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This work presents a modified extended key equation algorithm in list decoding of generalized Reed-Solomon (GRS) codes. A list
decoding algorithm of generalized Reed-Solomon codes has two steps, interpolation and factorization. The extended key equation
algorithm (EKE) is an interpolation-based approach with a lower complexity than Sudan’s algorithm. To increase the decoding
speed, this work proposes a modified EKE algorithm to perform codeword checking prior to such an interpolation process. Since
the evaluation mapping is engaged in encoding, a codeword is not generated systematically. Thus, the transmission information
is not directly obtained from a received codeword. Therefore, the proposed algorithm undertakes a matrix operation to obtain
the transmission information once a received vector has been checked to be error-free. Simulation results demonstrate that the
modified EKE algorithm in list decoding of a GRS code provides low complexity, particularly at high signal-to-noise ratios.

1. Introduction

Reed-Solomon (RS) codes are currently used in a wide vari-
ety of applications, ranging from data storage systems,
mobile communications, to satellite communications. The
third-generation (3G) wireless standard utilizes RS codes as
outer codes. For CDMA2000 high-rate broadcast packet data
air interface [1], they are expected to be adopted as outer
codes in concatenated coding schemes for future fourth-
generation (4G) wireless systems.

Algorithms for hard decision decoding of RS codes
are typically classified into two well-known types, namely,
syndrome-based decoding and interpolation-based decod-
ing. Well-developed algorithms in the first category include
the Peterson-Gorenstein-Zierler algorithm [2], Berlekamp-
Massey algorithm [2, 3], Euclidean algorithm [2, 3], fre-
quency domain algorithm [2, 3], and step-by-step algorithm
[4–7]. Algorithms in the second category include the Welch-
Berlekamp algorithms [8, 9] and list decoding algorithms

[10–12], as Koetter-Vardy algorithm [13] is also a list decod-
ing algorithm but with soft decision approaching.

Sudan’s algorithm [10] decodes GRS codes in two steps
involved, namely, interpolation and factorization. An inter-
polation is performed on a received word r = (r0, r1, . . . ,
rn−1), producing a nonzero bivariate polynomial Q(x, y) =
∑l

t=0Q(t)(x)yt = ∑n
i=0 aiφ(x, y) with at least n − τ points

(αi, ri), such that Q(αi, ri) = 0 and i ∈ [n − 1] = {0, 1, . . . ,
n − 1}. Factorization is then performed on Q(x, y), yielding
linear factors (or called y-root polynomials) y − f (x). The
codewords are then generated from these distinct factors
f (x) via an evaluation mapping. A decoded codeword c∗ is
chosen if the Hamming distance between c∗ and r is τ or less.

Because solving these interpolation equations of Sudan’s
algorithm with a naı̈ve Gaussian elimination requires the
time complexityO(n3), an EKE algorithm has been presented
to decrease this complexity [12]. The EKE algorithm employs
generalized Berlekamp-Massy algorithm (or the Feng-Tzeng
algorithm in [14]) that obtains the shortest recurrence that
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generates a given sequence, and the time complexity of
EKE to solve these interpolation equations is O(l(n − k)2).
l represents a design parameter, typically a small constant,
which is an upper bound on the size of the list of decoded
codewords.

Guruswami and Sudan (GS) presented an improvement
on Sudan’s algorithm [11], by introducing a multiplicity u
at each interpolation point. A nonzero Q(x, y) polynomial
exists that interpolates the points (xi,yi), i ∈ [n − 1] with
multiplicity u, and is formed by Q(x, y) = ∑c

i=0 aiφ(x, y),
where c = n

(
u+1
2

)
, and the expression of

(
I
J

)
denotes the

number of ways to choose J from I . In comparison with
Sudan’s work, the GS algorithm provides more n

(
u+1
2

) −
n linear homogeneous equations in interpolation, thus
improving the decoding correction distance. Increasing u
improves the decoding performance but also increases the
required complexity. The asymptotical decoding correction
fraction is given by 1 − √R, and the code rate R is given by
R = k/n. The increase in decoding capability is substantial,
especially for low-rate GRS codes.

Koetter and Vardy [13] extended the GS algorithm by
incorporating the soft information received from a channel
into the interpolation process. With a complexity that is
a polynomial of the code length, the Koetter-Vardy (KV)
algorithm can achieve a substantial coding gain over the GS
algorithm. For instance, at a frame-error-rate (FER) of 10−5,
the KV algorithm can achieve a coding gain of about 1 dB
over the GS algorithm, for a (255, 144) GRS code transmitted
over an additive white Gaussian noise (AWGN) channel
using 256-QAMmodulation [13].

However, those approaches have a drawback, that is
codeword checking is absent during decoding. In other
words, regardless of whether the received sequence is correct
or not, the decoding algorithm proceeds to decode it. This
work overcomes this drawback by presenting a modified
EKE algorithm with codeword checking. Additionally, a
matrix operation is also proposed to obtain the transmission
information from the received codeword. As in syndrome-
based decoding, if the syndrome vector is all-zero, then the
decoding process is terminated and the received sequence is
output as a decoded codeword. The rest of this paper is orga-
nized as follows. Section 2 introduces the EKE algorithm.
Section 3 then presents the modified EKE algorithm with
the proposed codeword checking method and the matrix
operation to obtain the transmission information from the
received codeword. Finally, simulations and conclusions are
presented in Section 4.

2. Extended Key Equation Algorithm

Consider an evaluation mapping f (x) = m0 +m1x + · · · +
mk−1xk−1 and n = 2m − 1. A codeword in an [n, k] GRS code
over GF(2m) is generated as

c = (c0, c1, . . . , cn−1)

= ( f (α0), f (α), . . . , f (αn−1))

= (m0,m1, . . . ,mk−1)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1

1 α · · · αn−1

...
... · · · ...

1 αk−1 · · · α(n−1)(k−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= m ·G,
(1)

where the information vector is m = (m0,m1, . . . ,mk−1), the
generator matrix is

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1

1 α · · · αn−1

... · · · · · · ...

1 αk−1 · · · α(n−1)(k−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2)

and α is a primitive element in GF(2m).
The term l is the upper bound of the number of con-

sistent codewords, which are at Hamming distance ≤ τ from
any received word. For an (n, k) GRS code, Sudan’s algorithm
corrects any error pattern of up to τ errors for

τ = n− (h + 1)− l(k − 1), (3)

where h denotes the smallest nonnegative integer holding the
following equation:

(h + 1)(l + 1) + (k − 1)

⎛

⎝
l + 1

2

⎞

⎠ > n. (4)

Assuming that k ≤ (n + 1)/3, the value of τ becomes

τ =
⌊
2(n + 1)

3

⌋

− k. (5)

Let F be a field, and let Fk[x] represent the set of all polyno-
mials of degree< k in the variable x over F. Sudan’s algorithm
consists of the following steps.

(1) Find a nonzero bivariate polynomial Q(x, y) over F
with at least n−τ points (αi, ri), such thatQ(αi, ri) = 0
and i ∈ [n − 1], for a received vector r = (r0, r1, . . . ,
rn−1).

(2) Output all polynomials f (x) ∈ Fk[x] for which y −
f (x) is a factor of Q(x, y) and f (αi) = ri for at least
n− τ locators αi.

In [2, 3], for an (n, k) RS code, the error-locator polynomial
Λ(x) and the error-evaluator polynomialΩ(x) are computed
in the following key equation (KE):

Λ(x) · S(x) ≡ Ω(x)
(
mod xn−k

)
. (6)

In [12], based on the linear factors of bivariate polynomials
Q(x, y) where the polynomial arithmetic is carried out
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modulo a power of x in Sudan’s algorithm, an EKE algorithm
is derived as follows:

l∑

t=1
Λ(t)(x)x(t−1)(k−1) · S(t)(x) ≡ Ω(x)

(
mod xn−k

)
, (7)

where Λ(t)(x), t ∈ {1, 2, . . . , l}, and Ω(x) are polynomials
that satisfy certain degree constraints and S(t)(x) are syn-
drome polynomials computed as follows:

S(t)(x) =
n−2−t(k−1)∑

i=0
S(t)i xi, S(t)i =

n−1∑

j=0
rtjηjα

i· j , (8)

η−1j =
∏

γ∈[n−1]\{ j}

(
αj − αγ

)
. (9)

Furthermore, the above equation can be obtained as follows:

l∑

t=1

Nt−1∑

s=0
Q(t)

s S(t)i+s = 0, 0 ≤ i < τ, (10)

which is denoted as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S(1)0 · · · S(1)Nl−1 S(2)0 · · · S(l)Nl−1

S(1)1 · · · S(1)Nl
S(2)1 · · · S(l)Nl

...
...

...
...

S(1)τ · · · S(1)Nl+τ−1 S(2)τ · · · S(l)Nl+τ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q(1)
0

...

Q(1)
Nl−1

Q(2)
0

...

Q(l)
Nl−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0

...

0

⎞

⎟
⎟
⎟
⎟
⎠
.

(11)

Let

Q(t)(x) =
Nt−1∑

s=0
Q(t)

s xs, (12)

where Nt = n− τ − t(k − 1) and t ∈ {1, 2, . . . , l}. After these
polynomials Q(t)(x), t ∈ {1, 2, . . . , l}, have been computed in
(11) by using the Feng-Tzeng algorithms [14] or a similar
algorithm mentioned in [12], the polynomial Q(0)(x) is
obtained as follows:

Q(0)(x) +
l∑

t=1
Q(t)(x)yt = Q

(
x, y

)
(13)

and satisfies

Q(0)
(
αj
)
= −

l∑

t=1
Q(t)

(
αj
)
rtj , j ∈ [n− 1]. (14)

A design parameter l in [12] is an upper bound on the size of
the list of decoded codewords. For code rate R ≤ 1/3, from
(4), the value of l is determined by the following range:

2n− 2τ − k + 1−
√
(2n− 2τ − k + 1)2 − 8τ(k − 1)

2(k − 1)
< l

<
2n− 2τ − k + 1 +

√
(2n− 2τ − k + 1)2 − 8τ(k − 1)

2(k − 1)
.

(15)

The EKE algorithm employs the Feng-Tzeng algorithm [14]
to decode GRS codes. The dimensions of the S-matrix in
(11) are τ by l(n − τ − (k − 1)(l + 1)/2). Since the Feng-
Tzeng algorithm is run column by column in a matrix,
therefore the column length dominates the decoding com-
plexity. Reducing the column length lowers the complexity
of locating the smallest set of linear dependent coefficients.
The algorithm of [12] requires the solving of τ homogeneous
linear equations in (11) and then finding the corresponding
coefficients of Q(0)(x) in (14). Hence, the time complexity is
O(l(n− k)2), which is less than the time complexity ofO(n3)
of Sudan’s algorithm. Consequently, the EKE algorithm is
more attractive than the algorithm of [10].

3. Modified ExtendedKey Equation Algorithm

Since the polynomial f (x) = ∑n−1
i=0 mixi is associated with a

codeword c ∈ C, which has zeros 1,α,α2, . . . ,αn−k [15], a
parity-check matrix for C is given by [16, 17]

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α · · · αn−1

1 α2 · · · α2(n−1)

... · · · ...

1 αn−k · · · α(n−k)(n−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Theorem 1. For a received vector r = (r0, r1, . . . , rn−1), code-
word checking w is equal to the computation of S

(1)
, which is

w = (w0,w1, . . . ,wn−k−1)

= r ·HT

= S
(1)
,

(17)

where T denotes the matrix transpose.

Proof. For computing the value of ηj in (9), a different
element γ ∈ [n − 1]\{ j} should yield a different result for
αj − αγ . Consequently, the value of

∏
γ∈[n−1]\{ j}(αj − αγ) can

be simplified as

∏

γ∈[n−1]\{ j}

(
αj − αγ

)
=
∏

s∈[n−1]\{ j}αs

αj

= αn(n−1)/2− j

= α− j .

(18)
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Figure 1: Performance of listing decoding with the modified EKE
algorithm,when a (255, 233, 33) GRS code and a (255, 239, 17) GRS
code are transmitted with BPSK signaling over AWQN channels.

Equation (9) becomes

ηj = αj . (19)

For the vector S
(1) = (S(1)0 , S(1)1 , . . . , S(1)n−k−1), the calculation of

each S(1)i can be denoted as follows:

S(1)i =
n−1∑

j=0
rjα(i+1)· j , (20)

and the vector S
(1)

becomes

S
(1) =

(
S(1)0 , S(1)1 , . . . , S(1)n−k−1

)

= (r0, r1, . . . , rn−1) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1

α α2 · · · αn−k

... · · · ...

αn−1 α2(n−1) · · · α(n−k)(n−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= r ·HT .
(21)

Theorem2. The codeword checking w is checked to be all-zero,
and then the transmission message is given by

m = m′ ·M, (22)

where m′ is the last k-tuple of r and M is a k × k matrix such
that G′ =M ·G is a systematical matrix.

Proof. The proof is quite trivial. In the expression of (1),

c = m ·G
= mM−1 ·MG

= m′ ·G′.
(23)

Then,

m = m′ ·M. (24)

Example 1. For a (7, 3) GRS code over GF(23) generated
by the polynomial p(X) = 1 + X + X3, a codeword v =
(1,α6,α5,α5, 1,α3,α6) is given by the evaluation mapping
provided as the transmission message m = (α3,α2,α4). If
the codeword is transmitted over an error-free channel, then
S
(1)

is checked to be all-zero by (17) and the transmission
message is computed by (22) as follows:

m = m′M

= (1 α3 α6
) ·

⎛

⎜
⎜
⎝

α α5 α4

α2 α2 α6

α5 α3 α3

⎞

⎟
⎟
⎠

= (α3 α2 α4
)
,

(25)

where

M =

⎛

⎜
⎜
⎝

α α5 α4

α2 α2 α6

α5 α3 α3

⎞

⎟
⎟
⎠,

G =

⎛

⎜
⎜
⎝

1 1 1 1 1 1 1

1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

⎞

⎟
⎟
⎠,

G′ =M ·G =

⎛

⎜
⎜
⎝

α3 α 1 α3 1 0 0

α6 α6 1 α2 0 1 0

α5 α4 1 α4 0 0 1

⎞

⎟
⎟
⎠.

(26)

With the above theorems, the list decoding algorithm [12] of
an [n, k] GRS code is adjusted as follows.

(1) Perform codeword-checking, S
(1) = rHT , for a re-

ceived vector r = (r0, r1, . . . , rn−1). If S
(1)

is an all-zero
vector, then output the corresponding message vector
m determined asm = m′ ·M, where a vectorm′ is the
last k-tuple of r. Then, go to step 5.

(2) Perform the EKE interpolation:

(a) compute the syndrome polynomials in par-

allel: S(t)(x) = ∑n−2−t(k−1)
i=0 S(t)i xi and S(t)i =

∑n−1
j=0 r

t
jα

(i+1) j and t ∈ {2, . . . , l},
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Figure 2: Probability of the EKE algorithm in listing decoding,
when a (255, 233, 33) GRS code and a (255, 239, 17) GRS code are
transmitted with BPSK signaling over AWQN channels.

(b) find polynomial polynomials Q(t)(x) =
∑Nt−1

s=0 Q(t)
s xs, where t ∈ {1, . . . , l}, by the Feng-

Tzeng algorithm such that
∑Nt−1

s=0 Q(t)
s S(t)i+s = 0,

0 ≤ i < τ,
(c) form the bivariate polynomial Q(x, y) =

∑l
t=0Q(t)(x)yt , and then obtain the polynomial

Q(0)(x) satisfying Q(0)(αj) = −∑l
t=1Q(t)(αj)rtj ,

j ∈ [n− 1].

(3) Perform the factorization on the bivariate polyno-
mial Q(x, y) = ∑l

t=0Q(t)(x)yt by employing the
reconstruction algorithm [12] to find the y-root
polynomials f (x) = m0 +m1x + · · · +mk−1xk−1.

(4) Generate the corresponding codeword c = ( f (1),
f (α), . . . , f (αn−1)) for each polynomial f (x). Output
the message vectors m∗ = (m∗

0 ,m
∗
1 , . . . ,m

∗
k−1) of the

codewords c∗ with the Hamming distance to r equal
to τ or less.

(5) Terminate decoding

4. Simulations and Conclusions

Figure 1 displays the decoding performance of listing decod-
ing [12] with the modified EKE algorithm as a (255, 223, 33)
GRS code and a (255, 239, 17) GRS code are transmitted with
BPSK signaling over AWGN channels. Figure 2 illustrates the
probability of the EKE algorithm being executed in such a
listing decoding. Those simulations demonstrate that code-
word checking has little effect on decoding at low signal-to-
noise ratios. However, the modified EKE algorithm provides
lower decoding complexity when the signal-to-noise is high.
At a block error rate (BER) of 10−5, the probabilities of the
EKE algorithm being utilized in list decoding of these two
GRS codes are 0.98 and 0.75, respectively. This work presents

amodified EKE algorithm, incorporating codeword checking
and a matrix operation, which obtains the transmission
information from the received codeword. The computation
of codeword checking does not increase the complexity of the
original EKE algorithm, because it is an item in the original
decoding process. The proposed EKE algorithm is beneficial
when the signal-to-noise ratio is high.
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