156,121 research outputs found

    Improving Document Representation Using Retrofitting

    Get PDF
    Data-driven learning of document vectors that capture linkage between them is of immense importance in natural language processing (NLP). These document vectors can, in turn, be used for tasks like information retrieval, document classification, and clustering. Inherently, documents are linked together in the form of links or citations in case of web pages or academic papers respectively. Methods like PV-DM or PV-DBOW try to capture the semantic representation of the document using only the text information. These methods ignore the network information altogether while learning the representation. Similarly, methods developed for network representation learning like node2vec or DeepWalk, capture the linkage information between the documents but they ignore the text information altogether. In this thesis, we proposed a method based on Retrofit for learning word embeddings using a semantic lexicon, which tries to incorporate both the text and network information together while learning the document representation. We also analyze the optimum weight for adding network information that will give us the best embedding. Our experimentation result shows that our method improves the classification score by 4% and we also introduce a new dataset containing both network and content information

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Learning and Interpreting Multi-Multi-Instance Learning Networks

    Get PDF
    We introduce an extension of the multi-instance learning problem where examples are organized as nested bags of instances (e.g., a document could be represented as a bag of sentences, which in turn are bags of words). This framework can be useful in various scenarios, such as text and image classification, but also supervised learning over graphs. As a further advantage, multi-multi instance learning enables a particular way of interpreting predictions and the decision function. Our approach is based on a special neural network layer, called bag-layer, whose units aggregate bags of inputs of arbitrary size. We prove theoretically that the associated class of functions contains all Boolean functions over sets of sets of instances and we provide empirical evidence that functions of this kind can be actually learned on semi-synthetic datasets. We finally present experiments on text classification, on citation graphs, and social graph data, which show that our model obtains competitive results with respect to accuracy when compared to other approaches such as convolutional networks on graphs, while at the same time it supports a general approach to interpret the learnt model, as well as explain individual predictions.Comment: JML
    • …
    corecore