8,507 research outputs found

    Liquidation In Limit Order Books With Controlled Intensity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108603/1/mafi529.pd

    A convex duality method for optimal liquidation with participation constraints

    Full text link
    In spite of the growing consideration for optimal execution in the financial mathematics literature, numerical approximations of optimal trading curves are almost never discussed. In this article, we present a numerical method to approximate the optimal strategy of a trader willing to unwind a large portfolio. The method we propose is very general as it can be applied to multi-asset portfolios with any form of execution costs, including a bid-ask spread component, even when participation constraints are imposed. Our method, based on convex duality, only requires Hamiltonian functions to have C1,1C^{1,1} regularity while classical methods require additional regularity and cannot be applied to all cases found in practice

    Empirical Limitations on High Frequency Trading Profitability

    Get PDF
    Addressing the ongoing examination of high-frequency trading practices in financial markets, we report the results of an extensive empirical study estimating the maximum possible profitability of the most aggressive such practices, and arrive at figures that are surprisingly modest. By "aggressive" we mean any trading strategy exclusively employing market orders and relatively short holding periods. Our findings highlight the tension between execution costs and trading horizon confronted by high-frequency traders, and provide a controlled and large-scale empirical perspective on the high-frequency debate that has heretofore been absent. Our study employs a number of novel empirical methods, including the simulation of an "omniscient" high-frequency trader who can see the future and act accordingly

    Algorithmic trading in a microstructural limit order book model

    Full text link
    We propose a microstructural modeling framework for studying optimal market making policies in a FIFO (first in first out) limit order book (LOB). In this context, the limit orders, market orders, and cancel orders arrivals in the LOB are modeled as Cox point processes with intensities that only depend on the state of the LOB. These are high-dimensional models which are realistic from a micro-structure point of view and have been recently developed in the literature. In this context, we consider a market maker who stands ready to buy and sell stock on a regular and continuous basis at a publicly quoted price, and identifies the strategies that maximize her P\&L penalized by her inventory. We apply the theory of Markov Decision Processes and dynamic programming method to characterize analytically the solutions to our optimal market making problem. The second part of the paper deals with the numerical aspect of the high-dimensional trading problem. We use a control randomization method combined with quantization method to compute the optimal strategies. Several computational tests are performed on simulated data to illustrate the efficiency of the computed optimal strategy. In particular, we simulated an order book with constant/ symmet-ric/ asymmetrical/ state dependent intensities, and compared the computed optimal strategy with naive strategies. Some codes are available on https://github.com/comeh

    Drift dependence of optimal trade execution strategies under transient price impact

    Full text link
    We give a complete solution to the problem of minimizing the expected liquidity costs in presence of a general drift when the underlying market impact model has linear transient price impact with exponential resilience. It turns out that this problem is well-posed only if the drift is absolutely continuous. Optimal strategies often do not exist, and when they do, they depend strongly on the derivative of the drift. Our approach uses elements from singular stochastic control, even though the problem is essentially non-Markovian due to the transience of price impact and the lack in Markovian structure of the underlying price process. As a corollary, we give a complete solution to the minimization of a certain cost-risk criterion in our setting

    Optimal High Frequency Trading with limit and market orders

    Get PDF
    We propose a framework for studying optimal market making policies in a limit order book (LOB). The bid-ask spread of the LOB is modelled by a Markov chain with finite values, multiple of the tick size, and subordinated by the Poisson process of the tick-time clock. We consider a small agent who continuously submits limit buy/sell orders and submits market orders at discrete dates. The objective of the market maker is to maximize her expected utility from revenue over a short term horizon by a tradeoff between limit and market orders, while controlling her inventory position. This is formulated as a mixed regime switching regular/ impulse control problem that we characterize in terms of quasi-variational system by dynamic programming methods. In the case of a mean-variance criterion with martingale reference price or when the asset price follows a Levy process and with exponential utility criterion, the dynamic programming system can be reduced to a system of simple equations involving only the inventory and spread variables. Calibration procedures are derived for estimating the transition matrix and intensity parameters for the spread and for Cox processes modelling the execution of limit orders. Several computational tests are performed both on simulated and real data, and illustrate the impact and profit when considering execution priority in limit orders and market ordersMarket making; limit order book; inventory risk; point process; stochastic control
    • …
    corecore