17,321 research outputs found

    List Approximation for Increasing Kolmogorov Complexity

    Get PDF
    It is impossible to effectively modify a string in order to increase its Kolmogorov complexity. But is it possible to construct a few strings, not longer than the input string, so that most of them have larger complexity? We show that the answer is yes. We present an algorithm that on input a string x of length n returns a list with O(n^2) many strings, all of length n, such that 99% of them are more complex than x, provided the complexity of x is less than n. We obtain similar results for other parameters, including a polynomial-time construction

    Algorithmic Identification of Probabilities

    Full text link
    TThe problem is to identify a probability associated with a set of natural numbers, given an infinite data sequence of elements from the set. If the given sequence is drawn i.i.d. and the probability mass function involved (the target) belongs to a computably enumerable (c.e.) or co-computably enumerable (co-c.e.) set of computable probability mass functions, then there is an algorithm to almost surely identify the target in the limit. The technical tool is the strong law of large numbers. If the set is finite and the elements of the sequence are dependent while the sequence is typical in the sense of Martin-L\"of for at least one measure belonging to a c.e. or co-c.e. set of computable measures, then there is an algorithm to identify in the limit a computable measure for which the sequence is typical (there may be more than one such measure). The technical tool is the theory of Kolmogorov complexity. We give the algorithms and consider the associated predictions.Comment: 19 pages LaTeX.Corrected errors and rewrote the entire paper. arXiv admin note: text overlap with arXiv:1208.500

    Approximations of Algorithmic and Structural Complexity Validate Cognitive-behavioural Experimental Results

    Full text link
    We apply methods for estimating the algorithmic complexity of sequences to behavioural sequences of three landmark studies of animal behavior each of increasing sophistication, including foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition strategies in rodents. In each case, we demonstrate that approximations of Logical Depth and Kolmogorv-Chaitin complexity capture and validate previously reported results, in contrast to other measures such as Shannon Entropy, compression or ad hoc. Our method is practically useful when dealing with short sequences, such as those often encountered in cognitive-behavioural research. Our analysis supports and reveals non-random behavior (LD and K complexity) in flies even in the absence of external stimuli, and confirms the "stochastic" behaviour of transgenic rats when faced that they cannot defeat by counter prediction. The method constitutes a formal approach for testing hypotheses about the mechanisms underlying animal behaviour.Comment: 28 pages, 7 figures and 2 table

    On approximate decidability of minimal programs

    Full text link
    An index ee in a numbering of partial-recursive functions is called minimal if every lesser index computes a different function from ee. Since the 1960's it has been known that, in any reasonable programming language, no effective procedure determines whether or not a given index is minimal. We investigate whether the task of determining minimal indices can be solved in an approximate sense. Our first question, regarding the set of minimal indices, is whether there exists an algorithm which can correctly label 1 out of kk indices as either minimal or non-minimal. Our second question, regarding the function which computes minimal indices, is whether one can compute a short list of candidate indices which includes a minimal index for a given program. We give some negative results and leave the possibility of positive results as open questions

    Applying MDL to Learning Best Model Granularity

    Get PDF
    The Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam's Razor.'' In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and orientation. Based on a new modification of elastic matching, using multiple prototypes per character, the optimal prediction rate is predicted for the learned parameter (length of sampling interval) considered most likely by MDL, which is shown to coincide with the best value found experimentally. In the second experiment the task is to model a robot arm with two degrees of freedom using a three layer feed-forward neural network where we need to determine the number of nodes in the hidden layer giving best modeling performance. The optimal model (the one that extrapolizes best on unseen examples) is predicted for the number of nodes in the hidden layer considered most likely by MDL, which again is found to coincide with the best value found experimentally.Comment: LaTeX, 32 pages, 5 figures. Artificial Intelligence journal, To appea

    Kolmogorov's Structure Functions and Model Selection

    Full text link
    In 1974 Kolmogorov proposed a non-probabilistic approach to statistics and model selection. Let data be finite binary strings and models be finite sets of binary strings. Consider model classes consisting of models of given maximal (Kolmogorov) complexity. The ``structure function'' of the given data expresses the relation between the complexity level constraint on a model class and the least log-cardinality of a model in the class containing the data. We show that the structure function determines all stochastic properties of the data: for every constrained model class it determines the individual best-fitting model in the class irrespective of whether the ``true'' model is in the model class considered or not. In this setting, this happens {\em with certainty}, rather than with high probability as is in the classical case. We precisely quantify the goodness-of-fit of an individual model with respect to individual data. We show that--within the obvious constraints--every graph is realized by the structure function of some data. We determine the (un)computability properties of the various functions contemplated and of the ``algorithmic minimal sufficient statistic.''Comment: 25 pages LaTeX, 5 figures. In part in Proc 47th IEEE FOCS; this final version (more explanations, cosmetic modifications) to appear in IEEE Trans Inform T
    • …
    corecore