911 research outputs found

    Statistical topological data analysis using persistence landscapes

    Full text link
    We define a new topological summary for data that we call the persistence landscape. Since this summary lies in a vector space, it is easy to combine with tools from statistics and machine learning, in contrast to the standard topological summaries. Viewed as a random variable with values in a Banach space, this summary obeys a strong law of large numbers and a central limit theorem. We show how a number of standard statistical tests can be used for statistical inference using this summary. We also prove that this summary is stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein distances.Comment: 26 pages, final version, to appear in Journal of Machine Learning Research, includes two additional examples not in the journal version: random geometric complexes and Erdos-Renyi random clique complexe

    A Stable Multi-Scale Kernel for Topological Machine Learning

    Full text link
    Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes

    Linearization of Hyperbolic Finite-Time Processes

    Get PDF
    We adapt the notion of processes to introduce an abstract framework for dynamics in finite time, i.e.\ on compact time sets. For linear finite-time processes a notion of hyperbolicity namely exponential monotonicity dichotomy (EMD) is introduced, thereby generalizing and unifying several existing approaches. We present a spectral theory for linear processes in a coherent way, based only on a logarithmic difference quotient, prove robustness of EMD with respect to a suitable (semi-)metric and provide exact perturbation bounds. Furthermore, we give a complete description of the local geometry around hyperbolic trajectories, including a direct and intrinsic proof of finite-time analogues of the local (un)stable manifold theorem and theorem of linearized asymptotic stability. As an application, we discuss our results for ordinary differential equations on a compact time-interval.Comment: 32 page

    Persistence barcodes and Laplace eigenfunctions on surfaces

    Full text link
    We obtain restrictions on the persistence barcodes of Laplace-Beltrami eigenfunctions and their linear combinations on compact surfaces with Riemannian metrics. Some applications to uniform approximation by linear combinations of Laplace eigenfunctions are also discussed.Comment: Revised version; some references adde

    Critical Transitions In a Model of a Genetic Regulatory System

    Full text link
    We consider a model for substrate-depletion oscillations in genetic systems, based on a stochastic differential equation with a slowly evolving external signal. We show the existence of critical transitions in the system. We apply two methods to numerically test the synthetic time series generated by the system for early indicators of critical transitions: a detrended fluctuation analysis method, and a novel method based on topological data analysis (persistence diagrams).Comment: 19 pages, 8 figure

    Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph

    Full text link
    Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 33-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest.Comment: 15 page
    corecore