal graph G with m temporal arcs and given two nodes s and
d, all minimal s-d cutsets in G can be computed with O(m?) delay and O(m?) space.

A natural open problem is whether the cost per solution for enumerating all minimal
s-d separators in a DAG in Theorem 8 can be reduced to O(m) in order to improve also
Theorem 9.

A. Conte, P. Crescenzi, A. Marino, and G. Punzi

—— References

1

10

11

12

13

14

15

16

17
18

19

20

21

22

Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier, and
René Saitenmacher. Listing all maximal k-plexes in temporal graphs. In ASONAM, pages
41-46, 2018.

Kenneth A Berman. Vulnerability of scheduled networks and a generalization of menger’s
theorem. Networks: An International Journal, 28(3):125-134, 1996.

Anne Berry, Jean-Paul Bordat, and Olivier Cogis. Generating all the minimal separators of a
graph. In WG, pages 167-172, 1999.

Paola Bertolazzi, Giuseppe Di Battista, and Walter Didimo. Quasi-upward planarity. Algo-
rithmica, 32(3):474-506, 2002.

Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(2):267-285, 2003.

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387-408, 2012.

S.K. Chaturvedi, Gaurav Khanna, and Sieteng Soh. Reliability evaluation of time evolving
delay tolerant networks based on sum-of-disjoint products. Reliability Engineering € System
Safety, 171:136-151, 2018.

Qizhi Fang, Rudolf Fleischer, Jian Li, and Xiaoxun Sun. Algorithms for core stability, core
largeness, exactness, and extendability of flow games. In COCOON, pages 439-447, 2007.
Longxiang Gao, Shui Yu, Tom H. Luan, and Wanlei Zhou. Delay Tolerant Networks. Springer,
2015.

Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the
Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1):35, 2017.

P. A. Jensen and M. Bellmore. An algorithm to determine the reliability of a complex system.
IEEE Transactions on Reliability, R-18(4):169-174, 1969.

Gaurav Khanna, Sanjay K. Chaturvedi, and Sieteng Soh. Two-terminal reliability analysis
for time-evolving and predictable delay-tolerant networks. Recent Advances in Electrical €
Electronic Engineering, 13(2):236-250, 2020.

Gaurav Khanna and Sanjay Kumar Chaturvedi. A comprehensive survey on multi-hop
wireless networks: Milestones, changing trends and concomitant challenges. Wireless Personal
Communications, 101(2):677-722, 2018.

Rohit Kumar and Toon Calders. 2SCENT: an efficient algorithm to enumerate all simple
temporal cycles. Proceedings of the VLDB Endowment, 11(11):1441-1453, 2018.

Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams for
the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61:1-61:29,
2018.

Q. Liang and E. Modiano. Survivability in time-varying networks. IEEE Transactions on
Mobile Computing, 16(9):2668-2681, 2017.

Andrea Marino. Analysis and Enumeration: Algorithms for Biological Graphs. Springer, 2015.
Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239-280, 2016.

Petra Mutzel and Lutz Oettershagen. On the enumeration of bicriteria temporal paths. In
TAMC, pages 518-535, 2019.

Lhouari Nourine and Olivier Raynaud. A fast algorithm for building lattices. Information
Processing Letters, 71(5-6):199-204, 1999.

J. Scott Provan and Douglas R. Shier. A paradigm for listing (s, t)-cuts in graphs. Algorithmica,
15(4):351-372, 1996.

Marvin Rausand. Reliability of Safety-Critical Systems: Theory and Applications. John Wiley
& Somns, Ltd, 2014.

25:13

MFCS 2020

25:14

Enumeration of s-d Separators in DAGs

23

24
25

26

27

Hong Shen, Keqin Li, and Si-Qing Zheng. Separators are as simple as cutsets. In ASIAN,
pages 347-358, 1999.

Douglas R. Shier. Network Reliability and Algebraic Structures. Clarendon Press, 1991.

S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi. An algorithm to enumerate all cutsets
of a graph in linear time per cutset. Journal of the ACM, 27(4):619-632, 1980.

Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245-252, 2016.

Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of
finding small separators in temporal graphs. J. Comput. Syst. Sci., 107:72-92, 2020.

	Introduction
	Minimal #1-#2 sd separator characterization through vertex cuts
	Minimal #1-#2 sd separator enumeration
	Application to temporal graphs and conclusion

