32 research outputs found

    On Algebraic Decoding of qq-ary Reed-Muller and Product-Reed-Solomon Codes

    Full text link
    We consider a list decoding algorithm recently proposed by Pellikaan-Wu \cite{PW2005} for qq-ary Reed-Muller codes RMq(,m,n)\mathcal{RM}_q(\ell, m, n) of length nqmn \leq q^m when q\ell \leq q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of τ(1qm1/n)\tau \leq (1 - \sqrt{{\ell q^{m-1}}/{n}}). This is an improvement over the proof using one-point Algebraic-Geometric codes given in \cite{PW2005}. The described algorithm can be adapted to decode Product-Reed-Solomon codes. We then propose a new low complexity recursive algebraic decoding algorithm for Reed-Muller and Product-Reed-Solomon codes. Our algorithm achieves a relative error correction radius of τi=1m(1ki/q)\tau \leq \prod_{i=1}^m (1 - \sqrt{k_i/q}). This technique is then proved to outperform the Pellikaan-Wu method in both complexity and error correction radius over a wide range of code rates.Comment: 5 pages, 5 figures, to be presented at 2007 IEEE International Symposium on Information Theory, Nice, France (ISIT 2007

    List decoding of a class of affine variety codes

    Full text link
    Consider a polynomial FF in mm variables and a finite point ensemble S=S1×...×SmS=S_1 \times ... \times S_m. When given the leading monomial of FF with respect to a lexicographic ordering we derive improved information on the possible number of zeros of FF of multiplicity at least rr from SS. We then use this information to design a list decoding algorithm for a large class of affine variety codes.Comment: 11 pages, 5 table

    The attackers power boundaries for traceability of algebraic geometric codes on special curves

    Get PDF
    Под схемами широковещательного шифрования понимают такие протоколы распространения легально тиражируемой цифровой продукции, которые способны предотвратить несанкционированный доступ к распространяемым данным. Эти схемы широко используются как для распределённого хранения данных, так и для защиты данных при передаче по каналам связи, и исследование таких схем представляется актуальной задачей. Для предотвращения коалиционных атак в схемах широковещательного шифрования используются классы помехоустойчивых кодов со специальными свойствами, в частности c-FP- и c-TA-свойствами. Рассматривается задача оценки нижней и верхней границ мощности коалиции злоумышленников, в пределах которых алгеброгеометрические коды обладают этими свойствами. Ранее были получены границы для одноточечных алгеброгеометрических кодов на кривых общего вида. В работе эти границы уточняются для одноточечных кодов на кривых специального вида; в частности, для кодов на кривых, на которых имеется достаточно много классов эквивалентности после факторизации множества точек кривой по отношению равенства соответствующих координат

    Some remarks on multiplicity codes

    Full text link
    Multiplicity codes are algebraic error-correcting codes generalizing classical polynomial evaluation codes, and are based on evaluating polynomials and their derivatives. This small augmentation confers upon them better local decoding, list-decoding and local list-decoding algorithms than their classical counterparts. We survey what is known about these codes, present some variations and improvements, and finally list some interesting open problems.Comment: 21 pages in Discrete Geometry and Algebraic Combinatorics, AMS Contemporary Mathematics Series, 201

    Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved Codex

    Get PDF
    Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a single coordinate. This decoding algorithm might be more expensive, i.e., require higher query complexity. In this paper, we focus on Reed-Muller codes with usual parameter regime, namely, the total degree of evaluation polynomials is d=Θ(q)d=\Theta({q}), where qq is the code alphabet size (in fact, dd can be as big as q/4q/4 in our setting). By introducing a novel variation of codex, i.e., interleaved codex (the concept of codex has been used for arithmetic secret sharing \cite{C11,CCX12}), we are able to locally recover arbitrarily large number kk of coordinates of a Reed-Muller code simultaneously at the cost of querying O(q2k)O(q^2k) coordinates. It turns out that our local decoding of Reed-Muller codes shows ({\it perhaps surprisingly}) that accessing kk locations is in fact cheaper than repeating the procedure for accessing a single location for kk times. Our estimation of success error probability is based on error probability bound for tt-wise linearly independent variables given in \cite{BR94}
    corecore