8 research outputs found

    Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming

    Get PDF
    AbstractSample average approximation (SAA) is one of the most popular methods for solving stochastic optimization and equilibrium problems. Research on SAA has been mostly focused on the case when sampling is independent and identically distributed (iid) with exceptions (Dai et al. (2000) [9], Homem-de-Mello (2008) [16]). In this paper we study SAA with general sampling (including iid sampling and non-iid sampling) for solving nonsmooth stochastic optimization problems, stochastic Nash equilibrium problems and stochastic generalized equations. To this end, we first derive the uniform exponential convergence of the sample average of a class of lower semicontinuous random functions and then apply it to a nonsmooth stochastic minimization problem. Exponential convergence of estimators of both optimal solutions and M-stationary points (characterized by Mordukhovich limiting subgradients (Mordukhovich (2006) [23], Rockafellar and Wets (1998) [32])) are established under mild conditions. We also use the unform convergence result to establish the exponential rate of convergence of statistical estimators of a stochastic Nash equilibrium problem and estimators of the solutions to a stochastic generalized equation problem

    Challenges in Stochastic Programming

    Get PDF
    Remarkable progress has been made in the development of algorithmic procedures and the availability of software for stochastic programming problems. However, some fundamental questions have remained unexplored. This paper identifies the more challenging open questions in the field of stochastic programming. Some are purely technical in nature, but many also go to the foundations of designing models for decision making under uncertainty

    Advancing stability analysis of mean-risk stochastic programs: Bilevel and two-stage models

    Get PDF
    Measuring and managing risk has become crucial in modern decision making under stochastic uncertainty. In two-stage stochastic programming, mean-risk models are essentially defined by a parametric recourse problem and a quantification of risk. The thesis addresses sufficient conditions for weak continuity of the resulting objective functions with respect to perturbations of the underlying probability measure. The approach is based on so called psi-weak topologies that are finer than the topology of weak convergence and allows to unify and extend known results for a comprehensive class of risk measures and recourse problems. In particular, stability of mean-risk models with mixed-integer quadratic and general mixed-integer convex recourse problems is derived for any law-invariant, convex and nondecreasing quantification of risk. From a conceptual point of view, two-stage stochastic programs and bilevel problems under stochastic uncertainty are closely related. Assuming that only the follower can observe the realization of the randomness, the optimistic and pessimistic setting give rise to two-stage problems where only optimal solutions of the lower level are feasible for the recourse problem. So far, stability in stochastic bilevel programming has only been examined for a specific model based on a quantile criterion. The novel approach allows to identify sufficient conditions for stability of stochastic bilevel problems with quadratic lower level and is applicable for a comprehensive class of risk measures.Die Bewertung und das Management von Risken sind ein wesentlicher Aspekt von Entscheidungsproblemen unter stochastischer Unsicherheit. Zielfunktionsbasierte risikoaverse Modelle der zweistufigen stochastischen Optimierung lassen sich im Wesentlichen durch ihr parametrisches Zweitstufenproblem und das betrachtete Risikomaß charakterisieren. Die Arbeit befasst sich mit hinreichenden Bedingungen für Stetigkeit der resultierenden Zielfunktion unter Störungen des zu Grunde liegenden Wahrscheinlichkeitsmaßes bezüglich der Topologie schwacher Konvergenz. Der Ansatz basiert auf so genannten psi-schwachen Topologien, die feiner als die Topologie schwacher Konvergenz sind. Für eine umfassende Klasse von Risikomaßen und Zweitstufenproblemen werden so bestehende Resultate vereinheitlicht und erweitert. Insbesondere lassen sich für jedes verteilungsinvariante, konvexe und nichtfallende Risikomaß Stabilitätsaussagen für Aufgaben mit quadratischem oder konvexem gemischt-ganzzahligen Zweitstufenproblem treffen. Aus konzeptioneller Sicht sind zweistufige stochastische Programme und Bilevel Probleme unter stochastischer Unsicherheit eng miteinander verbunden. Unter der Annnahme, dass nur der Entscheider auf der unteren Ebene die Realisierung des Zufalls beobachten kann, führen sowohl der optimistische als auch der pessimistische Ansatz auf ein zweistufiges stochastisches Programm. Bei diesem sind nur die Optimallösungen der unteren Ebene zulässig für das Zweitstufenproblem. Bisher ist die Stabilität solcher Aufgaben nur für Modelle mit einem speziellen Quantilkriterium untersucht worden. Der neue Ansatz erlaubt es, hinreichende Bedingungen für die Stabilität von stochastischen Bilevel Problemen mit quadratischem Nachfolgerproblem zu identifizieren und ist auf eine reichhaltige Klasse von Risikomaßen anwendbar

    Lipschitz stability for stochastic programs with complete recourse

    No full text
    SIGLEAvailable from TIB Hannover: RO 7722(408) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    LIPSCHITZ STABILITY FOR STOCHASTIC PROGRAMS WITH COMPLETE RECOURSE

    No full text
    This paper investigates the stability of optimal solution sets to stochastic programs with complete recourse, where the underlying probability measure is understood as a parameter varying in some space of probability measures. In [Math. Programming, 67 (1994), pp. 99-108] Shapiro proved Lipschitz upper semicontinuity of the solution set mapping. Inspired by this result, we introduce a subgradient distance for probability distributions and establish the persistence of optimal solutions. For a subclass of recourse models we show that the solution set mapping is (Hausdorff) Lipschitz continuous with respect to the subgradient distance. Moreover, the subgradient distance is estimated above by the Kolmogorov-Smirnov distance of certain distribution functions related to the recourse model. The Lipschitz continuity result is illustrated by verifiable sufficient conditions for stochastic programs to belong to the mentioned subclass and by examples showing its validity and limitations. Finally, the Lipschitz continuity result is used to derive some new results on the asymptotic behavior of optimal solutions when the probability measure underlying the recourse model is estimated via empirical measures (law of iterated logarithm, large deviation estimate, estimate for asymptotic distribution)
    corecore