664 research outputs found

    One-shot lip-based biometric authentication: extending behavioral features with authentication phrase information

    Full text link
    Lip-based biometric authentication (LBBA) is an authentication method based on a person's lip movements during speech in the form of video data captured by a camera sensor. LBBA can utilize both physical and behavioral characteristics of lip movements without requiring any additional sensory equipment apart from an RGB camera. State-of-the-art (SOTA) approaches use one-shot learning to train deep siamese neural networks which produce an embedding vector out of these features. Embeddings are further used to compute the similarity between an enrolled user and a user being authenticated. A flaw of these approaches is that they model behavioral features as style-of-speech without relation to what is being said. This makes the system vulnerable to video replay attacks of the client speaking any phrase. To solve this problem we propose a one-shot approach which models behavioral features to discriminate against what is being said in addition to style-of-speech. We achieve this by customizing the GRID dataset to obtain required triplets and training a siamese neural network based on 3D convolutions and recurrent neural network layers. A custom triplet loss for batch-wise hard-negative mining is proposed. Obtained results using an open-set protocol are 3.2% FAR and 3.8% FRR on the test set of the customized GRID dataset. Additional analysis of the results was done to quantify the influence and discriminatory power of behavioral and physical features for LBBA.Comment: 28 pages, 10 figures, 7 table

    Body language, security and e-commerce

    Get PDF
    Security is becoming an increasingly more important concern both at the desktop level and at the network level. This article discusses several approaches to authenticating individuals through the use of biometric devices. While libraries might not implement such devices, they may appear in the near future of desktop computing, particularly for access to institutional computers or for access to sensitive information. Other approaches to computer security focus on protecting the contents of electronic transmissions and verification of individual users. After a brief overview of encryption technologies, the article examines public-key cryptography which is getting a lot of attention in the business world in what is called public key infrastructure. It also examines other efforts, such as IBM’s Cryptolope, the Secure Sockets Layer of Web browsers, and Digital Certificates and Signatures. Secure electronic transmissions are an important condition for conducting business on the Net. These business transactions are not limited to purchase orders, invoices, and contracts. This could become an important tool for information vendors and publishers to control access to the electronic resources they license. As license negotiators and contract administrators, librarians need to be aware of what is happening in these new technologies and the impact that will have on their operations

    Automatic Identity Recognition Using Speech Biometric

    Get PDF
    Biometric technology refers to the automatic identification of a person using physical or behavioral traits associated with him/her. This technology can be an excellent candidate for developing intelligent systems such as speaker identification, facial recognition, signature verification...etc. Biometric technology can be used to design and develop automatic identity recognition systems, which are highly demanded and can be used in banking systems, employee identification, immigration, e-commerce…etc. The first phase of this research emphasizes on the development of automatic identity recognizer using speech biometric technology based on Artificial Intelligence (AI) techniques provided in MATLAB. For our phase one, speech data is collected from 20 (10 male and 10 female) participants in order to develop the recognizer. The speech data include utterances recorded for the English language digits (0 to 9), where each participant recorded each digit 3 times, which resulted in a total of 600 utterances for all participants. For our phase two, speech data is collected from 100 (50 male and 50 female) participants in order to develop the recognizer. The speech data is divided into text-dependent and text-independent data, whereby each participant selected his/her full name and recorded it 30 times, which makes up the text-independent data. On the other hand, the text-dependent data is represented by a short Arabic language story that contains 16 sentences, whereby every sentence was recorded by every participant 5 times. As a result, this new corpus contains 3000 (30 utterances * 100 speakers) sound files that represent the text-independent data using their full names and 8000 (16 sentences * 5 utterances * 100 speakers) sound files that represent the text-dependent data using the short story. For the purpose of our phase one of developing the automatic identity recognizer using speech, the 600 utterances have undergone the feature extraction and feature classification phases. The speech-based automatic identity recognition system is based on the most dominating feature extraction technique, which is known as the Mel-Frequency Cepstral Coefficient (MFCC). For feature classification phase, the system is based on the Vector Quantization (VQ) algorithm. Based on our experimental results, the highest accuracy achieved is 76%. The experimental results have shown acceptable performance, but can be improved further in our phase two using larger speech data size and better performance classification techniques such as the Hidden Markov Model (HMM)

    Integration of biometrics and steganography: A comprehensive review

    Get PDF
    The use of an individual’s biometric characteristics to advance authentication and verification technology beyond the current dependence on passwords has been the subject of extensive research for some time. Since such physical characteristics cannot be hidden from the public eye, the security of digitised biometric data becomes paramount to avoid the risk of substitution or replay attacks. Biometric systems have readily embraced cryptography to encrypt the data extracted from the scanning of anatomical features. Significant amounts of research have also gone into the integration of biometrics with steganography to add a layer to the defence-in-depth security model, and this has the potential to augment both access control parameters and the secure transmission of sensitive biometric data. However, despite these efforts, the amalgamation of biometric and steganographic methods has failed to transition from the research lab into real-world applications. In light of this review of both academic and industry literature, we suggest that future research should focus on identifying an acceptable level steganographic embedding for biometric applications, securing exchange of steganography keys, identifying and address legal implications, and developing industry standards

    SpeakingFaces: A Large-Scale Multimodal Dataset of Voice Commands with Visual and Thermal Video Streams

    Full text link
    We present SpeakingFaces as a publicly-available large-scale dataset developed to support multimodal machine learning research in contexts that utilize a combination of thermal, visual, and audio data streams; examples include human-computer interaction (HCI), biometric authentication, recognition systems, domain transfer, and speech recognition. SpeakingFaces is comprised of well-aligned high-resolution thermal and visual spectra image streams of fully-framed faces synchronized with audio recordings of each subject speaking approximately 100 imperative phrases. Data were collected from 142 subjects, yielding over 13,000 instances of synchronized data (~3.8 TB). For technical validation, we demonstrate two baseline examples. The first baseline shows classification by gender, utilizing different combinations of the three data streams in both clean and noisy environments. The second example consists of thermal-to-visual facial image translation, as an instance of domain transfer.Comment: 6 pages, 4 figures, 3 table
    corecore