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Abstract

We study quantitative stability of linear multistage stochastic programs under
perturbations of the underlying stochastic processes. It is shown that the optimal
values behave Lipschitz continuous with respect to an Lp-distance. Therefor, we
have to make a crucial regularity assumption on the conditional distributions, that
allows to establish continuity of the recourse function with respect to the current
state of the stochastic process. The main stability result holds for nonanticipative
discretizations of the underlying process and thus represents a rigorous justification
of established discretization techniques.
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Introduction

Many stochastic optimization problems of practical interest do not allow for an analytic

solution. Numerical approaches require the underlying probability measure to have finite

support, which should be at the most of moderate size. Whenever the initial probabil-

ity measure does not meet these demands, it has to be approximated by an auxiliary

measure. It is obvious that the optimal value and the set of optimal decisions of the

auxiliary problem should be close to the initial ones. Consequently, perturbation and

stability analysis of stochastic programs are necessary for the development of reliable

techniques for discretization and scenario reduction. While stability properties are well

understood for non-dynamic chance constrained and two-stage problems, cf. the recent

survey of Römisch (2003), it turned out that the multistage case is more intricate. Re-

cently, the latter situation has been studied by a variety of authors and the following
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references are not exhausting at all. Statistical bounds have been provided by Shapiro

(2003). Pennanen (2005) established asymptotic stability of specific approximations for a

general class of convex multistage problems in terms of epi-convergence and he noticed,

that quantitative results would require stronger assumptions. Indeed, the restriction on

models with continuous decisions allowed Mirkov and Pflug (2006) to establish such a

quantitative stability result for their tree approximations. Heitsch, Römisch, and Stru-

garek (2006) abstained from regularity conditions on decisions and underlying processes

and, consequently, their quantitative stability result, considering arbitrary perturbations

of the underlying process, incorporates a term measuring the distance of the filtrations

induced by the initial and the auxiliary process, respectively. Vanishing in the two-stage

case, this term reflects the relevance of the information structure and of the nonantici-

pativity constraints for multistage decision problems. We refer also to Barty (2004) who

studied the role of information in stochastic optimization problems and introduced and

reviewed several concepts of distances between filtrations.

The recent approach of Heitsch and Römisch (2005) aims to incorporate filtration

distances into the construction of scenario trees. However, this requires some extra effort

and, to the best of our understanding, these distances are not taken into account by a

variety of established techniques. Thus, the main purpose of this paper is to provide

general conditions under which these somewhat delicate terms may be omitted.

A main difficulty seems to be that without additional assumptions neither the re-

course function nor an optimal decision will depend continuously on the current state

of the underlying process, in general. Rockafellar and Wets (1974) showed that under

weak conditions the optimal value can be achieved by continuous decisions, asymptot-

ically. However, while this allows to deduce convergence results as those of Pennanen

(2005), it does not lead to quantitative estimates. For deriving continuity of the recourse

function and bounds based on a barycentric approximation scheme, Kuhn (2005) required

the underlying processes to be autoregressive. He also indicated, that the key element in

any scenario tree construction is the discretization of the conditional probabilities. We

agree and underline that, in particular, continuous dependency of these probabilities on

the current state of the underlying process is necessary for potential continuity of the

recourse function and can be seen as continuity of the available information w.r.t. the

current state. It is illustrated by Example 2.6 of Heitsch, Römisch, and Strugarek (2006)

that the latter property is indispensable in order to omit any filtration distances and to

obtain a good approximation of the initial process by usual techniques, that are based

on stagewise clustering. Thus, we ensure by Assumption 2.6 the Lipschitz continuity of

the conditional distributions, which allows to verify the same property for the recourse

function in Theorem 1. With this at hand, we estimate in Theorem 2 the gap between

the optimal value and the costs of a decision that is locally calm. This leads to our main

result, Theorem 3, that provides an upper bound for the perturbation of the optimal
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value.
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Notation and Conventions. Random variables are denoted by bold letters, e.g. ξ or

x, in contrast to their realizations, i.e., elements of their support, which are denoted by ξ

or x, respectively. The notation ξt is used for the vector (ξ1, . . . , ξt) and ‖·‖ denotes the

maximum norm on Rn for the respective value n ∈ N.

1 Problem Formulation

On a probability space (Ω,F , P) we consider an Rs-valued stochastic process ξ = (ξt)
T
t=1

with time horizon T ∈ N and the associated filtration (Ft)
T
t=1 defined through Ft , σ(ξt)

for t = 1, . . . , T . We assume that F1 = {Ω, ∅}, ξT ∈ Lp(Ω,F , P) for every p ∈ [1, +∞),

and set

Pt , P
[
ξt ∈ ·

]
and Ξt , supp Pt ⊂ Rs·t for t = 1, . . . , T.

Furthermore, we consider the costs bt(·), the technology matrices At,1(·), and the right-

hand sides ht(·), which all are assumed to depend affinely linear on ξt ∈ Ξt, t = 1, . . . , T .

Altogether, they define the set-valued mappings (or, multifunctions)

Mt : Xt−1 × Ξt ⇒ Xt,

Mt(xt−1, ξt) , {xt ∈ Xt : At,0xt + At,1(ξt)xt−1 = ht(ξt)}

for certain nonempty, closed, and polyhedral sets Xt ⊂ Rm and t = 1, . . . , T . The objective

function is given by

ϕ : Rm·T × ΞT → R ∪ {±∞},

ϕ(x1, . . . , xT , ξT ) ,

{ ∑T
t=1〈bt(ξt), xt〉 if x1 ∈ X1, xt ∈ Mt(xt−1, ξt), t = 2, . . . , T

+∞ else.

A tuple x = (x1, . . . ,xT ) of Borel-measurable mappings xt : Ξt → Xt, t = 1, . . . , T , is

called a feasible decision w.r.t. ξ, if the recourse equation

(1) xt(ξ
t) ∈ Mt(xt−1(ξ

t−1), ξt)

is fulfilled P−a.s. for t = 2, . . . , T . The class of feasible decisions x will be denoted by

S(ξ) and we set x0 = 1 for the sake of notational convenience.

We want to study the following linear multistage optimization problem:

(2) v(ξ) , min
x ∈ S(ξ)

E
[
ϕ(x, ξT )

]
,
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and to establish a bound for the perturbation of v(ξ) when ξ is replaced by another

process ξ̃.

The polyhedral form of Mt allows to conclude from Rockafellar and Wets (1998)’s

Example 9.35 that Mt is Lipschitz continuous in xt−1 and ξt with respect to the Pompeiu-

Hausdorff distance d in the following sense. There exists a constant M ≥ 0 with

d (Mt(xt−1, ξt), Mt(x̂t−1, ξt)) ≤ M ·max{1, ‖ξt‖} · ‖x̂t−1 − xt−1‖ and

d

(
Mt(xt−1, ξt), Mt(xt−1, ξ̂t)

)
≤ M ·max{1, ‖xt−1‖} · ‖ξ̂t − ξt‖,

for every ξt, ξ̂t ∈ Ξt and xt−1, x̂t−1 ∈ Xt−1. We recall that the Pompeiu-Hausdorff distance

between two sets A, B ⊂ Rm is defined by

d(A, B) , max

{
sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)

}
.

Remark 1.1. The Lipschitz continuity of Mt was our unique motivation to presume linear

recourse. Analogously, this is true for the linear costs 〈bt(ξt), xt〉, where we use only the

existence of a constant B with

‖〈bt(ξt), xt〉 − 〈bt(ξ̂t), xt〉‖ ≤ B‖ξt − ξ̂t‖‖xt‖ and

‖〈bt(ξt), xt〉 − 〈bt(ξt), x̂t〉‖ ≤ B max{1, ‖ξt‖}‖xt − x̂t‖.

Furthermore, all results remain valid if Mt, ht, and bt depend on ξt instead of ξt.

The integrability condition on ξT is due to notational simplicity. Actually, it suffices to

have ξT ∈ Lp(Ω,F , P) for a sufficiently large p ∈ R+.

2 Continuity of the Recourse Function

Let Vt : Ξt × Xt−1 → R be the recourse function at time t, i.e., Vt(ξ
T , xt−1) represents

the minimal achievable expected future costs after having chosen xt−1 = xt−1, having

observed
{
ξt = ξt

}
, and before deciding on xt. It is defined recursively by VT+1 , 0 and

the Dynamic Programming Equation

Vt(ξ
t, xt−1) , inf

xt∈Mt(xt−1,ξt)
〈bt(ξt), xt〉+ E

[
Vt+1

(
ξt+1, xt

)∣∣ ξt = ξt
]

for t = T, . . . , 1.

It was proved by Evstigneev (1976) that Vt is well defined and measurable under the

following

Assumption 2.1.

(i) There exists an integrable random variable Q such that ϕ(x, ξT ) ≥ Q holds P−a.s.

for every x ∈ Rm·T .
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(ii) For each c ∈ R the random level set {x ∈ Rm·T : ϕ(x, ξT ) ≤ c} is compact P−a.s.

A decision x ∈ S(ξ) is optimal if and only if the equality

(3) Vt(ξ
t, xt−1(ξ

t−1)) = 〈bt(ξt), xt(ξ
t)〉+ E

[
Vt+1

(
ξt+1, xt(ξ

t)
)∣∣ ξt = ξt

]
holds for Pt−almost every ξt ∈ Ξt and t = 1, . . . , T . Moreover, for every Borel measurable

mapping xt−1 : Ξt−1 → Xt−1 there exists a measurable xt : Ξt → Xt such that

(4) Vt(ξ
t, xt−1(ξ

t−1)) = 〈bt(ξt), xt(ξ
t)〉+ E

[
Vt+1

(
ξt+1, xt(ξ

t)
)∣∣ ξt = ξt

]
holds true for Pt−almost every ξt ∈ Ξt. Actually, Evstigneev (1976)’s results allow a

further formulation of (4), that is more general with regard to the Pt-null sets on which

(4) does not hold. Indeed, the following corollary is an immediate consequence of applying

Evstigneev (1976)’s Lemma 4 within the proof of his Theorem 2:

Corollary 2.2. There exists a B(Xt−1)⊗B(Ξt)-measurable mapping ηt : Xt−1×Ξt → Xt,

such that

Vt(ξ
t, xt−1) = 〈bt(ξt), ηt(xt−1, ξ

t)〉+ E
[
Vt+1

(
ξt+1, ηt(xt−1, ξ

t)
)∣∣ ξt = ξt

]
holds Pt(dξt)-a.s. for all xt−1 ∈ Xt−1.

The following assumption ensures complete recourse and the existence of optimal de-

cisions that are bounded in a certain sense:

Assumption 2.3. There is a constant L ≥ 1 such that for t = 1, . . . , T and certain Borel

sets At′ ⊂ Ξt with Pt[At′] = 1, t = 1, . . . , T , the following property holds: For every Borel

measurable mapping xt−1 : Ξt−1 → Xt−1 there exists a measurable xt : Ξt → Xt such that

xt(ξ
t) ∈ Mt(xt−1(ξ

t−1), ξt), identity (4), and

(5) ‖xt(ξ
t)‖ ≤ L ·max

{
1, ‖xt−1(ξ

t−1)‖
}
·max

{
1, ‖ξt‖

}
.

hold true for every ξt ∈ At′.

Remark 2.4. Unfortunately, the existence of decisions which are bounded in the above

sense may be hard to verify, in general. However, (5) holds true for every xt ∈ Mt(xt−1, ξt)

if Xt is bounded, or, more general, whenever the projection of Xt onto the kernel of the

recourse matrix At,0 is bounded.

The linear growth condition (5) can be relaxed to polynomial growth, then the growth

rate in ξt of the Lipschitz constant in Theorem 1 and the subsequent results will change

accordingly.
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Under the Assumptions 2.1 and 2.3, we can restrict ourselves on decisions x satisfying

(6) ‖xt(ξ
t)‖ ≤ Lt ·max

{
1, ‖ξt‖

}t−1 P− a.s., t = 1, . . . , T,

which will be denoted as bounded in the following. Indeed, a tuple x = (x1, . . . ,xT )

of mappings with (1), (3), and (6) can be constructed by recursion, and from Theorem

14.37 of Rockafellar and Wets (1998) it follows that every xt can be chosen measurable.

Consequently, x is an optimal decision.

It is well-known that Vt tends to show some smoothness w.r.t. xt−1. We refer to Birge

and Louveaux (1997) and Ruszczyński and Shapiro (2003) who derive convexity as well

as piecewise linearity for the case of finite ΞT and to Kuhn (2005) who proved continuity

under compactness assumptions on ΞT and X1, . . . , XT . Thus, the following Proposition

can be seen as an adaption of these results to our Lipschitz continuous framework.

Proposition 2.5. The recourse function Vt is Lipschitz continuous w.r.t. the decision

xt−1 in the following sense. There exists a constant M̄ > 0 such that for t = 1, . . . , T and

Pt−almost every ξt ∈ Ξt the relation

(7)
∣∣Vt(ξ

t, xt−1)− Vt(ξ
t, x̂t−1)

∣∣ ≤ [Vt]
x
Lip (ξt) · ‖xt−1 − x̂t−1‖

holds true for every xt−1, x̂t−1 ∈ Xt−1 with a (random) Lipschitz constant [Vt]
x
Lip (ξt) sat-

isfying

(8) [Vt]
x
Lip (ξt) ≤ M̄ · E

[
max{1,

∥∥ξT
∥∥}2+T−t

∣∣ ξt = ξt
]
.

Proof. The assertion is true for VT+1 ≡ 0. Assume it is true also for s = t + 1, . . . , T with

Lipschitz constants [Vs]
x
Lip and, for instance, assume that the difference on the left side of

(7) is negative. Then, due to (4), there exists an x∗
t (ξ

t) ∈ Mt(xt−1, ξt), such that the left

side of (7) coincides for Pt-a.e. ξt with

−〈bt(ξt), x
∗
t (ξ

t)〉 − E
[
Vt+1

(
ξt+1, x∗

t (ξ
t)

)∣∣ ξt = ξt
]

+ inf
x̂t∈Mt(x̂t−1,ξt)

{
〈bt(ξt), x̂t〉+ E

[
Vt+1

(
ξt+1, x̂t

)∣∣ ξt = ξt
]}

.(9)

Moreover, it follows from Corollary 2.2 that we may assume that the Pt(dξt)-null sets on

which this identity does not hold coincide for all xt−1 ∈ Xt−1. Due to Theorem 14.37 of

Rockafellar and Wets (1998) we can choose a measurable x̂∗
t with

x̂∗
t (ξ

t) ∈ arg min
z∈Mt(x̂t−1,ξt)

∥∥z − x∗
t (ξ

t)
∥∥

to bound (9) from above by

|〈bt(ξt), x
∗
t (ξ

t)− x̂∗
t (ξ

t)〉|+ |E
[
Vt+1

(
ξt+1, x∗t

)
− Vt+1

(
ξt+1, x̂∗t

)∣∣ ξt = ξt
]
|.
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Linear growth of bt and Lipschitz continuity of Vt+1 w.r.t. xt entail that this term is not

greater than(
B max{1, ‖ξt‖}+ E

[
[Vt+1]

x
Lip (ξt+1)

∣∣∣ ξt = ξt
])

·
∥∥x∗

t (ξ
t)− x̂∗

t (ξ
t)

∥∥,

again Pt(dξt)-a.s. for every xt−1, x̂t−1 ∈ Xt−1. By definition of x̂∗
t and Lipschitz continuity

of Mt, the latter term is bounded from above by(
MB max{1, ‖ξt‖2}+ M max{1, ‖ξt‖} · E

[
[Vt+1]

x
Lip (ξt+1)

∣∣∣ ξt = ξt
])

· ‖xt−1 − x̂t−1‖.

An analoguous estimate holds whenever the difference on the left side of (7) is positive.

Hence, [Vt]
x
Lip (ξt) is given by the term in parentheses, from where we conclude by recursion

that we can put

[Vt]
x
Lip (ξt) , B

T∑
i=t

M i−t+1E

[
max{1, ‖ξi‖

2} ·
i−1∏
k=t

max{1, ‖ξk‖}

∣∣∣∣∣ ξt = ξt

]
.

Finally, the asserted bound for [Vt]
x
Lip results from a straightforward estimate.

Establishing continuity of ξt 7→ Vt(ξ
t, xt−1) is more subtle, since, unlike the decision

variable xt−1, the state ξt impacts not only the Lipschitz continuous time coupling con-

straints at time t, but also the expectations about the uncertainty after time t. Therefore,

one can hardly expect Vt to be Lipschitz continuous w.r.t. ξt without having that the

conditional distribution of (ξs)
T
s=t+1 under

{
ξt = ξt

}
depends continuously on ξt, in some

sense. This is illustrated by Example 2.6. of Heitsch, Römisch, and Strugarek (2006).

Thus, for establishing recursively the continuity of Vt, we need that continuity of Vt+1

w.r.t. ξt+1 is passed down to the mapping ξt 7→ E
[
Vt+1(ξ

t+1, xt)
∣∣ ξt = ξt

]
. To this end,

we introduce for p ≥ 1 and a given Borel set At+1 ⊂ Ξt+1 with Pt+1[At+1] = 1 the class

FAt+1

p (Ξt+1) ,
{

f : Ξt+1 → R : (10) holds for ξt+1, ξ̂t+1 ∈ At+1
}

and the Lipschitz condition

(10) |f(ξt+1)− f(ξ̂t+1)| ≤ max{1, ‖ξt+1‖, ‖ξ̂t+1‖}p−1‖ξt+1 − ξ̂t+1‖.

We recall that - except for our disregarding of the Pt+1-null set Ξt+1 \ At+1 within the

definition of FAt+1

p - the p-th order Fortet-Mourier distance between probability measures

P, Q on Ξt+1 is defined by

ζAt+1

p (P, Q) , sup
f∈FAt+1

p (Ξt+1)

∣∣∣∣∫
Ξt+1

f(ξt+1)P (dξt+1)−
∫

Ξt+1

f(ξt+1)Q(dξt+1)

∣∣∣∣,
see, e.g., Rachev (1991) and Römisch (2003). Using this notation, the claimed continuity

of the conditional distributions is specified by the following
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Assumption 2.6. There exist constants W, K > 0 and r ≥ 1, such that with

(11) mt , 2 + (T − t)(r + 1) for t = 1, . . . , T,

the following conditions are fulfilled.

(i) For every t = 1, . . . , T − 1, every Borel set At+1 ⊂ Ξt+1 with Pt+1[At+1] = 1, and

Pt-a.e. ξt, ξ̂t ∈ Ξt

ζAt+1

mt+1

(
P

[
ξt+1 ∈ ·

∣∣ ξt = ξt
]
, P

[
ξt+1 ∈ ·

∣∣ ξt = ξ̂t
])

≤ K max
{

1, ‖ξt‖, ‖ξ̂t‖
}mt−1

‖ξt − ξ̂t‖.

(ii) For every t = 1, . . . , T − 1 and Pt-a.e. ξt ∈ Ξt

E
[
max{1,

∥∥ξT
∥∥}2+T−t

∣∣ ξt = ξt
]
≤ W ·max{1,

∥∥ξt
∥∥}mt .

Since the above assumption is crucial for the following continuity and stability results,

it is discussed by the following

Remark 2.7. Condition (i) is related to terms usually related to Markov processes, namely

the coefficient of ergodicity and the Feller property, see, e.g. Dobrushin (1956) and

Dynkin (1965), respectively. A similar assumption has been made by Bally, Pagès, and

Printems (2005) to ensure stability of an optimal-stopping problem in a Markovian frame-

work and by Mirkov and Pflug (2006) for their study of consistency of tree approximations.

It is also made implicitly by Kuhn (2005) by focusing on autoregressive processes. The

more involved formulation of Assumption 2.6, allowing for polynomially growing Lipschitz

constants, is due to the fact that neither 〈bt(ξt), xt〉 nor Mt+1 are uniformly Lipschitz con-

tinuous in ξt and xt, unless both the support ΞT and the sets Xt, t = 1, . . . , T , are bounded.

Indeed, under such a boundedness condition (i) may be significantly simplified.

Lemma A.1 in the Appendix provides conditions on ξ, under which both (i) and (ii)

hold true. In particular, this is the case if ΞT is finite. Then ζmt+1 is the optimal value of

a linear optimization problem that can be solved numerically to determine the constants

K and r.

We indicate that the definition of mt allows the growth rate of the Lipschitz constant of

ξt 7→ E[f(ξt+1)|ξt = ξt] to exceed those of f ’s Lipschitz constant by the value r ≥ 1.

The following Theorem shows that Assumption 2.6 provides indeed Lipschitz continuity of

Vt w.r.t. ξt. We refer to Proposition 2.7 of Kuhn (2005), which represents a corresponding

continuity result.
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Theorem 1. Suppose the Assumptions 2.1, 2.3, and 2.6 are fulfilled. For every t =

1, . . . , T there is a constant Ct > 0 and a Borel set At ⊂ Ξt with Pt[At] = 1 such that

1

Ct max {1, ‖xt−1‖}
Vt( · , xt−1) ∈ FAt

mt+1(Ξ
t),

holds true for every xt−1 ∈ Xt−1.

Proof. The assertion holds true for VT+1 ≡ 0, we show that it follows recursively for t ≤ T .

To this end, we proceed as in the proof of Proposition 2.5 and choose a measurable x∗
t with

x∗
t (ξ

t) ∈ Mt(xt−1, ξt), that fulfills (4) and ‖x∗
t (ξ

t)‖ ≤ L · max {1, ‖xt−1‖} · max {1, ‖ξt‖}.
Thus, we obtain

|Vt(ξ
t, xt−1)− Vt(ξ̂

t, xt−1)|
= |〈bt(ξt), x

∗
t (ξ

t)〉+ E
[
Vt+1(ξ

t+1, x∗
t (ξ

t))
∣∣ ξt = ξt

]
− inf

x̂t∈Mt(xt−1,ξ̂t)

{
〈bt(ξ̂t), x̂t〉+ E

[
Vt+1(ξ

t+1, x̂t)
∣∣ ξt = ξ̂t

]}
|,(12)

which holds, due to Assumption 2.3, for every ξt, ξ̂t in a Pt− 1 set At′ for all xt−1 ∈ Xt−1.

We consider the case when the term under the norm is negative and choose a measurable

x̂∗
t with

x̂∗
t (ξ̂

t) ∈ argminz∈Mt(xt−1,ξ̂t)
‖z − x∗

t (ξ
t)‖,

to obtain the following upper bound for (12):

−〈bt(ξt), x
∗
t (ξ

t)〉 − E
[
Vt+1(ξ

t+1, x∗
t (ξ

t))
∣∣ ξt = ξt

]
+〈bt(ξ̂t), x̂

∗
t (ξ̂

t)〉+ E
[
Vt+1(ξ

t+1, x̂∗
t (ξ̂

t))
∣∣∣ ξt = ξ̂t

]
.(13)

Using linearity of bt and Lipschitz continuity of Mt, the difference of the 〈·, ·〉-terms can

be estimated by

|〈bt(ξt), x
∗
t (ξ

t)〉 − 〈bt(ξ̂t), x
∗
t (ξ

t)〉|+ |〈bt(ξ̂t), x
∗
t (ξ

t)〉 − 〈bt(ξ̂t), x̂
∗
t (ξ̂

t)〉|
≤ B‖ξt − ξ̂t‖ · L ·max {1, ‖xt−1‖}max

{
1, ‖ξt‖

}
+B max{1, ‖ξ̂t‖} ·M max{1, ‖xt−1‖}‖ξt − ξ̂t‖

≤ B(L + M) max {1, ‖xt−1‖}max
{

1, ‖ξt‖, ‖ξ̂t‖
}
‖ξt − ξ̂t‖,(14)

The difference of the conditional expectations in (13) is bounded by

|E
[
Vt+1(ξ

t+1, x∗
t (ξ

t))
∣∣ ξt = ξt

]
− E

[
Vt+1(ξ

t+1, x∗
t (ξ

t))
∣∣ ξt = ξ̂t

]
|

+|E
[
Vt+1(ξ

t+1, x∗
t (ξ

t))
∣∣ ξt = ξ̂t

]
− E

[
Vt+1(ξ

t+1, x̂∗
t (ξ̂

t))
∣∣∣ ξt = ξ̂t

]
|

≤ KCt+1 max
{
1, ‖x∗

t (ξ
t)‖

}
max

{
1, ‖ξt‖, ‖ξ̂t‖

}mt−1

‖ξt − ξ̂t‖

+E
[
[Vt+1]

x
Lip (ξt+1)

∣∣∣ ξt = ξ̂t
]
·M max {1, ‖xt−1‖} · ‖ξt − ξ̂t‖,
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whereby the last inequality follows on the one hand from the assertion for Vt+1 and As-

sumption 2.6, on the other hand from Proposition 2.5, and the Lipschitz continuity of Mt.

This estimate holds true for every ξt, ξ̂t ∈ At′′ ∩ At′′′ for all xt−1 ∈ Xt−1, where At′′ and

At′′′ denote the Pt − 1−sets, on which the assertions of Proposition 2.5 and Assumption

2.6 hold, respectively.

Applying the estimate (8) as well as condition (ii) of Assumption 2.6 and using the bound-

edness of ‖x∗
t‖, we get that the latter sum is again bounded from above by

(15)
(
KCt+1L + M̄WM

)
max {1, ‖xt−1‖}max{1, ‖ξt‖, ‖ξ̂t‖}mt · ‖ξt − ξ̂t‖.

The upper bounds (14) and (15) remain valid if the term under the norm in (12) is

positive. Piecing all together, the assertion for Vt follows with At , At′ ∩ At′′ ∩ At′′′ and

the Lipschitz constant Ct can be chosen by collecting the constants from (14) and (15),

i.e.,

Ct , B(M + L) + KCt+1L + M̄WM.

Whenever an auxiliary process ξ̃ is expected to approximate ξ with regard to the

optimization problem (2), it is indispensable that ξ̃ is nonanticipative w.r.t. ξ. This is

illustrated, for the sake of completeness, by Example A.3 in the Appendix. Nonanticipa-

tivity is ensured in the following by

Definition 2.8. A stochastic process ξ̃ on (Ω,F , P) is called a discretization of ξ, if there

exist Borel-measurable mappings

ft : Ξt → Ξt t = 1, . . . , T,

fulfilling the following conditions:

(i) ξ̃t = ft(ξ
t) for t = 1, . . . T ,

(ii) for every ξT ∈ fT (ΞT ) we have fT (ξT ) = ξT ,

(iii) f1 = Id, and

(iv) fT (ξT ) ∈ Lp(Ω,F , P) for every p ∈ [1,∞).

Thereby, f t(ξt) denotes the vector (fi(ξ
i))t

i=1 ∈ Rs·t, for t = 2, . . . , T .

Remark 2.9. The nonanticipativity condition (i) is equivalent to σ(ξt)-measurability of

the random variable ξ̃t. Condition (ii) is fulfilled, e.g., if fT is the projection onto the

set fT (ΞT ). It is needed in the following sections for the identity (23) to hold. The

integrability condition (iv) is assumed again for the sake of simplicity. For the following

results, it suffices that fT (ξT ) ∈ Lp(Ω,F , P) for a constant p ∈ R+ that is sufficiently

large.
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The following proposition relies heavily on the continuity of the recourse function

stated in Theorem 1. It is shown that, although an optimal decision is not continuous,

in general, its expected costs can be approximated by a piecewise constant decision. The

latter may be infeasible, but it can be used to construct a feasible decision. This will be

completed in the next section.

Proposition 2.10. Consider an optimal decision x∗ that is bounded in the sense of (6)

and a discretization mapping fT according to Definition 2.8. There exists a constant

D > 0 such that the following estimate holds:∣∣∣∣∣v(ξ)− E

[
T∑

t=1

〈bt(ξt), x
∗
t (f

t(ξt))〉

]∣∣∣∣∣ ≤ DE
[
max{1, ‖ξT‖, ‖fT (ξT )‖}m1 · ‖ξT − fT (ξT )‖

]
,

where m1 is defined by (11).

Proof. Due to f1 = Id, we have to bound∣∣∣∣∣E
[

T∑
t=2

〈bt(ξt), x
∗
t (ξ

t)〉

]
− E

[
T∑

t=2

〈bt(ξt), x
∗
t (f

t(ξt))〉

]∣∣∣∣∣.
By optimality of x∗, the first sum is equal to E

[
V2(ξ

2, x∗
1)

]
and it follows from Theorem

1 and boundedness of x∗
1 (and x∗

0 , 1) that

(16)

E
[∣∣V2(ξ

2, x∗
1)− V2(f

2(ξ2), x∗
1)

∣∣] ≤ LC2E
[
max

{
1, ‖ξ2‖, ‖f 2(ξ2)‖

}m2 · ‖ξ2 − f 2(ξ2)‖
]

Thus, it remains to bound∣∣∣∣∣E
[
V2(f

2(ξ2), x∗
1)−

T∑
t=2

〈bt(ξt), x
∗
t (f

t(ξt))〉

]∣∣∣∣∣.(17)

To this end, we consider the following inequality

(18)

∣∣∣∣∣E
[
V2(f

2(ξ2), x∗
1)−

t−1∑
s=2

〈bs(ξs), x
∗
s(f

s(ξs))〉 − Vt(f
t(ξt), x∗

t−1(f
t−1(ξt−1)))

]∣∣∣∣∣ ≤ Dt,

whose left side coincides with (17) for t = T + 1. It holds trivially for t = 2 with D2 = 0

and we assume that it is also true for a certain t ∈ {2, . . . , T} and some Dt ≥ 0. To prove

it recursively for t + 1, we aim to bound

(19)∣∣E [
Vt(f

t(ξt), x∗
t−1(f

t−1(ξt−1)))− 〈bt(ξt), x
∗
t (f

t(ξt))〉 − Vt+1(f
t+1(ξt+1), x∗

t (f
t(ξt)))

]∣∣.
To this end, we use again x∗’s optimality to expand the first summand:

E[Vt(f
t(ξt), x∗

t−1(f
t−1(ξt−1)))](20)

=

∫
〈bt(ft(ξ

t)), x∗
t (f

t(ξt))〉+ E
[
Vt+1(ξ

t+1, x∗
t (f

t(ξt)))
∣∣ ξt = f t(ξt)

]
Pt(dξt).
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Now, to estimate (19), we have to replace bt(ft(ξ
t)) by bt(ξ

t). Indeed, Lipschitz continuity

of bt(·) implies

|〈bt(ft(ξ
t)), x∗

t (f
t(ξt))〉 − 〈bt(ξt), x

∗
t (f

t(ξt))〉| ≤ B · ‖x∗
t (f

t(ξt))‖ · ‖ξt − f t(ξt)‖.

To estimate the difference of the Vt+1-terms in (19) and (20), we add and subtract the

term E
[
Vt+1(f

t+1(ξt+1), x∗
t (f

t(ξt)))
∣∣ ξt = ξt

]
and use the triangle inequality to estimate∣∣E [

Vt+1(ξ
t+1, x∗

t (f
t(ξt)))

∣∣ ξt = f t(ξt)
]
− E

[
Vt+1(f

t+1(ξt+1), x∗
t (f

t(ξt)))
∣∣ ξt = ξt

]∣∣
≤

∣∣E [
Vt+1(ξ

t+1, x∗
t (f

t(ξt)))
∣∣ ξt = f t(ξt)

]
− E

[
Vt+1(ξ

t+1, x∗
t (f

t(ξt)))
∣∣ ξt = ξt

]∣∣
+

∣∣E [
Vt+1(ξ

t+1, x∗
t (f

t(ξt)))
∣∣ ξt = ξt

]
− E

[
Vt+1(f

t+1(ξt+1), x∗
t (f

t(ξt)))
∣∣ ξt = ξt

]∣∣.
By applying Theorem 1 and Assumption 2.6 we conclude that this term is bounded for

Pt-almost every ξt by

KCt+1 max
{
1, ‖x∗

t (f
t(ξt)‖

}
max{1, ‖ξt‖, ‖f t(ξt)‖}mt−1‖ξt − f t(ξt)‖

+Ct+1 max
{
1, ‖x∗

t (f
t(ξt)‖

}
·E

[
max{1, ‖ξt+1‖, ‖f t+1(ξt+1)‖}mt+1 ‖ξt+1 − f t+1(ξt+1)‖

∣∣ ξt = ξt
]

≤ (K + 1)Ct+1L
tE

[
max{1, ‖ξt+1‖, ‖f t+1(ξt+1)‖}mt+t−1‖ξt+1 − f t+1(ξt+1)‖|ξt = ξt

]
,

where the inequality follows from boundedness of x∗
t and the relation mt+1 ≤ mt − 1.

Integration w.r.t. Pt(dξt) and combining these estimates with (20) entails that (19) does

not exceed

(21) (B + (K + 1)Ct+1)L
tE

[
max{1, ‖ξt+1‖, ‖f t+1(ξt+1)‖}mt+t−1 · ‖ξt+1 − f t+1(ξt+1)‖

]
,

Hence, (18) holds for t + 1 with Dt+1 being equal to the sum of Dt and (21).

Due to the fact that both mt + t − 1 and m2 are smaller than m1, the sum of (16) and

(17) does not exceed

DE
[
max{1, ‖ξT‖, ‖fT (ξT )‖}m1 · ‖ξT − fT (ξT )‖

]
with D , LC2 + DT+1. This completes the proof.

3 Calmness of Decisions

Whenever ξ is replaced by another process ξ̃, the perturbation of the optimal value in (2)

can be estimated by considering the terms

‖〈bt(ξt), x
∗
t (ξ

t)〉 − 〈bt(ξ̃t), x̃
∗
t (ξ̃

t
)〉‖ for t = 1, . . . , T,

where x∗ and x̃∗ are optimal decisions w.r.t. ξ and ξ̃, respectively. While the coefficients

bt are close whenever ξ is well approximated by ξ̃, this is not necessarily true for the
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decisions. Indeed, x̃∗ is constant on every set {ξt : f t(ξt) = z}, z ∈ f t(Ξt), whereas x∗

does not depend continuously on ξt, in general. Hence, our next purpose is to point out

for every bounded optimal decision the existence of a calm decision that generates similar

expected costs. To this end, we consider an optimal decision x∗ which is bounded in the

sense of (6) and set

x̄∗
1 , x∗

1 and x̄∗
t (ξ

t) ∈ argminz∈Mt(x̄∗t−1(ξt−1), ξt) ‖x
∗
t (f

t(ξt))− z‖ for t = 2, . . . , T,

where, again due to Theorem 14.37 of Rockafellar and Wets (1998), the latter mappings

can be chosen to be measurable. Due to Lipschitz continuity of Mt, the local variability of

x̄∗
t (·) in ξt can be bounded recursively. More precisely, x̄∗

t (·) is calm locally around f(ξt)

for every ξt ∈ Ξt:

Proposition 3.1. For every t = 1, . . . , T and ξt ∈ Ξt we have

(22) ‖x̄∗
t (ξ

t)− x̄∗
t (f

t(ξt))‖ ≤ (T − 1)MT−1 max{1, ‖ξT‖, ‖fT (ξT )‖}T−1‖ξT − fT (ξT )‖.

Proof. For t = 1, the difference on the left side of (22) vanishes. For t > 1 we use the

identity

(23) x̄∗
t (f

t(ξt)) = x∗
t (f

t(ξt))

and the definition of x̄∗
t (ξ

t) to write

‖x̄∗
t (ξ

t)− x̄∗
t (f

t(ξt))‖ = inf
z∈Mt(x̄∗t−1(ξt−1), ξt)

‖z − x̄∗
t (f

t(ξt))‖.

Using the triangle inequality as well as x̄∗
t (f

t(ξt)) ∈ Mt(x̄
∗
t−1(f

t−1(ξt−1)), ft(ξ
t)) and Lip-

schitz continuity of Mt, this term can be estimated against

M max{1, ‖ξt‖} ‖x̄∗
t−1(ξ

t−1)− x̄∗
t−1(f

t−1(ξt−1))‖
+M max{1, ‖x̄∗

t−1(f
t−1(ξt−1))‖} ‖f t(ξt)− ξt‖,

and, by boundedness of xt−1, against

M max{1, ‖ξt‖} ‖x̄∗
t−1(ξ

t−1)− x̄∗
t−1(f

t−1(ξt−1))‖
+ML max{1, ‖f t−1(ξt−1)‖}t−1 ‖f t(ξt)− ξt‖.

Recursively, we obtain that the left side of (22) is bounded by

L

t∑
i=2

M t+1−i max{1, ‖f i−1(ξi−1)‖}i−1 max{1, ‖ξt‖}t−i ‖ξi − f i(ξi)‖.

The assertion follows by a straightforward estimate.
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From now on, x̄∗ is referred to as x∗’s calm modification.

The following theorem shows that the difference of the expected costs generated by

x∗ and x̄∗ can be estimated in terms of the deviation between ξT and fT (ξT ).

Theorem 2. Suppose the Assumptions 2.1, 2.3, and 2.6 are fulfilled. Consider an optimal

decision x∗ which is bounded in the sense of (6) and its calm modification x̄∗. There exists

a constant C > 0 such that the following estimate holds∣∣Eϕ(x∗, ξT )− Eϕ(x̄∗, ξT )
∣∣ ≤ C E

[
max{1, ‖ξT‖, ‖fT (ξT )‖}m1 · ‖ξT − fT (ξT )‖

]
.

Proof. As in the proof of Proposition 2.10, we have to estimate∣∣∣∣∣E
[

T∑
t=2

〈bt(ξt), x
∗
t (ξ

t)〉 −
T∑

t=2

〈bt(ξt), x̄
∗
t (ξ

t)〉

]∣∣∣∣∣
We apply Proposition 2.10 and the triangle inequality to replace in the first sum x∗

t (ξ
t)

by x∗
t (f

t(ξt)) and to estimate the resulting error. Then, it remains to bound∣∣∣∣∣E
[

T∑
t=2

〈bt(ξt), x
∗
t (f

t(ξt))〉 −
T∑

t=2

〈bt(ξt), x̄
∗
t (ξ

t)〉

]∣∣∣∣∣.
The following upper bound is obtained by applying identity (23) as well as the calmness

property of x̄∗ from Proposition 3.1:

E

[
T∑

t=2

B max{1, ‖ξt‖}(T − 1)MT−1 max{1, ‖ξT‖, ‖fT (ξT )‖}T−1‖ξT − fT (ξT )‖

]
≤ (T − 1)2BMT−1E

[
max{1, ‖ξT‖, ‖fT (ξT )‖}T‖ξT − fT (ξT )‖

]
.

Finally, the sum of the latter term and the bound obtained from Proposition 2.10 is

smaller than

C E
[
max{1, ‖ξT‖, ‖fT (ξT )‖}m1 · ‖ξT − fT (ξT )‖

]
,

with a constant C , D + (T − 1)2BMT−1.

4 Stability

With the above results for calm decisions, we are ready to adress the question of stability.

Theorem 3. Suppose the Assumptions 2.1, 2.3, and 2.6 are fulfilled and let ξ̃ be a dis-

cretization of ξ according to Definition 2.8, that fulfills Assumption 2.3, too. There exists

a constant γ > 0, such that∣∣∣v(ξ)− v(ξ̃)
∣∣∣ ≤ γ E

[
max{1, ‖ξT‖, ‖ξ̃T‖}m1 · ‖ξT − ξ̃

T‖
]

holds.
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Proof. To this end, we consider a bounded optimal decision x∗ ∈ S(ξ) and its calm

modification x̄∗ from Section 3. Applying Theorem 2 yields the following inequality

v(ξ̃)− v(ξ) = v(ξ̃)− Eϕ(x∗, ξ)

≤ v(ξ̃)− Eϕ(x̄∗, ξ) + CE
[
max{1, ‖ξT‖, ‖ξ̃T‖}m1 · ‖ξT − ξ̃

T‖
]
.(24)

Since the restriction of x̄∗ on fT (ΞT ) is contained in S(ξ̃), we can write

v(ξ̃)− Eϕ(x̄∗, ξ) ≤ Eϕ(x̄∗, ξ̃)− Eϕ(x̄∗, ξ)

=
T∑

t=2

E
[
〈bt(ξ̃t)− bt(ξt), x̄

∗
t (ξ̃

t
)〉+ 〈bt(ξt), x̄

∗
t (ξ̃

t
)− x̄∗

t (ξ
t)〉

]
≤ B

T∑
t=2

E
[
‖ξ̃t − ξt‖ ‖x̄∗

t (ξ̃
t
)‖+ max {1, ‖ξt‖} ‖x̄∗

t (ξ̃
t
)− x̄∗

t (ξ
t)‖

]
.(25)

Each of these T − 1 summands can be estimated by boundedness of x∗ and calmness of

x̄∗. Thus, (25) is bounded by

(26) HE
[
max{1, ‖ξT‖, ‖ξ̃T‖}T · ‖ξT − ξ̃

T‖
]
,

with an appropriate constant H > 0. Hence, using again m1 ≥ T , we obtain

v(ξ̃)− v(ξ) ≤ (C + H)E
[
max{1, ‖ξT‖, ‖ξ̃T‖}m1 · ‖ξT − ξ̃

T‖
]
.

Now, we consider a bounded optimal decision x̃∗ of v(ξ̃). Following exactly the construc-

tion of Section 3, we obtain a decision ¯̃x∗ ∈ S(ξ) that is calm in the sense of Proposition

3.1 and whose restriction on fT (ΞT ) is optimal for v(ξ̃). As in (25), it follows that

v(ξ)− v(ξ̃) ≤ Eϕ(¯̃x∗, ξ)− Eϕ(¯̃x∗, ξ̃)

≤ B
T∑

t=2

E
[
max {1, ‖ξt} ‖ ‖¯̃x∗

t (ξ̃
t
)− ¯̃x∗

t (ξ
t)‖+ ‖ξ̃t − ξt‖ ‖¯̃x∗

t (ξ̃
t
)‖

]
≤ HE

[
max{1, ‖ξT‖, ‖ξ̃T‖}T · ‖ξT − ξ̃

T‖
]
.

The proof is completed by setting γ , C + H.

Remark 4.1. Since the scope of this paper is rather to establish a stability result than

the development of new approximation techniques, we restrict ourselves to refer to existing

approaches based on conditional or unconditional clustering, that can be used to control the

upper bound of Theorem 3. We mention here the the approaches of Heitsch and Römisch

(2005), Bally, Pagès, and Printems (2005), Hochreiter and Pflug (2007), and Pennanen

(2007).
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Appendix

The following lemma provides conditions under which the conditions of Assumption 2.6

hold true.

Lemma A.1. Assume the dynamic of the process ξ is given by the following scheme:

(27) ξt+1 = gt(ξ
t, εt+1),

where εt+1 is a random variable that is independent of ξt and gt are measurable mappings

from Rm·t × Rs to Rm that satisfy the following Lipschitz and linear growth conditions:

(i) ‖gt(x, εt+1)− gt(y, εt+1)‖ ≤ max{1, ‖x‖, ‖y‖}r‖x− y‖ · h(‖εt+1‖),

(ii) ‖gt(x, εt+1)‖ ≤ max{1, ‖x‖} · k(‖εt+1‖),

for an r ≥ 1 and Borel-measurable mappings h, k ≥ 1, such that h(‖εt+1‖) and k(‖εt+1‖)
are in Lp for every p ∈ [1, +∞). Then ξ fulfils both conditions of Assumption 2.6 with

the constants

K , E [k(‖εt+1‖)m1h(‖εt+1‖)] and W , E

[
T∏

i=t+1

k(‖εi‖)2+T−t

]
.

Proof. Consider f ∈ Fmt+1(Ξ
t+1). Then we obtain∣∣∣E [

f(ξt+1)
∣∣ ξt = ξt

]
− E

[
f(ξt+1)

∣∣ ξt = ξ̂t
]∣∣∣

=
∣∣∣E [

f(gt(ξ
t, εt+1))

]
− E

[
f(gt(ξ̂

t, εt+1))
]∣∣∣

≤ E
[
max

{
1, ‖gt(ξ

t, εt+1)‖, ‖gt(ξ̂
t, εt+1)‖

}mt+1

‖gt(ξ
t, εt+1)− gt(ξ̂

t, εt+1)‖
]

≤ E
[
max

{
1, ‖gt(ξ

t, εt+1)‖, ‖gt(ξ̂
t, εt+1)‖

}mt+1

h(‖εt+1‖)
]

·max{1, ‖ξt‖, ‖ξ̂t‖}r‖ξt − ξ̂t‖
≤ E

[
max

{
1, ‖ξt‖, ‖ξ̂t‖

}mt+1

k(‖εt+1‖)mt+1h(‖εt+1‖)
]
max{1, ‖ξt‖, ‖ξ̂t‖}r‖ξt − ξ̂t‖

= E [k(‖εt+1‖)mt+1h(‖εt+1‖)] ·max{1, ‖ξt‖, ‖ξ̂t‖}r+mt+1‖ξt − ξ̂t‖.

Due to the identity r + mt+1 = mt − 1, this entails condition (i) of Assumption 2.6. The

asserted form of K follows from m1 ≥ mt for t = 1, . . . , T .

Furthermore, we apply (27) recursively to obtain the following estimate:

‖ξT‖ ≤ max{1, ‖ξt‖}
T∏

i=t+1

k(‖εi‖).

Raising both sides to the power of 2 + (T − t) and taking conditional expectations

E[ · |ξt = ξt] verifies condition (ii) of Assumption 2.6.
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The conditions of Lemma A.1 are fulfilled, e.g., by a variety of time-series models. We

give the following simple

Example A.2. Let ξ be a GARCH process defined through the following difference equa-

tions:

ξt = (wt, vt, εt) with

vt+1 ,
s∑

i=0

(βivt−i + γiεt−i) and wt+1 ,
s∑

i=0

αiwt−i + vt+1 · εt+1

for certain parameters αi, βi, γi ∈ R. Thereby, v represents the stochastic volatility process

of w and (εt)t≥0 is a sequence of i.i.d. random variables, following a standard normal

distribution. It is easy to see that ξ fulfills the conditions of Lemma A.1 with r = 1 and

h(·), k(·) being affine functions.

The following example shows that nonanticipativity w.r.t. the initial process is indispens-

able for an approximating process.

Example A.3. Consider T = 3 and the process ξ that is given by ξ1 ≡ 0 and the two

independent random variables ξ2 and ξ3, both uniformly distributed on [0, 1]. For n ∈ N
and 0 < ε < 1 we introduce the grids A(n) , { i

n
: i = 1, . . . , n} and the associated

projections πA(n) : [0, 1] → A(n).

Furthermore, we define processes ξ(n), n ∈ N, given by ξ
(n)
1 ≡ 0, ξ

(n)
3 , πA(n)ξ3, and

ξ
(n)
2 ,

{
πA(n)ξ2 if ξ3 ≤ 1/2,

(πA(n)ξ2) + ε
n

if ξ3 > 1/2.

The sequence ξ(n) can be seen as an approximation of ξ, since E
[
‖ξ − ξ(n)‖

]
≤ 1+2ε

2n
holds

true. We consider the following optimization problem

v(ξ) , min
{
E [x2 · ξ2 + x3 · ξ3] : xt ≥ 0, xt ∈ σ(ξt), t = 2, 3, x2 + x3 = 1 a.s.

}
,

that is solved by x2 = 1{ξ2≤1/2} and x3 = 1− x2 with optimal value v(ξ) = 12/32. When

replacing ξ by ξ(n), we use the decisions

x
(n)
2 = 1{ξ(n)

2 ≤1/4} + 1{ξ(n)
2 ∈ ]1/4, 3/4[ \A(n)} and x

(n)
3 = 1− x

(n)
2

to obtain lim supn→∞ v(ξ(n)) ≤ 11/32. Obviously, convergence does not hold since the

processes ξ(n) do not fulfill the nonanticipativity condition (i) of Definition 2.8.
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