431 research outputs found

    Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere

    Get PDF
    Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged due to their simplified and inexpensive training procedure. These networks are known to be sensitive to the setting of hyper-parameters, which critically affect their behaviour. Results show that their performance is usually maximized in a narrow region of hyper-parameter space called edge of chaos. Finding such a region requires searching in hyper-parameter space in a sensible way: hyper-parameter configurations marginally outside such a region might yield networks exhibiting fully developed chaos, hence producing unreliable computations. The performance gain due to optimizing hyper-parameters can be studied by considering the memory--nonlinearity trade-off, i.e., the fact that increasing the nonlinear behavior of the network degrades its ability to remember past inputs, and vice-versa. In this paper, we propose a model of ESNs that eliminates critical dependence on hyper-parameters, resulting in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear behaviour in phase space characterised by a large memory of past inputs, comparable to the one of linear networks. Our contribution is supported by experiments corroborating our theoretical findings, showing that the proposed model displays dynamics that are rich-enough to approximate many common nonlinear systems used for benchmarking

    Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems

    Full text link
    A new class of non-homogeneous state-affine systems is introduced for use in reservoir computing. Sufficient conditions are identified that guarantee first, that the associated reservoir computers with linear readouts are causal, time-invariant, and satisfy the fading memory property and second, that a subset of this class is universal in the category of fading memory filters with stochastic almost surely uniformly bounded inputs. This means that any discrete-time filter that satisfies the fading memory property with random inputs of that type can be uniformly approximated by elements in the non-homogeneous state-affine family.Comment: 41 page

    Liquid Time-constant Networks

    Full text link
    We introduce a new class of time-continuous recurrent neural network models. Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems modulated via nonlinear interlinked gates. The resulting models represent dynamical systems with varying (i.e., liquid) time-constants coupled to their hidden state, with outputs being computed by numerical differential equation solvers. These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations, and give rise to improved performance on time-series prediction tasks. To demonstrate these properties, we first take a theoretical approach to find bounds over their dynamics and compute their expressive power by the trajectory length measure in latent trajectory space. We then conduct a series of time-series prediction experiments to manifest the approximation capability of Liquid Time-Constant Networks (LTCs) compared to classical and modern RNNs. Code and data are available at https://github.com/raminmh/liquid_time_constant_networksComment: Accepted to the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21

    Musical instrument mapping design with Echo State Networks

    Get PDF
    Echo State Networks (ESNs), a form of recurrent neural network developed in the field of Reservoir Computing, show significant potential for use as a tool in the design of mappings for digital musical instruments. They have, however, seldom been used in this area, so this paper explores their possible applications. This project contributes a new open source library, which was developed to allow ESNs to run in the Pure Data dataflow environment. Several use cases were explored, focusing on addressing current issues in mapping research. ESNs were found to work successfully in scenarios of pattern classification, multiparametric control, explorative mapping and the design of nonlinearities and uncontrol. 'Un-trained' behaviours are proposed, as augmentations to the conventional reservoir system that allow the player to introduce potentially interesting non-linearities and uncontrol into the reservoir. Interactive evolution style controls are proposed as strategies to help design these behaviours, which are otherwise dependent on arbitrary values and coarse global controls. A study on sound classification showed that ESNs could reliably differentiate between two drum sounds, and also generalise to other similar input. Following evaluation of the use cases, heuristics are proposed to aid the use of ESNs in computer music scenarios

    Liquid State Machine with Dendritically Enhanced Readout for Low-power, Neuromorphic VLSI Implementations

    Full text link
    In this paper, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM), a popular model for reservoir computing. Compared to the parallel perceptron architecture trained by the p-delta algorithm, which is the state of the art in terms of performance of readout stages, our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity. The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best 'combination' of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that compared to a single perceptron using analog weights, this architecture for the readout can attain, even by using the same number of binary valued synapses, up to 3.3 times less error for a two-class spike train classification problem and 2.4 times less error for an input rate approximation task. Even with 60 times larger synapses, a group of 60 parallel perceptrons cannot attain the performance of the proposed dendritically enhanced readout. An additional advantage of this method for hardware implementations is that the 'choice' of connectivity can be easily implemented exploiting address event representation (AER) protocols commonly used in current neuromorphic systems where the connection matrix is stored in memory. Also, due to the use of binary synapses, our proposed method is more robust against statistical variations.Comment: 14 pages, 19 figures, Journa
    • 

    corecore