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ABSTRACT

Data-driven learning of document vectors that capture linkage between them is of

immense importance in natural language processing (NLP). These document vectors

can, in turn, be used for tasks like information retrieval, document classification, and

clustering. Inherently, documents are linked together in the form of links or citations

in case of web pages or academic papers respectively. Methods like PV-DM or PV-

DBOW try to capture the semantic representation of the document using only the text

information. These methods ignore the network information altogether while learning

the representation. Similarly, methods developed for network representation learning

like node2vec or DeepWalk, capture the linkage information between the documents

but they ignore the text information altogether. In this thesis, we proposed a method

based on Retrofit for learning word embeddings using a semantic lexicon, which tries

to incorporate both the text and network information together while learning the

document representation. We also analyze the optimum weight for adding network

information that will give us the best embedding. Our experimentation result shows

that our method improves the classification score by 4% and we also introduce a new

dataset containing both network and content information.
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CHAPTER 1

Introduction

Obtaining good representation of documents is crucial for different machine learning

tasks like classification, clustering and information retrieval. These tasks require

the input to be of short length vector. Recently, the most common method for

learning short length vector representation of text is Paragraph Vector (PV) [27].

Based on the distributed representation for words [31], PV proposed two models:

Paragraph Vector-Distributed Memory (PV-DM) and Paragraph Vector-Distributed

Bag of Words (PV-DBOW) with negative sampling and hierarchal softmax and the

input for these methods is only the text information as shown in Figure 1. These

methods assume that the documents are independent of each other.

Generally, documents are linked together in the form of hyperlinks in case of web

pages and citation in case of academic papers. Researchers tried to capture linkage

information while learning the representations like in node2vec [25]. These methods

ignore text information altogether during this process. The limitation of the methods

like PV-DBOW and node2vec is that they take information only from either the

content or network view alone. Intuitively, the vector obtained from using content

and network information together will give us a better vector representation.

Recently, the focus is shifted to learn multi-view representations [40]. For example,

learning document representation of academic papers from multiple views. We can

learn the representation using both the content and citation network by concatenating

or averaging these embeddings. The aim is to improve the document embedding by

1
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w1w2w3

p1

w3w1w5

p2

w1w6w3

p3

p1

p2

p3

PV-DBOW

vectors

node2vec

vectors

FIGURE 1: Learning Vector Representation from Content and Network

capturing different aspects of the documents and when combined will give a better

result for downstream tasks like classification than their single view counterparts.

In this thesis, we focus on improving the document representation of academic

papers using multiple views. Academic papers are more complex than plain texts

or networks. Papers contain text and are linked together through citations or ref-

erences. We can create a citation graph by connecting the paper together with the

papers that it is citing. The linkage is done based on the intuition that a paper cites

another paper which has a common topic or method. These network representation

learning methods, do not capture the content information, so they regard all the pa-

pers connected in the graph equal irrespective of their topics as shown in Figure 1.

For example, a paper in the domain of machine learning may cite papers related to

math and machine learning area. If we want similar papers, the network represen-

tation methods will consider papers belonging to math and machine learning equal

as it does not have the content information. Similarly, for methods like PV-DBOW

will output papers pertaining to the machine learning domain but it will ignore the

linkage of these papers with the math papers.

The contribution of this thesis is a multi-view based learning technique for docu-

ment embeddings using citation and content information. In contrast to the previous

2



1. INTRODUCTION

work, our method is applied as a post-processing step by running it on pre-trained

document vectors obtained from any method. The proposed method encourages the

new vectors to be similar to vectors which are linked together in the citation graph.

This process is fast and takes about 5 seconds for a graph of 10,000 documents and

vector length 100.

Our method is inspired by the existing method called Retrofit [22] for word em-

beddings. In retrofitting, they proposed a method in which they brought word em-

beddings closer together in the vector space based on the lexicons; meaning having

the same semantics. We modified the algorithm to extend it to document embeddings

and brought documents closer together based on the citation graph. Our experiments

show that our method improves the classification performance when compared with

existing methods.

1.1 Contributions

In this thesis we make the following contributions:

• Introduce a new algorithm for adding network information to the embeddings

obtained using content information in the form of retrofit.

• Show how the addition of network information improves the document embed-

ding through different methods.

• Analyze the reasons why when adding information from network and content

fails for some methods or datasets.

• Introduce a new dataset called Arxiv which contains both linkage and content

information for experimentation.

In the following sections, we will cover related work, problem statement, algorithm,

experimentation, results and conclusion.

3



CHAPTER 2

Review of the Literature

This section will give a detailed analysis of the existing algorithms which try to

capture linkage information along with the content in the document embedding. For

each algorithm, we will explain the method and give a detailed description of the

dataset used for experimentation.

2.1 Concatenating Document and Network Em-

beddings

2.1.1 Learning Document Embedding

Paper [27] introduces Paragraph Vector (PV), an unsupervised algorithm that learns

fixed-length feature representation from variable length pieces of text such as sen-

tences, paragraphs or documents. The vectors are represented as dense vectors and

are trained to predict words in the document.

The PV have two models for learning document representation. We will explain

p1

......

government

debt problems

......

p2

......

NLP analyses

words in

......

p3

......

Basketball
game was
......

FIGURE 2: Each paragraphID will represent a unique paragraph
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p1

government debt problems... ...

P (wt−1|p1)

P (wt|p1)
P (wt+1|p1)

FIGURE 3: PV-DBOW Overview

Paragraph Vector-Distributed Bag of Words (PV-DBOW) model since we used this

method in our experimentation

Figure 2 shows different paragraphs containing some text and each paragraph is

represented by a unique ID as p1, p2 or p3. The model will take paragraph ID and

content as input and will return the vector representation of all the paragraphs based

on content only.

Figure 3 gives an overview of the PV-DBOW model. For paragraph p1 we want to

maximize the probability of the words occurring in the paragraph with respect to all

the words in the vocabulary. This way the paragraph vector p1 will capture semantic

representation of this paragraph based on the content information.

J(θ) = − 1

T
log(L(θ)) = − 1

T

T∑
t=1

∑
−m<s<m

j 6=0

logP (wj|pt; θ) (1)

Equation 1 captures the vector representation of the paragraphs. θ are all the

variables that we want to optimize. T is the total number of documents in our

corpus. m is the window size and s is a word drawn randomly from that window. P

is the probability which we want to maximize when we have paragraph vector as an

input and want to predict the words present in that paragraph.

p(o|c) =
exp

(
uTo vc

)∑
w∈V exp (uTwvc)

(2)

The P (wj|pt; θ) is a softmax as defined in 2. In this case θ are the weight matrix

Dd×n and W n×V where d is the total number of documents, n is the total number

5
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FIGURE 4: PV-DBOW Model

of hidden neurons or vector dimension and V is the total number of words in the

vocabulary. The vector vc is obtained by multiplying one hot paragraph vector pc with

D. This will select a column in D and we represent this vector as vc. Similarly, uo

vector is obtained by the multiplication of vc with W . uo is the vector representation

of the context word that we are trying to predict. To normalize the score, we will

multiply our paragraph vector vc with all the word vectors uw in the vocabulary set

V .

Figure 4 explains the PV-DBOW model using graphical representation. In the

input, we pass one hot vector pt and multiply it with the weight matrix D. It will

select tth column of the weight matrix D and we will pass this column to the hidden

layer. The hidden layer is represented as a vector v1×n
c where n is the number of

hidden neurons. We will then multiply vc with the words weight matrix W which will

give us uo vector containing the score in the output layer. Then we will pass uo to

the softmax which will give us a probability distribution of the words based on the

input vector. To calculate the loss we will use one hot vector representation of the

label word that we are trying to predict and multiply it with our softmax vector as

shown in Equation 3 . To minimize this loss we will do backpropogation of loss with
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Dd×n y1×Vu1×V
oW n×Vv1×n

c

weight
weight

input

p1×d
t t1×V

label

FIGURE 5: Weight Update

respect to the weight matrix D.

SLoss = tilog(yi) (3)

Loss

∂D
=

Loss

∂y
.
∂y

∂uo
.
∂uo
∂vc

.
∂vc
∂D

(4)

Figure 5 gives a more abstract view of the PV-DBOW model and Equation 4 outlines

the series of partial derivative that we have to do to update the weight parameter D

where y is softmax, vc = Dpt and uo = vcW .

The problem with the above model is that for each iteration we will have to

calculate softmax and for its calculation we need to normalize the score for all the

words in the vocabulary which can be 105 to 107.

J(θ) = log σ(uovc) +
K∑
k=1

Ej ∈ P (w) [log σ(−ujvc)] (5)

To optimize this problem, the authors used Negative Sampling in which they tried

to maximize the probability of the input and context vector and tried to minimize

the probability between k random words drawn from the corpus and the input vector.

The equation 5 defines negative sampling where σ is a sigmoid function defined as

1

1 + e−x
and P (w) = U(w)

3
4/Z is a unigram distribution for word w in the training

set.
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Dataset Used

For Sentiment Analysis experimentation, they used Stanford Sentiment Treebank

Dataset [Sta]. This dataset contains 11855 sentences taken from movie review site

Rotten Tomatoes. Each sentence in the dataset has a label ranging from very positive

to very negative in the scale from 0.0 to 1.0. The sentences are further divided into

subphrases and each subphrase is labeled. Human annotators did the labeling, and

there are 239, 232 labeled phrases in the dataset.

For experimenting with paragraphs and documents, they used IMDB [IMD] dataset

as a benchmark for sentiment analysis. The dataset contains 100, 000 movie reviews

taken from IMDB. Each movie review consists of multiple sentences and reviews are

labeled as positive or negative.

For the information retrieval experiment they used a dataset of paragraphs con-

sisting of the first ten results returned by a search engine given each of 1, 000, 000 most

popular queries. To test vector representation, they created triplet of paragraphs such

that the two paragraphs are results of the same query and the third paragraph is a

randomly sampled paragraph from the rest of the collection.

During training, they learned the vector representation using the training dataset

only and then passed the representation to learn Logistic Regression classifier for the

prediction task. Once the model is trained, they tested it on the training dataset.

They first froze the model and obtained vector representation of the test sentences

and then passed this representation to the trained Logistic Regression model.

Sentiment Analysis

For sentiment analysis experiment with Stanford Sentiment dataset, they used two

approaches for classification [27]. First, they proposed a 5-way fine-grained classifi-

cation task where the labels are from very negative, negative, neutral, positive and

very positive. In the second approach, they used a 2-way classification task where

8
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labels are either positive or negative. Each phrase is treated as an independent sen-

tence, and after learning vector representation, they are fed into logistic regression

to predict the movie rating. The window size used is 8, and vector representation

has a dimension of 400. The results show that their method outperforms the other

baseline methods like the bag of words, bag of n-words or Naive Bayes by relative

improvement of 16% in terms of error rates. Error rates calculates the percentage

error by subtracting the original value with the predicted value and dividing it by the

original value.

In the case of IMDB dataset, they learned vector representation through a neural

network with one hidden layer with 50 units and a logistic classifier to learn to predict

the sentiment. They used the same hyperparameters as they used in Stanford Dataset

except the window size is 10. The result shows that the bag of words performed better

than in the previous experiment because of long documents. Overall, paragraph vector

again outperforms the other methods as it achieves 7.42% error rate which is the least

when compared with the other techniques [27].

Information Retrieval

The objective of this experiment is to find which of the three paragraphs are from

the same query in the dataset they created. To achieve this, they used paragraph

vectors and computed distances between them. A better representation is one, which

produces a small distance for pairs of paragraphs of the same query and a large

distance for a paragraph from a different query. They used bag of words, bag of

bigrams and averaging word vectors as a benchmark. They recorded the number

of times where each method produces smaller distance for the paragraphs from the

same query and error was made if the method does not provide a desirable result.

The result showed that Paragraph Vector gave 32% relative improvement in terms

of error rate [27] suggesting that the proposed method is useful for capturing the

9
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semantics of the text.

Conclusion

This paper introduced an unsupervised learning algorithm that learns vector rep-

resentation for a variable length of texts. In this method, it is assumed that docu-

ments(phrases) are independent of each other, but in the real world, it is the opposite.

Documents are linked with each other in the form of links or citation in case of web

pages or academic papers respectively. The document embeddings are not able to

capture this linkage information by default; as a result, this method ignores this link-

age information altogether. In the experimentation, it is also advised to use PV-DM

with concatenating vectors and a window size of 5 to 12.

2.1.2 Learning Network Embedding using Node2vec

Paper [25] proposes an algorithm for learning continuous feature representation for

nodes in a network by mapping them to low dimensional space of features that max-

imize the likelihood of preserving network neighborhoods of nodes.

Algorithm

This algorithm uses network information to learn the feature embeddings. Let u be

the source node and Ns(u) be the neighbourhood of nodes connected with u using

sampling strategy like DeepWalk [33] or Node2Vec [25]. The set of sequence of nodes

produced from this sampling strategy can be considered as a sentence and each node

in the sequence as a word as shown in Figure 6. Then we can use a model similar

to the skip-gram [31] to learn the feature embedding of u by predicting it’s neighbor

node in the output.

The process of learning the feature embedding is the same as described in the PV-

DBOW. Only change is the input to the model as described in the objective function

10
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n1

n2
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FIGURE 6: lnput to node2vec
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FIGURE 7: Node2vec Model
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6 and shown in Figure 7.

maxf
∑
u ∈ V

log P (Ns(u) | f(u)) (6)

where f is a matrix of size |V | × d and V is the total number of nodes and d is

the number of hidden neurons.

In node2vec, they use 2nd order random walk algorithm to find the neighboring

nodes in the network. They define two hyperparameters p and q which tries to find

nodes sharing a similar community and similar structure through breadth-first and

depth-first search respectively. Figure 8 describes this concept in more detail.

u1

s1 s2

s3 s4

u2

s5 s6

s7 s8

Depth First
Breadth First

FIGURE 8: Graph Structure in node2vec

If we want to find nodes belonging to the similar community as the source node

u, we will increase the value of q, so that breadth-first search is given more weight.

Similarly to find nodes sharing a similar structure, we will increase the value of p to

promote depth-first search in the random walk.

Dataset Used

This paper uses four different datasets for experimentation. For learning feature

representation for a node in a network, they used Les Miserable Network [26], where

nodes correspond to characters in the novel and edges connect coappearing characters.

This network has 77 nodes and 254 edges. In multi-label classification experiments,

they used three different relatively large datasets. First is BlogCatalog [43] dataset.

It is a network consisting of the social relationship between bloggers. This network

12
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has 10, 312 nodes and 333, 983 edges. Second is Protein-Protein Interaction [PPI] [34]

which contains subgraph of the PPI network of Homo Sapiens. This network has

3, 890 edges and 76, 584 nodes. Lastly, they used Wikipedia [wik] dataset containing

co-occurrence network of words appearing in the first million bytes of the Wikipedia

dump. This network has 4, 777 nodes and 184, 812 edges.

For link prediction experiment, two additional datasets are used; Facebook [28]

and arXiv ASTRO-PH [arx]. In facebook, nodes represented users and edges repre-

sented friendship relation between them. The network has 4, 0396 nodes and 88, 234

edges. ArXiv is a collection of network generated from papers submitted to the e-

print arXiv. In this dataset, nodes represent scientists, and an edge is present if two

nodes co-authored in a paper. This network has 18, 722 nodes and 198, 110 edges.

Learning Edge Features

For experimentation, they used node2vec to learn feature representation for nodes in

a network. They observed that Breath First Search (BFS) and Depth First Search

(DFS) strategies both represent extreme ends on the spectrum of embedding nodes

based on the principle of homophily (similar network communities) and structural

equivalence (structural role of nodes). They demonstrated that node2vec could ob-

tain embeddings that obey both the principles. They set d = 16 and ran node2vec

on the Les Miserables dataset. Then the feature representations were clustered using

k-means. Then they visualize the original network in two dimensions with nodes now

assigned colors based on their clusters. They set p = 1 and q = 0.5 to capture nodes

which interact more often with each other hence same community. This character-

ization relates to homophily. To discover structure equivalence they set p = 1 and

q = 2 as node2vec hyperparameters. This setting captured nodes which have the

same structural role.

13
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Multi-label Classification

In multi-label classification experiment, every node was assigned one or more labels

from a finite set. During training, they used a certain fraction of nodes and all their

labels. The objective of the experiment is to predict the labels for the remaining

nodes. They used BlogCatalog, PPI and Wikipedia dataset for this experiment.

They compared node2vec against Spectral clustering [38], DeepWalk [33] and Line

[36] for evaluating the performance. The node features were passed to a one-vs-rest

logistic regression classifier with L2 regularization. They used Macro-F1score for

comparing the performance. Node2vec outperformed other methods because of the

added flexibility in the algorithm by fixing hyperparameters p and q to low values.

This setting enabled node2vec to capture homophily and structural equivalence in

the network.

Link Prediction

In link prediction, first, they removed 50% of edges randomly from the network while

making sure that the residual network remains connected after these edges are re-

moved. The objective of this experiment is to predict the missing edges. They used

Facebook, PPI and arXiv dataset for this experiment. They compared node2vec and

other benchmarking algorithms with some popular heuristic scores that achieve good

performance in link prediction. Node2vec outperformed DeepWalk and Line in all

networks with gains up to 3.8% and 6.5% respectively using AUC scores.

Conclusion

This paper focuses on learning feature representation of a network as a search based

optimization problem. It explains the classic search as a trade-off between exploration

and exploitation. It shows that BFS can explore only limited neighbourhoods and it is

suitable for characterizing structural equivalences in the network. Whereas, DFS can

14
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FIGURE 9: TADW Model

freely explore the network and can discover homophilous communities in the network.

It is assumed while factorizing the likelihood that the observed nodes are independent

of each other while learning the feature representation. Just like in the PV-DBOW

model, the context nodes are considered to have no relationship with each other. In

this algorithm, the content of the nodes is totally ignored. Therefore, the produced

representation of the documents does not capture the content of the document.

Concatenating PV-DBOW and Node2vec Embeddings

To capture both the content and link information for learning document embedding,

we can concatenate the embeddings produced from the above methods for the down-

stream tasks like classification. This method will not capture the complex relationship

between the documents regarding content and linkage. After concatenation, the vec-

tor dimension will double, and we can use dimensionality reduction methods like

PCA [41] to reduce the dimensions. During this process, we will lose some feature

information which might downgrade our classification result.

2.2 Text Associated DeepWalk (TADW)

Paper [42] proposes an algorithm to include text information to the network repre-

sentation learning (NRL) method like DeepWalk [33] using matrix factorization.
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Algorithm

TADW algorithm tries to capture the linkage and content information together when

learning the document representation. First, the content information is converted

into vector representation using TF-IDF matrix or binary vector and represented as

F ft×V where ft is the number of dimensions we want to represent each word in the

vocabulary V . Then, the model will construct matrix MV×V where each entry Mij is

a probability of walking from the document di to dj based on the sequence generated

using sampling strategy like DeepWalk [33] as shown in Figure 9.

The goal is to approximate matrix W V×k and Hk×ft where k is the dimension

of the vector we want to learn using matrix M and F through inductive matrix

factorization [32].

minW,H

∑
i,j∈

(
Mij −

(
W THT

))2
+

λ

2

(
||W ||2F + ||H||2F

)
(7)

The equation 7 shows that we try to approximate the matrix M through inductive

matrix factorization. We try to learn the matrix W and H and use the feature matrix

F to obtain better representation. λ is a regularizer which prevents the model from

overfitting. Computation of M is very expensive and can take O
(
|V |2

)
times where

V is the total number of documents [42].

Dataset Used

For experimentation, they used three datasets:

• Cora: It contains 2, 708 machine learning documents with 5, 429 citation links.

Each document is represented by a binary vector of 1, 433 dimensions indicating

the presence of the corresponding word

• Citeseer: It contains 3, 312 documents with 4, 732 citation links. Each document

is again represented by a binary vector 0f 3, 703 dimension where each position
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indicates the presence of the word

• Wiki: This dataset contains 2, 405 documents with 17, 981 links. The document

is represented as TD-IDF matrix with 4, 973 columns

Experimentation

As an input for the experimentation, they reduced the vector dimensions by us-

ing SVD [23] decomposition and obtained a vector dimension of 200 for the TADW

method. For classification, they used an SVM classifier. While training they used one-

vs-rest classifier for each class and selected the class which has the maximum score.

The experimentation result showed that TADW consistently performs much better

than the other baseline methods and can also work well when there is a significant

amount of noise in the graph.

Conclusion

This paper gives a proof that the DeepWalk algorithm is equivalent to the matrix

factorization and using this concept they tried to incorporate the text information

in the network representation learning method DeepWalk. The proposed method

does not support online and distributed learning for large scale networks. It is also

computationally expensive as the procedure of computing M takes O|V 2| , TADW,

takes into account both the text and network information for learning the document

embedding. Instead of just concatenating the vectors, it proposed a method of jointly

modeling feature combination via matrix factorization. As a result, for paper similar-

ity experiment they showed that when finding similar papers related to the category

of theory. TADW found all papers belonging to the same topic whereas DeepWalk

returned paper belonging to different class labels. Though the original query paper

cited all the returned papers. This was because DeepWalk considered all the papers

cited by the original query paper as equal as it did not have the text information.
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This experiment proved that adding text information to the network embedding will

learn better representation.

2.3 Linked Document Embedding for Classifica-

tion

Paper [39] introduces an algorithm which tries to incorporate the linkage and la-

bel information between the documents along with the content information to the

document embeddings.

Algorithm

In the algorithm, they try to capture the linkage and content information together

while learning the document embedding. The algorithm consists of two parts:

1. learning word-word embedding for the documents using content only

2. learning document-document embeddings using the network only

maxWD
1

|P |
∑

wi,wj ,dk ∈ P

log P (wj | wi, dk) (8)

In the first part, for each target word wi they extract c neighbours as wj based

on the window size. They also store the information from where this word was

extracted by adding document ID. Together the pair of words and the document form

a triplet (wi,wj, dj) and stored in the set P . Objective function 8 tries to maximize

the probability of the neighbor words wj given the target word wi and the document

vector dk. WM×s and DN×s are the weight matrices that we want to learn. M is the

total number of words in the vocabulary, and N is the total number of documents

18



2. REVIEW OF THE LITERATURE

Output LayerHidden LayerInput Layer

H1

H2

Hs

W T s×M

w1

w2

w3

WM×s

wM

w1×M
j

d1

d2

d3 DN×s

dN

w1×M
i

d1×N
k

h1×d
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FIGURE 11: Learning Document Representation using Network Information

in the corpus. s is the dimension of the vectors. Figure 10 shows an outline of the

model.

maxD
1

|E|

N∑
i=1

∑
j:eij=1

log P (dj | di) (9)

In the second part, they learn the document embeddings using the graph G(N,E)

where N is a total number of documents and E represents an edge between di and dj.

The objective is to maximize the probability of the neighbouring nodes in G when

the source node di is given. The equation 9 defines this concept where E is the set

containing document-document pair based on citation information and eij = 1 only

if di cites dj. Figure 11 gives an overview of the model.
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1

|P |
∑

(wi,wj ,dk)∈P

log P (wj|wi, dk) +
1

|E|

N∑
i=1

∑
j:eij=1

log P (dj|di) − γ(W,D) (10)

Equation 10 gives an overview of the model. In the first part, we try to learn the

document representation using only the content information, and in the second part,

we use network information to learn the document representation. γ is a regularizer

so that the model does not overfit.

For experimentation, we use source code build by Yi Zhang as the authors did

not provide the code.

Dataset Used

For experimentation, they used two datasets DBLP and BlogCatalog. They extracted

only title and abstract as content information for the DBLP dataset and chose six

categories for the experimentation. Each group consisted of 2, 550 samples and in

total 15, 300 documents were used with 36, 359 total links.

In the case of the BlogCatalog dataset, they used text description in each blog

as the content and determined links according to the related blogs mentioned by the

website. They also assumed the presence of the link between two blogs if the authors

of the blogs followed each other. In total, the dataset contained 62, 652 documents

with 378, 161 links. This dataset is unbalanced.

Experimentation

For experimentation, they used F1micro and F1macro as an evaluation metrics.

They compared the proposed method with the other existing methods like PV-DM,

PV-DBOW, and PTE [35]. Their experiment consisted of two-phase; the representa-

tion learning phase and the classification phase. During the representation learning

20



2. REVIEW OF THE LITERATURE

phase, they used the whole dataset to train word embeddings and document embed-

dings. Label information of the training data is also used for learning whereas the

labels of the testing data are not included during the learning phase. The used di-

mension size of 100 and window size of 7 and the number of negative samples equal

to 7.

Conclusion

The result of experimentation proves that the inclusion of link information to the

document embeddings will improve the classification result. They also experimen-

tally showed the effect of link density on the classification task, and as the density

increases, the classification accuracy also increased. In this paper, they did not test

the embeddings against other baseline experiment methods like document recommen-

dation or embedding visualization. In the proposed method, it is also assumed that

the weight of links is uniform for all the edges. In the real world, it is not the case,

as the documents might have weighted edges between them in the form of page rank

values. As a result, this method will not be able to capture that information.
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CHAPTER 3

Retrofit Algorithm

In this section, we will formally define the problem statement and explain our algo-

rithm in detail.

3.1 Problem Statement

Given the content based embedding of the document dˆi, we want to learn the new

embedding of document di such that it is close to its original embedding and also to

the embeddings of the documents that it is linked with.

dˆi

dˆj

PV-DBOWtext

Retrofit

vect
ors

graph
Citation Graph

0.0 0.1 ... 0.2

0.3 0.2 ... 0.1

....

0.4 0.2 ... 0.1

improved vectors

FIGURE 12: Retrofit Input
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FIGURE 13: Retrofit Algorithm

3.2 Proposed Algorithm

The proposed method Retrofit will try to bring document embeddings close together

based on citation and network information. The Retrofit takes vectors produced from

PV-DBOW [27] as an input. The vectors from PV-DBOW lack knowledge from the

citation graph. The Retrofit will also take the citation graph as input and will add

network information to the PV-DBOW vectors as shown in Figure 12.

Let V = {d1, d2, ..., dn} be a set of n documents and G be a graph that captures

citation links between the documents in V . We represent G as an undirected graph

(V,E) with one vertex for each document type and edge (di, dj) ∈ E ⊂ V × V

indicating citation relationship between the two documents.

Let D̂ = (d̂1, d̂2, ..., d̂n)T be the matrix for the vector representation of each doc-

ument d̂ i ∈ <k for each di ∈ V learned using standard document embedding repre-

sentation methods where k is the dimension of the vector. Our aim is to learn matrix

D = (d1,d2, ...,dn) such that di is close to d̂i and to the citing documents in G.

The objective is to minimize the distance between the document di, and the edges

it is connected with in the citation graph (di, dj) ∈ E. The document d̂i represents

the original embeddings, and we want to bring the retrofitted embedding close to

the original embedding and to its neighbor as shown in Figure 13. Since there is no

closed form solution [22] of the objective function, we will use an iterative method
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to solve this problem. This is because D can contain 10, 000, 000 documents and a

dense 100 dimensional vector can represent each document. For finding a closed-form

solution, we need to store DDT matrix which will require 1 × 1010 floating point

numbers. At 8 bytes per number, this comes to 80GB which is impractical to store

on anything but a supercomputer. Furthermore, computing inverse of this matrix

would also be very expensive. We have two variants of the retrofit algorithm called

retrofit1 and retrofit2. The difference between these two methods is how we add the

citation information to the document embeddings.

J(D) =
N∑
i=1

(1 − β)|| di − dˆi ||22 + β
∑

(i,j) ∈ E

||di − dj ||22

 (1)

Retrofit1

Equation 1 defines the objective function of retrofit1 where β is a hyperparameter.

The boldface lower case letters represent vector representation of the documents. J in

Equation 1 is a convex in D [22]. The hyperparameter β controls the relative strength

of association in Equation 1. This objective function gives more weight to nodes with

high degrees. The weight beta loops over the links and adds them to the document

vector. This weight controls how much we want the document embedding to come

close to its neighbors. This approach is modular meaning it can be applied to any

document vector representation obtained from any model. We use Squared Euclidean

distance (SED) [22] to define the distance between the pair of vectors. First, we shall

define the Euclidean distance [21] between di and d̂i in Equation 2. k is the dimension

of the vector.

||di − d̂i ||2 =

√
(di1 − d̂i1)2 + (di2 − d̂i2)2 + ..... + (dik − d̂ik)2 (2)
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Equation 2 can be further simplified to 3.

||di − d̂i||2 =

√√√√ k∑
x=1

(
dix − d̂ix

)2

(3)

We use SED to remove the square root and make calculations less expensive.

SED is a smooth and strictly convex function of the two points and is preferred

in optimization theory [20]. Equation 4 measures the similarity between retrofitted

embedding di and initial content-based vector d̂i using SED.

||di − d̂i||22 =
k∑

x=1

(
dix − d̂ix

)2

(4)

The objective function 1 refers to the task of minimizing the distance of docu-

ment vectors based on content and citation network. The derivative of the objective

function will give us an updating equation for the change in vector di to reduce the

distance between the content based vector d̂i and the citing papers dj , ∀j where

(i, j) ∈ E [24]. This derivative specifies how much change in the input will scale to

the change in the output. The derivative is useful in determining the change in di to

make a small improvement in the output. Since our objective function has multiple

variables, we take the partial derivative to measure the change concerning the spe-

cific component. Now we take the partial derivative of our objective function 1 with

respect to di and obtain the updating equation for the new vector di.

∂J(D)

∂di

=
N∑
i=1

(1− β)|| di − d̂i ||22 + β
∑

(i,j) ∈ E

||di − dj ||22

 (5)

First we take the derivative of ||di − d̂i||22 and
∑

(i,j) ∈ E

||di − dj ||22 with respect to
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di

∂J(D)

∂di

=
N∑
i=1

(1− β)
∂

∂di

|| di − d̂i ||22 + β
∂

∂di

∑
(i,j) ∈ E

||di − dj ||22

 (6)

We will use chain rule [19] to take the derivative of || di − d̂i ||22 which can be

written as h(g(x)) where h is the ||22 as defined in 4 and g(x) = di − d̂i. First we will

take the derivative of the ||224

∂J(D)

∂di

=
N∑
i=1

[2(1− β)
(

di − d̂i

) ∂

∂di

(
di − d̂i

)
+ 2β

∑
(i,j) ∈ E

(di − dj )
∂

∂di

(di − dj )]

(7)

and then the derivative of g(x).

∂J(D)

∂di

= 2 ∗ (1− β)
(
di − d̂i

)
(1) + 2β

∑
(i,j) ∈ E

(di − dj) (8)

Now lets suppose
∂J(D)

∂di

= 0:

(1− β)(di)− (1− β)
(
d̂i

)
+ β

∑
(i,j) ∈ E

(di)− β
∑

(i,j) ∈ E

(dj) = 0 (9)

We will move all the di terms to one side and all the other terms to another side.

(1− β)(di) + β
∑

(i,j) ∈ E

(di) = β
∑

(i,j) ∈ E

(dj) + (1− β)
(
d̂i

)
(10)

Then we will take di as common and divide its coefficient where
∑

(i,j)∈E

di = deg(di)(di)

di =
β
∑

(i,j) ∈ E(dj) + (1− β)
(
d̂i

)
(1− β) + β × deg(di)

(11)
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Input Output
f(x0

1, x
0
2, x

0
3, ..., x

0
n) x1

1

f(x1
1, x

0
2, x

0
3, ..., x

0
n) x1

2

f(x1
1, x

1
2, x

0
3, ..., x

0
n) x1

3

....... ......
f(xm+1

1 , xm+1
2 , xm+1

3 , ..., xmn ) xm+1
3

TABLE 1: Example of the Gauss-Seidel method. m is the number of step. The
complete table shows one iteration. For each step in a single iteration, we will always
use the latest value

Equation 11 is an online update equation we use in each iteration to obtain the

vector representation of di. For updating di, we use an iterative updating method as

used in [20]. In [20] they try to build a graph for data points containing labeled and

unlabeled points. Known labels are used to propagate information in the graph in

order to label all the nodes using edges as a similarity. They also used an iterative

updating method to update the label information in the graph. Our approach uses

Gauss-Seidel as implemented in [20] to solve the system of linear equations. The

system of linear equations is the updating equation for each di in D. The Gauss-

Seidel method works by using the latest value in D for each iteration. For example,

x = (x1, x2, ....xn) is the true solution of x. If xm+1
1 is better then xm to approximate

x2, x3, ..., xn, then we will use the new value xm+1
1 rather than xm. m is the number of

steps. For finding xm+1
2 , instead of using the old value xm1 , we will use xm+1

1 and the

subsequent old values xm3 , x
m
4 , ...., x

m
n . Similarly, for finding xm+1

3 , we will use xm+1
1

and xm+1
2 and the subsequent xm4 , x

m
5 , ..., x

m
n . Table 1 shows how the latest value of x

is used in each step for a single iteration.
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Algorithm 1: Retrofit1

Result: Adds citation information to the content based vector

representation of documents in the matrix D̂

Input : D̂, G = (V,E), iterations, β

Output: D

1 D = D̂

2 for iter=0 to iterations do

3 foreach di in D do

4 vi = (1-β) ∗ deg(di) * d̂i

5 foreach dj in E(di) do

6 vi = vi+β * dj

7 di = vi / (2*deg(di))

8 end

9 end

10 end

Algorithm 1 links the objective function 1 and shows how we implemented the

updating step 11 in the code. In algorithm 1 D̂ is a matrix representing content based

vector representation of N documents. E(di) will give us a list of all the documents

that are connected with di in the network graph. Iteration is a hyper-parameter

which will determine how many times we want to repeat this process. deg(di) is the

degree of the document di in the citation graph. Line 4 of the algorithm 1 will add the

information from content based embedding and line 6 will add information from the

network view. Line 7 takes the average of the content and network based embedding

for each dj. The computational complexity of retrofit1 is (tn) where t is the total

number of neighbours and n is the total number of documents in the dataset.

def retrofit1(D_hat, G, iterations, beta):

D = D_hat
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for it in iterations:

for d_i in D:

numNeighbours = len(G(d_i))

if numNeighbours == 0:

continue

v_i = (1-beta)*numNeighbours*D_hat[d_i]

for d_j in G(d_i):

v_i += beta*D[d_j]

D[d_i] = v_i / (2*numNeighbours)

return D

Listing 3.1: Retrofit1 Code. Complete code can be found at https://github.com/

ZeeshanMansoor260/Masters/blob/master/Retrofit/retrofit_document.py

Code 3.1 shows the implementation of retrofit1 in Python. The complete code can

be accessed at https://github.com/ZeeshanMansoor260/Masters/blob/master/

Retrofit/retrofit_document.py and we originally obtained this code from [22]. G

is the citation graph and G(di) will return the list of documents that are connected

with di in the network.

Retrofit2

J(D) =
N∑
i=1

(1 − β)|| di − dˆi ||22 + β|| di −
1

deg(di)

∑
(i,j) ∈ E

dj ||22

 (12)

Another variant of the retrofit algorithm called retrofit2 is defined in 12. Retrofit2

first takes an average of all the documents that it is citing and then add that to the

content using β as the weight for network information and deg(di) is the degree of

the document di. We use SED 4 to calculate the distance between the embeddings.

For retrofit2, we will again take the first derivative of the objective function 12

and equate it to zero to obtain the equation for updating the vectors as done for
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retrofit1.

The objective function for retrofit 2 is defined as:

J(D) =
N∑
i=1

 (1− β) || di − d̂i ||22 + β|| di −
1

deg(di)

∑
(i,j) ∈ E

dj ||22


We take the partial derivative of J(D) with respect to di

∂J(D)

∂di

=
N∑
i=1

 (1− β) || di − d̂i ||22 + β|| di −
1

deg(di)

∑
(i,j) ∈ E

dj ||22

 (13)

Now we take the derivative of || di − d̂i ||22 and ||di −
1

deg(di)

∑
(i,j) ∈ E

dj ||22

∂J(D)

∂di

=
N∑
i=1

(1− β)
∂

∂di

|| di − d̂i ||22 + β
∂

∂di

||di −
∂

deg(di)

∑
(i,j) ∈ E

dj ||22


(14)

Again || di − d̂i ||22 can be considered as h(g(x)) and we will apply chain rule to take

it derivation. First we take the derivative of the ||22 4.

∂J(D)

∂di

=
N∑
i=1

[2(1− β)
(

di − d̂i

) ∂

∂di

(
di − d̂i

)

+2β

di −
1

deg(di)

∑
(i,j) ∈ E

dj

 ∂

∂di

di −
1

deg(di)

∑
(i,j) ∈ E

dj

]

Then we take the derivative of the g(x)

∂J(D)

∂di

= 2 ∗ (1− β)
(
di − d̂i

)
(1) + 2β

di −
1

deg(di)

∑
(i,j) ∈ E

dj

 (1) (15)
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After that we will cancel out 2

∂J(D)

∂di

= (1− β)
(
di − d̂i

)
+ β

di −
1

deg(di)

∑
(i,j) ∈ E

dj

 (16)

Now lets suppose
∂J(D)

∂di

= 0

(1− β)(di) − (1− β)
(
d̂i

)
+ β(di) −

β

deg(di)

∑
(i,j) ∈ E

dj = 0 (17)

We will move all the di terms to one side

(1− β)(di) + β(di) = (1− β)
(
d̂i

)
+

β

deg(di)

∑
(i,j) ∈ E

dj

After simplifying the left hand side will obtain the following update equation

di = (1− β)
(
d̂i

)
+

β

deg(di)

∑
(i,j) ∈ E

dj (18)

We will use Gauss-Seidel [20] method for updating the vectors. For each di we
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will use the latest vectors in D and after 10 iterations it will converge [22].

Algorithm 2: Retrofit2

Result: Adds citation information to the content based vector

representation of documents in the matrix D̂

Input : D̂, G = (V,E), iterations, β

Output: D

1 D = D̂

2 for iter=0 to iterations do

3 foreach di in D do

4 netvec = 0

5 foreach dj in E(di) do

6 netvec += dj

7 end

8 netvec = netvec / deg(di)

9 di = (1− β) d̂i + β(netvec)

10 end

11 end

We will now link algorithm 2 with the update equation 19.

di = (1− β)
(
d̂i

)
+

β

deg(di)

∑
(i,j) ∈ E

dj (19)

In 19 (1−β)d̂i is obtaining information from the content view and implemented in

line 9 of the algorithm 2.
β

deg(di)

∑
(i,j) ∈ E

dj is getting information from the network

view and implemented from line 5 to 8 of the algorithm 2. Information from both

the views is then combined in line 9 as shown in the algorithm 2. The computational

complexity of retrofit2 is (tn) where t is the total number of neighbours and n is the

total number of documents in the dataset.
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def retrofit2(D_hat, G, iterations, beta):

D = D_hat

for it in iterations:

for d_i in D:

numNeighbours = len(G(d_i))

if numNeighbours == 0:

continue

netvec = np.zeros(D.dim)

for d_j in G(d_i):

netvec += beta*D[d_j]

netvec = netvec / (numNeighbours)

D[d_i] = (1-beta)*numNeighbours*D_hat[d_i] + netvec

return D

Listing 3.2: Retrofit2 Code

The code 3.2 is the implementation of the retrofit2 algorithm in Python. The

complete code can be found at https://github.com/ZeeshanMansoor260/Masters/

blob/master/Retrofit/retrofit_document_adv.py. G is the citation graph and

G(di) will return the list of documents that di is connected with in the network.

3.2.1 Code Flow

This section will explain the flow of code from the point of learning embeddings

from text to classifying evaluation. The underlying retrofitting code is obtained from

[22]. We converted the code from word embeddings to the document embeddings.

The code architecture is decoupled into several components. A single program called

Run.py launches all components. Upon running this file, it will trigger the content

based embedding learning module. This module uses PV-DBOW to learn vector

representation from the content only. Run.py will also launch the network module
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to obtain the linkage information from the network. The information from both the

network and the content will then be passed to the retrofit module. The retrofit

will try to add the linkage information to the content based embeddings using the

algorithms defined above. Once the embeddings are retrofitted, then they will be

passed to the classification and visualization module for evaluation. This code can

be accessed at https://github.com/ZeeshanMansoor260/Masters.
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CHAPTER 4

Datasets

This section will explain the four datasets we used for our experimentation in detail.

4.1 DBLP

First, we will outline the details regarding the Digital Bibliography and Library

Project DBLP dataset [dbl]. For initial experimentation, we used a small dataset

and classified the papers based on the conferences. We extracted documents from

DBLP which is a computer science bibliography provided by the University of Trier

in Germany. From DBLP published venue metadata, we can find papers that belong

to specific conferences. We used three popular conferences: VLDB, SIGMOD, and

ICSE. The details of the three conferences are listed below:

• VLDB: The International Conference on very Large Databases constitutes of

research papers focusing on research in the field of database management [vld].

• ACM SIGMOD: The International Conference on Management of Data [sig]

contains research papers focusing on principles, techniques and applications of

database management systems and data management technology.

• ICSE: The International Conference on Software Engineering [ics] comprises

of all the papers that contain most recent innovation, trends, experiences and

concerns in the field of software engineering.
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FIGURE 14: Document size and classes distribution in the DBLP dataset

In the rest of our discussion, we will use DBLP to refer to the combined dataset

consisting of the above three conferences.

The DBLP dataset consisted of title only, and the average text length is 6.4 words

per document. For experimentation, we wanted to have more content and see the

effect of adding network information to the vector representation consisting of content

information only. We combined the DBLP dataset with the Aminer [37] to increase

the content. The Aminer dataset has more details like title, abstract, authors and

references. This dataset contains citation information extracted from the Microsoft

Academic Graph (MAG), ACM and DBLP. We used version 10 of the Aminer dataset

which includes 3 million papers. Then we merged the DBLP dataset with the Aminer

dataset using the title to link between these two datasets. Once connected, we added

abstract information to the DBLP dataset and called this dataset as DBLPadv. We

were able to link 6704 documents, and the average text length increased to 100.5.

Figure 14 shows the document size and label statistics of the DBLP dataset. We

can see that all the 3 classes are uniformly distributed and most of the documents

have title length of 6.4.

Figure 15 shows the distribution of words and labels for DBLPadv dataset. In

Figure 15 we can observe that the average document length is 100 words and the
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FIGURE 15: Document size and classes distribution in the DBLPadv dataset

class distribution of the ICSE documents has decreased. This is because we could not

link some of the documents with the Aminer dataset when trying to extract abstract

information.

4.2 ArXiv

The following sections explain how we created the arXiv [arx] dataset and the method

we used for adding reference information.

4.2.1 ArXiv Content Extraction

arXiv [arx] is an open-access containing papers in the domain of Physics, Mathe-

matics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics,

Electrical Engineering, and Economics. arXiv dataset stores the source code of the

documents in the form of Latex format.

We are interested in the source code as it gave us more freedom to extract the

different type of information like titles or abstract from each document. We down-

loaded the Latex files from 1997 to 2018 from the Amazon S3 servers. Each tar file

consisted of around 500MB, and there were total 190 tar files. The total size of the
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Latex Files

bash

convert multiple latex
code files to one file

Latex Code

Python

extraction

id title id abstract id sections

FIGURE 16: arXiv Extract FlowChart

complete dataset is approximately 600GB.

The tar files are named using the following convention:

yymm.chunk

where yy represents the year, mm represents the month in which the paper was

published and chunk as the number of the tar file. For example, the tar file named

1401.01 means that the papers in this tar were published in January 2014. The chunk

01 means the number of this tar file as there are several chunks of each tar files.

Once extracted, each document’s filename is it’s paperID, and the complete source

code is present inside that file. For papers which contains several files, the directory’s

name is the paperID, and all of its files are present in that directory.

Initially, to extract title and paperID from this dataset, we developed a bash

script in Linux. A bash script is a text file which can contain Linux commands and

will execute them when running. This bash script will search for the title in all the

files using an awk command and stores it in another file containing paperID and

title only. Similarly, we extended this method for extracting abstract, introduction

section, middle section and last section from all the papers and linked them with

their paperIDs. This method we found to be very slow and subsequently, we modified

the bash scripts such that, it only finds the tex file which contains the main tex code

for all the documents and copies it to another directory. Then a Python script will

search for title, keywords, abstract and introduction section in the tex source code
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Title Extraction

\title [class] % comments { title \textbf{ something to bold } remaining title
\}

FIGURE 17: Title Format in Latex

Title Example

Scenario 1: \title {Numerical Methods for Quasi-Periodic Incident Fields
Scattered by Locally Perturbed Periodic Surfaces}
Scenario 2: { \textbf{On the diameter and incidence energy of iterated total
graphs}}
Scenario 3: \title{Dynamics of Nonlinear Random Walks on Complex Net-
works \thanks{Submitted to the editors DATE.

FIGURE 18: Different scenarios for extracting title

using regex expressions and store them in a separate file according to the following

format

PaperID Title

Within the title, there might be other latex tags which we do not want to acquire

like comments or class as shown in figure 17. To counter that, we used a stack to

identify the beginning of the title using {. Whenever we saw { we increased our

stack and whenever we saw } we decreased our stack until it is empty. As a result,

we were able to capture the title of the document only and ignore other information

like comments. For example the figure 18 shows different scenarios from which we

need to extract title. Scenario 1 is the most straightforward situation. Using regex

expression, we detect \title and add { to the stack and start reading. When we see

} we remove it from the stack, and if the stack is empty, we stop reading. Scenario

2 is more complicated. Instead of \title, it uses \textbf, and we also search for this

alternative. Situation 3 is the most complicated. It does not have a } bracket at the

end. The stack will not be empty, and we will continue to read assuming it is a title.
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FIGURE 19: Statistics of classes from different domains and within CS papers

Our algorithm assumes that the title is not more than 3 lines and if we reach that

limit we stop reading.

From this dataset, we were able to obtain title, abstract, keywords and the com-

plete content of documents. We were also able to recover label information for the

documents.

The label information is stored in a separate file in the following format

PaperID Label

The labels cover topic like Physics, Computer Science and also subject classes covering

specific topic, for example information theory or computer vision in a separate file.

Number of Docu-
ments

Number of Doc-
uments with
Lables

Number of Docu-
ments with Key-
words

Year Span

1.3 Million 0.33 Million 0.36M 1990-2018

TABLE 2: ArXiv Dataset Statistics

Table 2 gives an overview about the whole dataset. We found 1.3M documents

which has title and abstract along with the content information. We were able to link

0.36M documents which has keyword information. 0.33M documents has label infor-

mation which can be used for classification and training the document embeddings.

Figure 19 gives statistics of classes of the papers ranging from different domains like
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FIGURE 20: Document Size Distribution

Physics or CS. It also shows the class statistics for different topics within the CS

papers.

Figure 20 shows the document size distribution. On x-axis is the word count and

y-axis is log of the number of documents. In arXiv we can observe majority of the

documents have length from 7 to 10 whereas in documents with abstract have mostly

111 total words.

Format Average Length Words

title 9

abstract 173

intro 636

TABLE 3: ArXiv Text Length

The table 3 gives average text length of title, abstract and introduction section.

The values present are calculated before stemming and tokenizing the text.

4.2.2 arXiv References

From the content of the documents it was very difficult to link the documents based

on the references due to the following reasons
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MAG Index

ArXiv Title

Search Title

Confidence

Return Result

Matched

if confidence > 0.4

FIGURE 21: Matching Architecture for arXiv and MAG

• Different papers follow different reference formats

• Can not link the paper by just obtaining the title from the reference tags. Must

use other information like authors or venue for the linkage

• Usually last names of the authors are written in references and difficult to detect

it

Due to these reasons we decided to use Open Academic Graph (OAG) [37] dataset

which contains 116M documents. In this dataset, they have title, abstract, authors,

reference information for all the papers. This dataset contains paper from the Mi-

crosoft Academic Graph and Aminer. The paper covers a wide range of topics ranging

from Biology to Physics. Our focus is only to get Computer Science papers so we

wanted to get linkage information from the OAG dataset for the arXiv dataset. The

figure 21 gives an outline of the matching architecture we used between the arXiv and

MAG dataset for reference. We first extracted the title from the OAG dataset and

then indexed it using Lucene [Luc] along with their paperID. Then for each arXiv

document we searched it in the OAG index and got only the topmost result. Then

we used sets to compare the search result with the original arXiv title and calculated

the confidence of our matching based on the equation 1
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confidence =
searchResult.size()

arXivT itle.size()
(1)

We used confidence=0.4 because we did not tokenize or stemmed the title. The

reason behind is that in the arXiv title, there were many latex tags present in the

title and after preprocessing we would have lost much information in the title. We

tried removing the latex tags like $or % using Detex [det] library but in some cases, it

removed the whole title altogether. The main objective of most of these libraries is to

remove latex tags from the whole document and these libraries used latex hierarchy

to understand the architecture. In our case, we only wanted to remove tags from the

title so these libraries did not function properly because they could not find the latex

hierarchy. We also did not remove stops words because in this case, they played a

pivotal role in identifying the strings. The main words in the topic might be different

because we did not stem or tokenized them but the stops words remained the same in

both the datasets so when calculating the confidence they proved to be a very good

indicator. The output from this process is in the following format

MAGID arXivID Confidence

The intuition of adding confidence in the output is that if we want papers which are

correctly matched with confidence 1.0, we can distinguish them.

Confidence 1.0

arXiv Title Thermal entanglement of qubit pairs on the Shastry-Sutherland

lattice

OAG Title Thermal entanglement of qubit pairs on the Shastry-Sutherland

lattice

The matching result with confidence 1 shows the output of our matching algo-

rithm has a perfect match. Whereas with confidence 0.4, we are still able to match

successfully though we are missing some part of the title in the arXiv.
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Confidence 0.4

arXiv Title on punctured pragmatic space-time codes

OAG Title On Punctured Pragmatic Space-Time Codes in Block Fading

Channel

Confidence Nodes Edges

0.8−1.0 534466 2913316
0.4−1.0 650797 4254848

TABLE 4: arXiv Network Statistics

We created two types of citation graphs based on the confidence of the documents

matched between arXiv and MAG dataset. In the first type, we used documents

with a confidence level of 0.8 and above. This citation graph is more accurate but

contains only 534466 nodes and 2913316 edges as stated in the table 4. In the second

citation graph, the confidence constraint is more relaxed. We selected documents

whose matching confidence was 0.4 or more. In this graph, there are 650797 nodes

and 4254848 edges. Both the graphs are undirected graphs and retrieved from the

MAG dataset.

4.2.3 arXiv Labels

Dataset Classes

ArxivTitle,ArxivAbstract maths,physics,stat,cs

ArxivCSTitle,ArxivCSAbstract Information Theory (cs.IT), Distributed

Computing (cs.DC), Machine Learning

(cs.LG), Computer Vision (cs.CV), Compu-

tational Complexity (cs.CC)

TABLE 5: arXiv Dataset Labels

For experimentation, we created two types of the dataset based on the labels.

44



4. DATASETS

The first dataset is called Arxiv which is based on documents belonging to different

domain areas like physics or maths. The table 5 outlines the types of documents we

have in the Arxiv dataset. Another dataset, that we created is called ArxivCS. In this

dataset, we selected all the documents belonging to the Computer Science area and

explicitly belonging to the topics as outlined in the table 5. The reason we selected

these particular classes was based on the number of documents each class had in the

dataset.

4.3 Dataset Overview

Dataset #

Documents

Vocab Size Avg Text

Length

Avg Degree

DBLP 9396 8036 6.4 8.0

DBLPadv 6704 15932 100.5 7.7

ArxivTitle 40000 20737 7.0 7.2

ArxivAbstract 40000 68798 102.0 7.2

ArxivCSTitle 37000 18525 7.0 4.8

ArxivCSAbs 37000 68001 116.0 4.8

TABLE 6: Datasets Overview

Table 6 gives a detailed description of all the datasets that we used for experi-

mentation. DBLP contains 9396 documents with only title information and average

text length is 6.4 words with total vocabulary size 8036. It has a dense citation graph

as the average degree of the network is 8.0 meaning each document on average is cit-

ing 8 other papers. DBLPadv contains only 6704 documents with title and abstract

information, as a result, the average text length increased to 100.5 words with total

vocabulary size 15932. Again, the citation graph is dense with the average degree

count of 7.7. ArxivTitle and ArxivAbstract both contain 40, 000 documents with

10, 000 documents per class. The average text length of ArxivTitle and ArxivAb-

45



4. DATASETS

stract is 7 and 102 respectively. The density of the citation graph is less as compared

to the DBLP dataset as the average degree count is 7.2. In the case of ArxivCSTitle

and ArxivCSAbstract, we randomly selected 37, 000 documents and the average text

length for the title is 7 followed by 116 for abstract. The density of the citation

network is 4.8 which is the least in all of the datasets.
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Experimentations

In this section, we will describe the parameters we used for our experiments and also

how we obtained our results.

5.0.1 Evaluation Benchmarks

Doc2Vec

We used PV-DBOW [27] to obtain embeddings of the dataset implemented in Gensim

[gen]. We set vector size equal to 100 with window size 5 for the datasets with title

only and 8 for those datasets which has abstract too. We used negative sampling

with k = 15 and min count = 10 and used iterations = 10.

Node2Vec

For node2vec [25], we use the source code [n2v] from Github provided by the authors.

We set p and q equal to 1 and walk length to 80. The vector dimension was set to

100 and after obtaining the embeddings we concatenated them with the PV-DBOW

embeddings.

TADW

TADW [42] is implemented in Matlab. The authors provided the code in mexa64

file format. The authors did not provide the source code of these libraries and hence
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we could not use them as we needed the source code for detailed experimentation.

Instead we used the code provided by [18] for our experimentation. We set lambda

equal to 0.2 and used edgelist as the graph format.

LDE

The authors [39] did not provide the source code for this method. We used the code

provided by Yi Zhang for our experimentation. We used the default parameters in

our experiment.

Evaluation Method

The experimentation is conducted in two phases:

• Representation Learning

• Embedding Evaluation

We used the complete dataset for learning the embeddings in the document rep-

resentation learning phase and for the evaluation of the embeddings we selected ran-

domly 4000 samples from each class in Arxiv and ArxivCS dataset. For DBLP and

DBLP adv we used the complete dataset for evaluation too. The reason behind par-

tial evaluation of the Arxiv and ArxivCS dataset was that these datasets were massive

and would take a lot of time for evaluation.

For the evaluation of the embedding, we performed the following experiments

• Classification

• Clustering

To verify the results, we also potted our data to determine the correctness of our

results visually.
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Document Classification

To evaluate our results, we passed the document embedding to the classifier and

compared the predicted class with the actual class. We used cross-validation, which

means separate the training data into two parts. One part is used for training the

classifier, and the other part is used for testing the classifier. We used 10-fold cross

validation meaning we trained the classifier ten times using different training set and

tested the data on a different test dataset each time. After every experimentation,

we obtained confusion matrix which is used for measuring the performance of the

classifier. This matrix shows the number of observation that belongs to a specific

class but how the classifier predicted it into another class. Based on this matrix we

can obtain a true positive (TP), true negative (TN), false positive (FP) and false

negative (FN). TP means the number of documents that actual class is a true class

and predicted class is also a true class. Similarly, TN means that actual class is false

and predicted class is also false. FN shows that the number of documents that actual

class is true but predicted class is false. FP is the number of documents that actual

class is false but predicted to be true. Precision is the fraction of relevant instances

among the retrieved instance while recall is the fraction of relevant instances that

have been retrieved over the total number of relevant instance. Precision tells us how

useful our classifier is and recall tells us how complete our result is. The F1 measure

defines a weighting between recall and precision. It is a harmonic average of the

precision and recall where the F1 score of 1 means the best result and 0 the worst

result. A higher value of F1 ensure efficiency of the classifier and can be calculated

using equation 3

F1 =
2× Precision×Recall
Precision+Recall

(1)

Where precision and recall are defined in equation 4 and 5 respectively
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Precision =
TP

TP + FN
(2)

Recall =
TP

TP + FP
(3)

We used F1 micro and F1 macro as an evaluation metric for multi-label classi-

fication. In F1 micro, we sum up the individual true positives, false positives and

false negatives of the system for different sets and then apply them to the equation

4 and 5 respectively. For F1 macro, we take the average of the precision and recall

produced in each iteration. F1micro is useful when the dataset varies in size whereas

F1 macro tells us the overall performance of the system across the sets of data. We

used Logistic Regression as the Classifier implemented in Scikit [LR]

Document Clustering

We used clustering as an another form of evaluation. We used KMeans implemented

in Scikit [kme]. For training we used 80% of the data and once the model is trained

we used the remaining 20% to predict the labels. To measure the efficiency of the

clustering algorithm we used Purity [30] and Silhouette score implemented in Scikit

[sil].

Purity

Purity [30] measures clustering quality by assigning each cluster the most frequent

class in that cluster and then dividing it by the total number of documents as defined

in 4. N and k denotes the total number of documents and clusters respectively. ci is

a cluster in C and tj is the classification which has the max count for cluster ci.

Purity =
1

N

k∑
i=1

maxj|ci ∩ tj| (4)

Purity score is in the range of [0, 1] where 1 is the best score, and 0 is the worst
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score. To calculate purity, we first create a confusion matrix. To do so, we get cluster

labels for our test samples using our model. Then usingmetrics.cluster.contingency matrix

implemented in Scikit [pur] we pass test labels and true prediction values for our test

samples to get the confusion matrix. Then we take the sum of the max number of

documents in the class and divide it by the total number of documents as shown in 4

Silhouette Score

This score is calculated using mean intra-cluster distance as a and the mean nearest

cluster distance as b for each sample. a is defined in the following equation:

a(i) =
1

Ci − 1

∑
j∈Ci j 6=i

(di, dj)

where i is a datapoint in the cluster Ci. d(i, j) is the distance between the points i

and j.

b is defined as:

b(i) =
min

i 6= j

1

Cj

∑
j∈Cj

d(i, j)

and Silhouette score for each point then can be obtained as

s(i) =
a(i) − b(i)

max{a(i), b(i)}

The best value is 1 and worst value is −1. Value near 0 means that the clusters

are overlapping and the negative value suggest that the sample has been assigned a

wrong cluster.

Document Visualization

For document visualization we projected the embedding obtained using t-SNE[29] to

see how similar documents are clustered together in the vector space. This technique
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is a variation of Stochastic Neighbor Embedding and can reveal structure of the data

at many different scales. For reducing the dimension of document embeddings in

t-SNE we used preplexity = 20, n components = 2 and init = PCA. We also used

PCA [41] to project multi-dimensional vectors into 2 dimensional vector space for

evaluation.
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Dataset PVDBOW Node2Vec DBOW-
Node2Vec

LDE TADW Retrofit1 Retrofit2

DBLP 0.623 0.679 0.684 0.655 0.676 0.671 0.692
DBLP adv 0.647 0.655 0.681 0.744 0.664 0.66 0.668
Arxiv 0.768 0.597 0.797 0.691 0.806 0.791 0.784
ArxivAbs 0.859 0.595 0.872 0.721 0.865 0.862
ArxivCS 0.819 0.844 0.893 0.850 0.879 0.868 0.873
ArxivCSAbs 0.893 0.848 0.915 0.877 0.914 0.906

TABLE 7: Classification Result

5.1 Results

5.1.1 Classification Result

This section will discuss the summary of the classification result obtained for all the

methods using all six datasets. Table 7 shows the result of classification. In the

experiment, we used Logistic Regression implemented in Scikit [LR] as the classifier

with default parameters. The output from each method produced a 100-dimensional

vector and passed to the classifier.

Figure 22 shows the classification result of all the methods for each datasets.

The x-axis represents different methods, and the y-axis shows the classification score

using F1micro. For DBLP, we can see retrofit2 performed the best because it has

a very good network graph and small text. In DBLPadv, LDE outperformed all the

methods, and this is because it is the smallest dataset we have therefore LDE can

capture information from content and network view successfully.

For ArxivTitle, TADW performed the best but gave memory error for ArxivAbs.

TADW is not scalable for large datasets. In ArxivAbs concatenation gave us the best

result closely followed by retrofit1 and retrofit2.

In ArxivCS and ArxivCSAbs, concatenation performed the best but closely fol-

lowed by retrofit1 and retrofit2.

Figure 23 is plotted to visualize the classification result from a global perspective.

On x-axis are the datasets and on the y-axis is the F1score. Each method has a

53



5. EXPERIMENTATIONS

DBLP DBLPadv

Arxiv ArxivAbs

ArxivCS ArxivCSAbs

FIGURE 22: Classification Result for all the methods for individual datasets.
Retrofit2 performed the best for DBLP dataset. LDE outperformed all the meth-
ods in DBLPadv. TADW performed the best for Arxiv but gave memory error for
ArxivAbs and ArxivCSAbs. For rest of the datasets, concatenation performed the
best followed by either retrofit1 or retrofit2
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FIGURE 23: Classification Result for all the methods across different datasets to
give a global overview. As content increases, overall f1score of all the methods also
increases. Addition of network information has little improvement when the content
is more.

unique color, and the dots represent the F1score of the method for each dataset.

The connection between the dots means that the dataset has more content from left

to right. For example, DBLP has title only, and DBLPadv has title+abstract. For

each method, we used the parameters outlined in the Evaluation Benchmark section

5.0.1. The purpose of this experiment is to study the effect of more content when

network information is added.

For all the dataset, we can observe that the addition of network information to

PV-DBOW improves the classification score.

For DBLP, retrofit2 gave the best score and LDE in DBLPadv. In DBLPadv, we

lost some of the documents while getting more content. Hence the citation graph

changed. As a result, the addition of network information to the document embed-

dings decreased for all the methods when compared with DBLP.

In ArxivTitle, TADW gave the best score and PVDBOW Node2vec in ArxivAbs.

The gap between content based (PV-DBOW) and network+content based methods
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has also decreased because of the poor citation graph. LDE performance is worse

than PV-DBOW because it is susceptible to both network and content when learning.

Since the network is not good, LDE is not able to capture the document semantics

successfully. TADW failed to compute the embeddings for ArxivAbs because it is not

scalable.

PVDBOW Node2vec gave the best score for ArxivCS, and ArxivCSAbs followed

closely by retrofit2 in ArxivCSAbs. TADW again failed to capture the embedding for

ArxivCSAbs because it could not handle a large amount of data.

5.2 Parameter Tuning

5.2.1 Retrofit

Dataset 0 0.1 0.3 0.5 0.7 0.9 1
DBLP 0.619 0.629 0.644 0.659 0.672 0.662 0.659
DBLPadv 0.644 0.647 0.666 0.660 0.653 0.650 0.641
Arxiv 0.764 0.768 0.773 0.777 0.782 0.771 0.764
ArxivAbs 0.864 0.865 0.864 0.864 0.863 0.857 0.858
ArxivCS 0.813 0.827 0.845 0.856 0.863 0.848 0.829
ArxivCSAbs 0.891 0.900 0.907 0.910 0.906 0.892 0.881
CS3 0.914 0.918 0.926 0.933 0.935 0.924 0.914
CS3Abs 0.963 0.964 0.969 0.970 0.964 0.961 0.948
CS6 0.734 0.749 0.778 0.793 0.788 0.765 0.756
CS6Abs 0.832 0.839 0.846 0.853 0.850 0.827 0.809

TABLE 8: Hyper-parameter β tuning for the retrofit1. β will determine how much
weight to give to content or network information. When β = 0, retrofit is biased
towards content and will ignore network information. When β = 1, the retrofit will
ignore the content information and give all weight to network information

In this experiment, we varied the hyper-parameter β for the both retrofit1 and

retrofit2 to see how the addition of content and network information effects the clas-

sification score respectively. When β = 0, it means that we are ignoring the network

information altogether. As we increase β, we give more weight to network and less

weight to content. At β = 0.5, the weight for network and content information is

equal, and we expect to receive the best classification score at this point. When
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Dataset 0 0.1 0.3 0.5 0.7 0.9 1
DBLP 0.627 0.638 0.652 0.672 0.673 0.668 0.661
DBLPadv 0.647 0.649 0.660 0.67 0.659 0.654 0.651
Arxiv 0.773 0.779 0.782 0.790 0.789 0.785 0.779
ArxivAbs 0.858 0.861 0.865 0.868 0.861 0.858 0.856
ArxivCS 0.818 0.832 0.856 0.869 0.867 0.853 0.842
ArxivCSAbs 0.893 0.904 0.912 0.913 0.910 0.893 0.883
CS3 0.919 0.922 0.934 0.940 0.939 0.930 0.918
CS3Abs 0.963 0.966 0.972 0.970 0.968 0.954 0.949
CS6 0.732 0.756 0.783 0.797 0.793 0.781 0.765
CS6Abs 0.823 0.836 0.858 0.861 0.844 0.832 0.815

TABLE 9: Hyper-parameter β tuning for retrofit2. β will determine how much weight
to give to content or network information

β = 1, we are ignoring all the content information and using the information only

from the network. We used logistic regression as a classifier. Table 8 and 9 shows the

classification score for retrofit1 and retrofit2 respectively.

Figure 24 shows the classification score for all DBLP and Arxiv dataset. On x-

axis are different values of β and on the y-axis are the F1scores. In DBLP, we can

observe that as we increase β, the classification score improves. We report the best

F1score when β = 0.7 for both retrofit1 and retrofit2, meaning we are taking 70% of

information from the network and 30% from content respectively. This is because the

network of DBLP is excellent and with the addition of only 30% content it gives us the

best result. In DBLPadv, we observe a similar pattern but note we obtain the best

classification score when β = 0.7 for retrofit2 and β = 0.3 for retrofit1 respectively.

This is because DBLPadv contains more content (title + abstract); therefore, the

content information alone is sufficient. We have to give more weight to content 70%

and network 30% so that the overall vector learned is the best in case of retrofit1.

In Arxiv and ArxivAbs, we observe a bell-shaped curve, suggesting that we obtain

the best f1-score when β = 0.5. That means we give equal weight to content and

network information while retrofitting. ArxivIntro contains the introduction section

of the papers meaning it has even more text. Still we observe β = 0.5 the best

for classification. This also reinforces our hypothesis that the addition of network
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FIGURE 24: Tuning of the β parameter for DBLP and Arxiv dataset. In DBLP
more weight should be given to network as the quality of the citation graph is good.
In Arxiv, as we increase content length, the f1score for β < 0.5 starts to improve,
suggesting more weight should be given to the content.
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FIGURE 25: Tuning of the β parameter for CS papers. As content length increases,
f1score starts to improve again for β < 0.5. The best β also shift towards 0.3 as the
introduction section is added.
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FIGURE 26: Tuning of β parameter for the additional CS papers.
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information to the content based embeddings will improve the classification score.

Dataset Classes

3CS

computer vision, cryptography and database area

5CS

Information Theory, Distributed Computing, Machine Learning,
Computer Vision, Compu- tational Complexity

6CS

artificial intelligence, computation and language, data structure and
algorithm, computer science and game theory, logic in computer
science, and social and information networks

TABLE 10: Additional CS datasets

In CS papers, we performed classification on different set of classes as shown

in Table 10. Set with three classes contains papers belonging to computer vision,

cryptography and database area. Set containing five classes is a default dataset we

used in the experimentation and denoted as ArxivCS in the previous sections. Set

with six classes contains documents in the area of artificial intelligence, computation

and language, data structure and algorithm, computer science and game theory, logic

in computer science, and social and information networks. Each class consist of 1000

documents. The motivation to form these new dataset was to study the pattern of β

in different datasets and generalize our findings.

For ArxivCS and ArxivCSAbs, we observe a similar pattern as shown in Figure

25. We get the best F1score when β = 0.5 in the case of title only. With the addition

of abstract, β = 0.5 and β = 0.4 gives us the best classification score for both the

methods. Addition of the introduction section further inclines the algorithm to favor

more content as we observe the best F1score when β = 0.3 for both the methods.

Figure 26 also shows the similar pattern. When we have less content, both the method

gives us the optimal result when β = 0.5. As we increase content, we need to give
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FIGURE 27: Relationship of content and network with β using multi-label classifi-
cation

more weight to the text view to receive the best result.

Dataset Ratio Retrofit1 Retrofit2
DBLP(Title) 8/64=1.25 0.7 0.7
Arxiv(Title) 1/7.429=0.135 0.5 0.5
ArxivCS(Title) 4/7.91=0.507 0.5 0.5
Arxiv3CS(Title) 5/.7575=0.660 0.5 0.5
Arxiv6CS(Title) 2/7.512=0.266 0.5 0.5
DBLPadv 8/100.5=0.08 0.3 0.7
ArxivAbs 1/148=0.006 0.4 0.5
ArxivCSAbs 4/121=0.033 0.5 0.4
Arxiv3CSAbs 5/124=0.040 0.5 0.4
Arxiv6CSAbs 2/116=0.017 0.4 0.4
ArxivIntro 1/1149=0.0008 0.5 0.5
ArxivCSIntro 4/1258=0.003 0.3 0.3
Arxiv3CSIntro 5/1204=0.004 0.4 0.4
Arxiv6CSIntro 2/1401=0.001 0.2 0.3

TABLE 11: Experimental results for predicting the best possible value of β

ratio = log
avg text length

avg deg
(5)
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FIGURE 28: Relationship of content and network with β using binary classification

For predicting the best possible value of β, we analyzed the content and network

information and found a relationship between them. We used the average degree of

the network to measure the quality of the graph quantitatively. And for content, we

used average text length to calculate the quality of the text. Equation 5 defines the

ratio that will give us a rough estimate of the best possible β value. We used log to

spread out ratios for the dataset with the introduction sections. Table 11 shows the

best β value for different ratios. Figure 27 shows that when we have datasets with

small text like title , then beta > 0.5 gives us the best result. β fluctuates between 0.5

and 0.4 for the data with abstract. This is because at this ratio, all the documents

contain more content and we need to adjust the β value based on the network quality.

When dataset have more text like introduction, then the β fluctuates between 0.5 and

0.2 based on our experimentation.

The above experiment 27 is based on multi-label classification. To understand

this pattern in more depth, we performed a binary classification for each dataset.
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For example, Arxiv3CS has 3 classes, so we performed a binary classification on

all the combinations resulting in 6 samples. We repeated this experiment for all

variants of Arxiv3CS which includes title, abstract and introduction. This process

was implemented for all the datasets; as a result, we got several samples for each

ratio. Figure 28 shows the binary classification result. Y-axis is an average of the

best β value for different binary classifications. We can observe a pattern when the

ratio is less meaning content is less, then β > 0.5 will give us a better result. When

2 < ratio < 4 like for the datasets with the abstract, we observe that the best value

of β is in the range from 0.5 to 0.3. When the ratio > 5, we see the β value decreases

and gives us the best value when the β < 0.4. This is because either the network is

not good or we have a large amount of content. β = 0.8 at ratio = 2.8 is an outlier.

This is the binary classification result of sigmod and icses class.

To further understand, what is the best possible value of beta for different datasets,

we analyzed the citation graph in depth. Each dataset has multiple classes. For each

class, we counted how many times it cites documents belonging to the same class

and different classes. For example, DBLP has three classes; icse, sigmod, and vldb.

We determined the number of times icse documents cited papers belonging to the

icse class and also the other classes. The table 12 shows the statistics. The quality

column is calculated by multiplying the percentage of documents citing within their

own class. Quality=1 means that the network is very good and all the documents

cite within their own class.

The figure 29 visualizes the findings in the table 12. The network quality of DBLP

and DBLPadv is relatively good. ICSE documents are citing papers mostly within

their own class. VLDB and Sigmod papers are linked together which decreases the

overall quality of the graph. In Arxiv, cs, stat and maths class is linked together

which decreased the overall quality of the graph. We observe the best network in 3CS

dataset which reports the highest quality of 0.281.
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dataset classes percentage quality

DBLP 0.0814

icse 97

sigmod 52

vldb 48

DBLPadv 0.0820

icse 97

sigmod 51

vldb 49

Arxiv 0.0685

cs 77

stat 40

math 98

physics 88

3CS 0.281

DB 96

CR 88

CV 99

ArxivCS 0.0687

CC 88

DC 70

CV 87

LG 65

IT 97

6CS 0.0522

AI 65

DS 93

GT 83

LO 86

CL 89

SI 79

TABLE 12: Quality of the citation graph

In terms of beta, we can estimate the best value by determining the quality of

the graph and content length. In case of retrofit1, when there is less content, and the

network quality is good, β = 0.7 will give us the best result. As we increase content

while keeping the network constant, β = 0.5 will produce the best result. We observe

the same pattern for all the datasets.

Retrofit2 is more robust and less sensitive to the quality of the citation graph. It

give us the best result when β = 0.5.
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FIGURE 29: Analysis of the citation graph. Dark color demonstrates high number
of documents citing that class. Y-axis shows different classes and x-axis shows the
breakdown of the classes with respect to the number of documents it is citing. Ideally,
all the dark red colors should be in a diagonal.
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5.2.2 Node2vec

For node2vec [25], our experiments are focused on the following key points:

• analysis of how the classification score changes when the weight β of obtaining

information from different views is varied

• effect of hyper-parameter p and q on classification score after concatenating

with PV-DBOW

• impact of vector dimension on the classification score for node2vec and concate-

nated node2vec with PVDBOW

Effect of β on Concatenation

We introduced β to control the weight for obtaining information from the text and

network view using concatenation. The idea behind β is similar to the retrofit algo-

rithm. The value of β ranges from 0 to 1. We use PV-DBOW to capture the vector

representation of text, and node2vec to learn the vector representation for the net-

work. We use β to determine the weight for obtaining information from each view.

When β = 0, we are considering the information only from the content view and

when β = 1 we are considering only the network. To introduce β in concatenation,

we first normalize the PV-DBOW and node2vec vectors. After normalization, we

multiply β with the vector obtained from node2vec and 1 − β with PV-DBOW and

then concatenate these vectors. At extreme ends of β, we use the respective vectors

alone without concatenation. For example β = 0 we use only PV-DBOW vector and

when β = 1 we use only node2vec vector. For node2vec, hyper-parameter p and q is

equal to 1 and walk-length = 80. For PV-DBOW we use window size=5, number of

negative samples=25 and iteration=10 The vectors are then evaluated using logistic

regression with ten cross-validations. We repeat the experiment three-time and plot

the result using a box plot.
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DBLP DBLPadv

FIGURE 30: Effect of β on concatenation using DBLP. Change in β has little effect
on concatenation while retrofit2 becomes equal to concatenation as β increases to 0.9.

Arxiv (Title) Arxiv Abs

FIGURE 31: Effect of β on concatenation using Arxiv. β again did not change the
classification score for concatenation which shows it is difficult to control how much
information we want from different views.

Figure 30 shows the effect of varying β on concatenation using classification. X-

axis represent different β values and y-axis shows the F1−score for logistic regression.

For DBLP dataset, we can see β did not have much effect on the concatenation.

β = 0.1 used only 10% information from the network and gave almost the same score

as when β = 0.9 which was using 90% of information from the network. On the other

hand, retrofit2 was almost equal to concatenation when β = 0.7. We can also see

both variants of retrofit are more sensitive to β than concatenation.

The effect of β on concatenation for Arxiv is shown in the figure 31. For the
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ArxivCS (Title) ArxivCS Abs

FIGURE 32: Effect of β on concatenation using ArxivCS. We observe the similar
pattern for concatenation as we changed β.

Arxiv title and abstract, we can observe that β again did not have much effect on the

concatenation. When β = 1 classification score for the node2vec immensely decreased

because of the poor network in Arxiv Title and Arxiv Abs. Figure 31 also shows that

retrofit2 performed almost equal to the concatenation when β = 0.7 and β = 0.5 for

Arxiv Title and Arxiv Abs respectively.

Figure 32 shows the effect of β on concatenation for ArxivCS. With the title only,

concatenation outperforms both variants of retrofit, but with the addition of abstract,

we can observe that retrofit2 is near to the concatenation.

Dataset 0 0.1 0.3 0.5 0.7 0.9 1

DBLP 0.646 0.670 0.680 0.686 0.684 0.678 0.686
DBLPadv 0.621 0.657 0.654 0.652 0.657 0.651 0.650
Arxiv 0.490 0.565 0.593 0.607 0.606 0.610 0.618
ArxivAbs 0.499 0.567 0.588 0.601 0.613 0.614 0.618
ArxivCS 0.766 0.829 0.835 0.839 0.841 0.842 0.842
ArxivCSAbs 0.765 0.828 0.838 0.842 0.839 0.842 0.844

TABLE 13: F1score of node2vec when the hyper-parameter p and q is varied. When
p = 0.1, then q = (1− p)
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Dataset 0 0.1 0.3 0.5 0.7 0.9 1

DBLP 0.664 0.680 0.683 0.686 0.686 0.682 0.689
DBLPadv 0.659 0.663 0.665 0.660 0.667 0.665 0.659
Arxiv 0.794 0.804 0.808 0.806 0.805 0.803 0.808
ArxivAbs 0.867 0.869 0.868 0.872 0.870 0.869 0.871
ArxivCS 0.868 0.887 0.885 0.890 0.893 0.891 0.889
ArxivCSAbs 0.908 0.915 0.917 0.917 0.916 0.918 0.916

TABLE 14: F1score of concatenated node2vec and PV-DBOW when the hyper-
parameter p and q is varied. When p = 0.1, then q = (1− p)

Hyper-parameter p and q Training

For the hyper-parameter p and q, we merged them such that when p = 0.1 then

q = 0.9(1 − p). If we set p to 0.9, then the random walk will be biased towards the

nodes which are away from the source node. The node2vec will identify nodes which

have similar structure if p is large. Similarly, if we set p to 0.1, then the random walk

will favor nodes near to the source node. As a result, these nodes will be belonging

to the same community.

Table 13 shows the classification score for all the datasets as we increase the value

of p for node2vec. Table 14 is obtained after concatenating node2vec vectors from 13

with PV-DBOW. The F1score is obtained by passing node2vec and node2vec doc2vec

to the logistic regression.

Figure 33 combines the result from the Table 13 and 14. The x-axis represent

different values of p and y-axis represent the F1score. The node2vec is labelled

in the form of blue line and concatenation of node2vec with PV-DBOW as orange.

For DBLP and DBLPadv we can observe that when p is small node2vec doc2vec

performed better. As p increases node2vec score improves but node2vec doc2vec score

relatively decreases or stays constant. We can observe similar pattern for Arxiv and

ArxivCSAbs dataset. In ArxivCS and ArxivAbs, we can clearly observe that when

p is small, node2vec doc2vec performance was better. As we increase p, node2vec

performance improved but node2vec doc2vec performance decreased.
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FIGURE 33: Determines the effect on the classification result, when hyper parameter
p and q is changed in node2vec.
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The reason behind this phenomena is that when p is small, nodes sampled in the

random walk are from the same community as the source node. Therefore, they share

similar content. When we concatenate vectors, the information in node2vec amplifies

the information present in PV-DBOW. As a result, the overall classification score

improves. When p is large, then the nodes sampled are away from the source node.

These nodes though have a similar structure to the source node, but their content

is different. So when we concatenate, the information in node2vec does not help to

improve the classification score.

Dataset dim=50 dim=100 dim=150 dim=200 dim=400
DBLP 0.684 0.681 0.685 0.682 0.689
DBLP adv 0.648 0.657 0.652 0.657 0.665
Arxiv 0.579 0.587 0.596 0.602 0.617
ArxivAbs 0.576 0.592 0.597 0.606 0.615
ArxivCS 0.829 0.842 0.840 0.851 0.852
ArxivCSAbs 0.828 0.842 0.842 0.844 0.853

TABLE 15: Node2vec classification score using different vector dimensions

Dataset dim=50 dim=100 dim=150 dim=200 dim=400
DBLP 0.620 0.634 0.635 0.630 0.628
DBLP adv 0.647 0.634 0.644 0.635 0.645
Arxiv 0.759 0.774 0.775 0.776 0.778
ArxivAbs 0.858 0.855 0.855 0.862 0.861
ArxivCS 0.809 0.823 0.831 0.829 0.838
ArxivCSAbs 0.893 0.893 0.891 0.891 0.896

TABLE 16: PV-DBOW classification score using different vector dimensions

Dataset dim=100 dim=200 dim=300 dim=400 dim=800
DBLP 0.689 0.687 0.6884 0.681 0.696
DBLP adv 0.675 0.660 0.6605 0.666 0.666
Arxiv 0.788 0.805 0.809 0.807 0.813
ArxivAbs 0.871 0.868 0.872 0.868 0.874
ArxivCS 0.881 0.885 0.894 0.896 0.895
ArxivCSAbs 0.915 0.915 0.92 0.915 0.916

TABLE 17: Classification score after concatenating node2vec 15 and PV-DBOW 16.
The dimension is doubled because half of the features are from node2vec and the
other half from PV-DBOW
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Impact of Vector Dimension on the Classification Score

For determining the effect of vector dimension on classification score, we changed the

vector dimension of node2vec and PV-DBOW from 50 to 400. Table 15 and 16 shows

the classification score of different vector dimension for node2vec and PV-DBOW

respectively. In node2vec we set p and q equal to 1. We passed these vectors to

Logistic Regression for classification.

Similarly, Table 17 shows the classification result, after concatenating node2vec

and PV-DBOW. The vector dimension doubles because 50 features are taken from

node2vec and and 50 from PV-DBOW when dim = 100.

Figure 34 shows that when vector size is small vectors produced alone from

node2vec did not capture much information from the network alone as they reported

the lowest F1score. After concatenating the node2vec vector with the PV-DBOW

vector which contains only content information enhanced the classification result dras-

tically. This shows that the addition of network information to the content informa-

tion will improve the vector representation of the document especially when the vector

size is small. As we increased the vector dimension, node2vec performance remains

stable whereas node2vec pvdbow performance first decreased and then become equal

to node2vec. This is because as the vector length increases, there is more space for the

information to be stored in case of node2vec. When we concatenate node2vec with

PV-DBOW, the node2vec vector already contains some of the information found in

PV-DBOW. Hence the resultant vector might overfit and decrease the overall quality

of the vector representation.

5.2.3 LDE

To do an in-depth analysis of the LDE model, we varied the weights of network and

content information to check how the model responds. The weight β represent how

much we want our model to sample the data from content or network information
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FIGURE 34: Concatenating PV-DBOW and node2vec with different vector dimen-
sions
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LDE
Modelsampling from

content

network

(1− β)

β

FIGURE 35: We use β in LDE to adjust the weights for content and network infor-
mation respectively. If we set β = 0.1 that means we are taking more information
from the content and ignoring most of the network information. Similarly, if we set
β = 0.9 then the model will take more information from the network and ignore the
content information.

respectively as shown in Figure 35. By default β = 0.5, meaning samples are drawn

equally from content and network samples respectively.

Dataset 0.1 0.3 0.5 0.7 0.9
DBLP 0.655 0.654 0.655 0.649 0.651
DBLPadv 0.731 0.742 0.744 0.742 0.729
Arxiv 0.740 0.717 0.691 0.696 0.630
ArxivAbs 0.772 0.744 0.721 0.681 0.618
ArxivCS 0.837 0.851 0.850 0.840 0.792
ArxivCSAbs 0.884 0.886 0.877 0.862 0.789

TABLE 18: LDE Parameter Tuning for β

Table 18 show the classification result for different β values. We produced 100-

dimensional vectors from LDE, and these vectors were then passed to logistic re-

gression for classification. Figure 36 obtained from Table 18 shows how the models

respond if we give more weight to the content information and network information

respectively. When we set β = 0.5 means equal weight is given to both network and

content information. When β = 0.1, more weight is given to the content information,

and we obtain a high classification score for all the datasets. As β increases to 0.5,

LDE performance starts to decrease for DBLP, Arxiv, ArxivABs and ArxivCSAbs
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(a) DBLP (b) DBLPadv

(c) Arxiv (d) ArxivAbs

(e) ArxivCS (f) ArxivCSAbs

FIGURE 36: Parameter Tuning for the best β. When β < 0.5, the LDE model
performed the best for all the datasets except for DBLPadv. LDE is not able to learn
network and content information together successfully.Retrofit1 and Retrofit2 always
outperformed LDE except for DBLPadv
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dataset. When we continue to increase β, we give more weight to the network infor-

mation, and we see the classification score decreases for all the datasets. This shows

that the LDE model is not able to combine content and network view successfully to-

gether while learning the embeddings. For DBLPadv, we observe LDE outperformed

retrofit1 and retrofit2 and also all the other methods. This is because DBLPadv is

the smallest dataset we have consisting of only 6704 documents. Therefore, the LDE

model can learn the information from both the views successfully.
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5.2.4 Analysis of Adding Network Information to PV-DM

Based Embeddings

Dataset PV-
DM(dm)

dm
node2vec

Retrofit1 Retrofit2

DBLP 0.619 0.690 0.666 0.687
DBLP adv 0.655 0.678 0.668 0.671
Arxiv 0.618 0.722 0.662 0.672
ArxivAbs 0.838 0.86 0.849 0.842
ArxivCS 0.723 0.879 0.805 0.826
ArxivCSAbs 0.877 0.919 0.912 0.901

TABLE 19: Classification Result when the content vector is obtained from PV-DM

In this section, we will analyze the effect of adding network information to the

embeddings obtained from PV-DM [27] method. We obtained the PV-DM vectors

using Gensim [gen] and then added network information through the concatenation of

node2vec and retrofit respectively. For PV-DM we used windowsize = 10, negative-

samples = 15 and iteration = 10. In node2vec we set p = 1 and q = 1. β in

retrofit1 and retrofit2 were both equal to 0.5. Table 19 shows the classification result

obtained and Figure 37 visualizes that result. The bar plots in the figure represent

the classification score of each method for all the datasets. The bars behind the plot

shows the classification score obtained using PV-DBOW. Figure 37 shows that the

addition of network information improves the classification score for all the datasets.

We can also see PV-DM method did not perform as well as the PV-DBOW for both

Arxiv and ArxivCS dataset. Consequently, the addition of network information to

PV-DM also did not perform as well as those based on PV-DBOW.

Figure 38 shows that PV-DM failed to separate the classes for Arxiv and ArxivCS

dataset. We can conclude from this experiment that embedding produced from PV-

DBOW are more susceptible to adding information from the network view.

78



5. EXPERIMENTATIONS

FIGURE 37: Classification result for PV-DM. For DBLP and DBLPadv dataset, PV-
DM vector did not change the result much whereas, for Arxiv and ArxivCS, PV-DM
decreased the f1score as compared to PV-DBOW

5.2.5 TADW

TADW [42] has two hyper-parameters; regularizer and feature vector size. Since this

approach is based on matrix factorization, we cannot introduce β to control how much

information we want from text and network view respectively. For experimentation,

we studied the effect of regularization and feature vector size on the DBLP dataset

only. Figure 39 shows the result of classification when we varied the regularization.

We changed regularization from 0.1 to 1 and we observed that as we increased the

regularization the model performance improved. TADW gave the best result when

regularization was set to 0.75 for the DBLP dataset. For this experiment, we set

feature size to 200.

Another hyperparameter we experimented on was the feature size. By default,

the model always obtained feature vector of 200 dimension but we made it a hyper-
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(a)Arxiv (b)ArxivCS

FIGURE 38: Embedding visualization using PV-DM for Arxiv and ArxivCS dataset.

parameter and experimented with different lengths of vectors. This feature vector is

obtained after passing binary TFIDF vector to the SVD [32]. Figure 39 shows that

the feature vector of 200 dimension gave the best result of 0.682 f1score. As we

increased the feature size, the model performance decreased because the model was

now overfitting. We used regularization=0.2 for our experiment.
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a Regularization Tuning (b) Feature Vector Size Tuning

FIGURE 39: Parameter Tuning for TADW (a) In this experiment we changed the
regularization from 0.1 to 1. As we increased the regularization the model perfor-
mance improved and gave the best f1score of 0.691 when regularization was 0.75. (b)
Change in feature size allows the model to use content information from different
length of vectors obtained after passing binary vector to the SVD. As we increase the
feature vector size, the f1 score improves. The best results were obtained when we
set the feature vector to 200 dimension.

5.3 Clustering

This section will evaluate the embeddings obtained from different methods using

clustering. We use K-means clustering implemented in Scikit-Learn [kme] and use

Purity [30] and Silhouette score [sil] for evaluation. Purity is a simple evaluation

measure that calculates the percentage of the total number of objects that were

classified correctly. We compare the ground truth labels of each data point in a

cluster and count its frequency. Then we take the maximum count of label frequency

in each cluster and divide it by the total number of data points. This calculation

requires true label values for each point, and the purity value ranges from 0 to 1.

Purity score of 1 means that each cluster contains the data points of the same label.

Silhouette score is another evaluation metric we used for our experimentation. This

score determines how similar an object is within its cluster and how dissimilar it is

to the other clusters. Silhouette score of 1 is the best meaning the object is well
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matched within its cluster and the least score of -1 indicating it is mismatched within

its cluster and has more similarity with the other clusters. The aim is to get the

Silhouette score as close as to 1.

Figure 40 shows the purity score of all the methods for all the datasets. In DBLP,

retrofit2 gave the best score followed closely by concatenation. For DBLPadv dataset,

retrofit1 and retrofit2 outperformed all the other methods. In Arxiv dataset, concate-

nation performed the best, and for the remaining datasets, retrofit1 outperformed all

the other methods. Retrofit1 performed better than the other methods because it

can adjust the weight of network information well and did not bring all the citing

documents to close together. For example in Arxiv and ArxivCS datasets, the net-

work quality is not good because different papers are citing documents from different

classes. Addition of network information will bring different classes closer together.

As a result, these classes will be clustered together in a single cluster and will reduce

the purity score. In the case of retrofit1, through β we can adjust the weight of adding

network information. As a result, we bring the citing document embeddings closer

together but not that close that the documents from the different classes are grouped

in a single cluster.

In the next experiment, we will use the Silhouette score to analyze this observation

in more detail. The purpose of the Silhouette score is to calculate the similarity of the

data point within a cluster, and it’s dissimilarity to the nearest cluster. We do not

know the ground labels and use cosine similarity to calculate the distance between

points. To link this experiment with our previous observation, what we want to see

is that Silhouette score should be in the range of 0.4 to 0.6. That means that points

in the cluster are relatively close to each other and are also dissimilar to their nearest

clusters.

Figure 41 shows the Silhouette plot for the DBLP dataset using PV-DBOW,

node2vec, and concatenation of PV-DBOW and node2vec. The figure on the left
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DBLP DBLPadv

Arxiv ArxivAbs

ArxivCS ArxivCSAbs

FIGURE 40: Purity score for all the methods for individual datasets. Retrofit1
performed the best in general as compared to concatenation.
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(a) PV-DBOW

(b) Node2vec

(c) Concatenation of PV-DBOW and Node2vec

FIGURE 41: Silhouette score of DBLP dataset for PV-DBOW, node2vec and con-
catenation of PV-DBOW and node2vec
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shows the Silhouette coefficient values. The red dotted line is the mean score. We

want this line to be as close as to the 1. The colored region is the Silhouette score

of each point within the clusters. We want each cluster plot to be above the mean

value as much as possible, and the width of these plots should be uniform for all

the clusters. On the right is the visualization of the clusters using PCA [41]. Each

point represents different documents, and the color of points are its labels. Separate

sections of colors in the plot shows the region of each cluster. X mark represents the

cluster center and the value associated with it links it with the Silhouette coefficient

plot on the left.

Part a of figure 41 shows that clustering did not perform well as the distribution of

clusters is not uniform, and for the yellow cluster, some of the points are even negative

meaning they are not similar to the assigned cluster. Part b shows improvement as the

distribution is relatively more uniform, but still, some of the black and yellow points

are in negative. Concatenation increases the negative points in the yellow cluster,

and the distribution is not uniform showing that the clustering did not perform well.

Figure 42 shows the Silhouette plot for the retrofit1 and retrofit2 for DBLP

dataset. We can observe that retrofit2 has the best mean score. Though there are

some points in the negative for the yellow cluster but for the other two cluster we

have a wide distribution.

Figure 43 shows the clustering result for DBLPadv dataset. For PV-DBOW, we

can see that many points are in the negative and the mean score is also minimal.

Node2vec has better distribution, and the mean score is 0.5197. We can still observe

points in the cluster 0 and 1 in negative because Sigmod and VLDB documents

are both from the database class, so it is difficult to separate them in a cluster.

Concatenation of node2vec and PV-DBOW increases the mean Silhouette score, and

still we some points in the negative for cluster 1 and 2.

Figure 44 shows the clustering result for the retrofit1 and retrofit2 using DBLPadv
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(a) Retrofit1

(b) Retrofit2

FIGURE 42: Silhouette score of DBLP dataset for retrofit1 and retrofit2
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(a) PV-DBOW

(b) Node2vec

(c) Concatenation of PV-DBOW and Node2vec

FIGURE 43: Silhouette score of DBLPadv dataset for PV-DBOW, node2vec and
concatenation of PV-DBOW and node2vec
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(a) Retrofit1

(b) Retrofit2

FIGURE 44: Silhouette score of DBLPadv dataset for retrofit1 and retrofit2
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dataset. We can observe that retrofit1 did not perform well because there are many

points in the negative for the cluster 0 and 1. Retrofit2 is much better, as the mean

Silhouette score is 0.488 and the cluster distribution is above the mean score and is

uniformly distributed.

We observe a similar pattern in other datasets for the Silhouette score. The plots

for those datasets can be accessed in the Appendix 6.

5.4 Document Visualization

In this section, we used PCA [41] to project the embeddings produced from different

methods into 2-dimensional vector space with the objective that the papers belonging

to the same class should be clustered together. If the distance between different

classes is more that means the embeddings were able to capture the semantics of the

documents successfully and were able to differentiate different topics in the dataset. If

the classes are merged, that means these classes are linked together through network

and content information.

DBLP Visualization

Figure 45 gives the visualization of 3000 vector representation of documents per class

for the DBLP dataset. We can observe that the ICSE class was able to separate

successfully for all the methods whereas Sigmod and VLDB failed to separate. Sig-

mod and VLDB both represent documents related to the database management and

ICSE contains documents related to software engineering. Since VLDB and Sig-

mod contains same kind of words related to databases as a result they could not

be separated. Retrofit2 performed the best as it got the classification score of 0.668

for the 2-dimensional vector representation. Vector representation obtained from

node2vec produced classification score of 0.662 and the concatenation of PV-DBOW

89



5. EXPERIMENTATIONS

F1micro:0.601 F1micro:0.662 F1micro:0.657

(a)PV-DBOW (b)Node2vec (c)PVDBOW Node2vec

F1micro:0.466 F1micro:0.652 F1micro:0.640

(c)LDE) (d)TADW (e)Retrofit1

F1micro:0.668

(f)Retrofit2

vldb sigmod icseKey:

FIGURE 45: Dataset Used: DBLP Key: Red:ICSE Green:VLDB Blue:Sigmod
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with node2vec produced 0.657 score for the classification.

DBLPadv Visualization

Visualization of the vector representation obtained from the DBLPadv dataset also

produced a similar result as shown in Figure 46. ICSE papers were able to get

separated for all the methods whereas VLDB and Sigmod failed to get separated.

Retrofit2 performed the best followed by concatenation of PV-DBOW with node2vec.

Arxiv Visualization

For Arxiv, we can see in Figure 47 that adding network information did not improve

the results much. Papers belonging to physics and maths are together, and computer

science and statistics documents are clustered together in the 2-dimensional vector

space for Node2Vec. The classes are better separated for the content based method

like PVDBOW. When β = 0.5 we are giving equal weight to content and network

view for learning the embeddings in retrofit2. Since the network is not good therefore

the classes are not able to get separated. With β = 0.25 retrofit2 performed the best

followed by retrofit1 and concatenation of PV-DBOW and node2vec. This is because

we give more weight to the content than the network.

ArxivCS Visualization

We observe the same pattern for ArxivCS in Figure 48. Node2vec alone performed

poorly as machine learning, and computer vision papers are clustered together, and

computation complexity is clustered together with the distributed computing papers.

Retrofit2 again produced the best classification score of 0.641 with β = 0.25 followed

by retrofit1 and concatenation of PV-DBOW and node2vec.
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F1micro:0.573 F1micro:0.6224 F1micro:0.627

(a)PV-DBOW (b)Node2vec (c)PVDBOW-Node2vec

F1micro:0.461 F1micro:0.589 F1micro:0.627

(c)LDE (d)TADW (e)Retrofit1

F1micro:0.634

(f)Retrofit2

vldb sigmod icseKey:

FIGURE 46: Dataset Used: DBLPAdv Key: Red:ICSE Green:VLDB Blue:Sigmod
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F1micro:0.680 F1micro:0.450 F1micro:0.691

(a)PV-DBOW(d2v) (b)Node2vec (c)PVDBOW-Node2vec

F1micro:0.422 F1micro:0.549 F1micro:0.708

(c)LDE (d)TADW (e)Retrofit1

F1micro:0.711 F1micro:0.674 F1micro:0.580

(f)Retrofit2 β 0.25 (g)Retrofit2 β 0.375 (h)Retrofit2 β 0.5

stat physics csKey: math

FIGURE 47: Dataset Used: Arxiv Key: Red:CS Green:Stat Blue:Phy Purple:Math
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F1micro:0.595 F1micro:0.578 F1micro:0.625

(a)PV-DBOW (b)Node2vec (c)PV-DBOW-Node2vec

F1micro:0.455 F1micro:0.636

(c)LDE (e)Retrofit1

F1micro:0.641 F1micro:0.593 F1micro:0.559

(f)Retrofit2 β 0.25 (g)Retrofit2 β 0.375 (h)Retrofit2 β 0.5

Computer Vision Machine Learning

Distributed ComputingKey: Computational ComplexityInformation Theory

FIGURE 48: Dataset Used: ArxivCS Key: Red:DC Green:CV Blue:LG Purple:CC
Yellow:IT
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Retrofit Animation

To understand the effect of β on retrofit, we created animations showing how the

documents in the two-dimensional vector space move when the network information is

added. The animation can be accessed at https://github.com/ZeeshanMansoor260/

Masters/tree/master/DataVisualization. The animations show that the addition

of network information will move the different classes away from each other as we in-

crease β. When β = 1, different classes start to come closer together as we are using

the information only from the network.
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ID Title Ref

ICSE:0 Lightweight adaptive filtering for efficient

learning and updating of probabilistic models

Cites 6 icse papers

ICSE:1 Consistent group membership in ad hoc net-

works

Cites 1 icse paper

ICSE:2 Stochastic Modelling of Seasonal Migration

Using Rewriting Systems with Spatiality

Cites 2 icse paper

ICSE:3 Stochastic Modelling of Seasonal Migration

Using Rewriting Systems with Spatiality-

HOLMES: Effective statistical debugging via

efficient path profiling

Cites 3 icse paper

VLDB:6 Probabilistic nearest neighbor queries on un-

certain moving object trajectories

Cites 4 sigmod and 2 vldb pa-

pers

VLDB:7 REFEREE: an open framework for practi-

cal testing of recommender systems using Re-

searchIndex

Cites 2 vldb papers

VLDB:8 ZOO: A Desktop Experiment Management

Environment

Cites 1 vldbl paper

Sigmod:4 The test data challenge for database-driven

applications

Cites 2 icse, 1 vldb and 1 sig-

mod paper

Sigmod:9 Clio grows up: from research prototype to in-

dustrial tool

Cites 12 vldb and 7 sigmod pa-

per

TABLE 20: Paper Label Details

5.4.1 Labels Plots

In this experiment, we wanted to visualize the effect of adding network information to

the documents independently. We used PCA [41] to project 100-dimensional vectors

obtained from PV-DBOW to 2-dimension vectors. Then we identified some docu-

ments which were placed with the wrong classes in the visualization. For example,

Sigmod or VLDB documents grouped with ICSE documents and similarily ICSE

documents placed with VLDB.

Table 20 gives detail about the selected documents. We selected four ICSE doc-

uments with content similar to the VLDB and Sigmod class. For example, these

documents contain words like model, migration, and group membership which can be

96



5. EXPERIMENTATIONS

found in high probability in the database documents. Similarly, VLDB and Sigmod

documents have content similar to ICSE because they contain words like framework,

recommender system, test-data, and application. These words are more likely to be

found in the software engineering documents. We also list the class of documents

these papers are citing. Most of the documents are citing papers within their class.

The figure 49 (a) shows the visualization of the 100-dimensional vector obtained

from PV-DBOW after passing it through PCA. The document outlined in table 20

are identified in the plot. Initially, the documents are placed with the wrong classes

because of their content information. Part (b) shows the visualization of the embed-

ding obtained after concatenating node2vec with PV-DBOW and passing it through

PCA. We can see with the addition of network information, identified documents

brought closer to their respective classes, but VLDB and Sigmod documents are still

far from their true classes. Part (c) is obtained from LDE. Identified VLDB and Sig-

mod documents are placed with the other documents in their class. For ICSE, it is

forming a new cluster which is close to the database documents because of their con-

tent. Also, LDE failed to place identified VLDB documents close together. Finally,

part (d) represent retrofit2. We can see that the ICSE documents are placed correctly

with the other documents in their class. And VLDB and Sigmod are also separated,

as identified VLDB and Sigmod documents are clustered together respectively.
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(a)PV-DBOW (b) Concatenated PV-DBOW and Node2vec

(c)LDE (d) Retrofit2

FIGURE 49: Visualization of how the documents are separated based on the content
and network information. In PV-DBOW, ICSE documents are wrongly placed with
Sigmod and VLDB documents because of their titles and same applies for Sigmod
and VLDB documents. After adding network information documents start to come
closer together to their respective classes. For LDE and concatenated PV-DBOW
and node2vec these documents are placed between the classes. But in retrofit2, these
document are placed in the correct classes and also VLDB and Sigmod documents
are brought closer.
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Conclusion

In this thesis, we studied the effect of adding network information to the embeddings

obtained from content only. We wanted to improve the embeddings obtained from

methods like PV-DBOW which uses only the text information to train the model.

These methods assume documents to be independent of each other. The reality is

contrary to this assumption. Documents are linked together in the form of hyperlinks

or references for webpages or academic papers respectively. These content-based

methods ignore the linkage information altogether. Likewise, network representation

learning methods like node2vec will learn network information. These methods ignore

the text attribute of documents in the network and focus only on the linkage part.

The method proposed in this thesis try to incorporate linkage information to the

embeddings obtained using just content.

For experimentation, we use three main datasets: DBLP, Arxiv, and ArxivCS.

Each dataset contains two variants, less content (title only), and more content (ab-

stract). We created both variants of Arxiv, ArxivCS, and DBLPadv dataset. We

wanted to do experimentation on different networks with the varying size of the con-

tent.

In the experimentation, we show the classification score of different methods using

various datasets. The results show that concatenating node2vec with PV-DBOW

gives the best result followed by retrofit2. However, concatenation does not allow

to control the weight of adding network information to the document embeddings.
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Moreover, concatenation doubles the vector length; as a result, the resultant vector

has more room to store information. LDE did not perform well on all the datasets.

TADW faced scalability issues and gave memory error for ArxivAbs and ArxivCSAbs

dataset.

The experimentation showed that when adding network information to the em-

bedding obtained from larger text gives little improvement as compared to the less

content. This is because more text contains partially the same type of information

as in the network. The embeddings will capture the semantic of documents which

contains information present in the network too. When the content size is small, the

model does not have enough information to train and looses some of the aspects of

the documents. On the other hand, the citation graph contains different aspects of

the same documents. When we combine these views, the resultant vector will have

information from both the aspects and will produce a better classification score.

To analyze the classification score in depth, we identified the reasons why different

methods fail for various datasets. We performed rigorous experimentation to find the

best parameters for different methods using all the datasets. In concatenation, we

observe the best classification score when sampled nodes are near to the source node.

This is because nodes near to the source node are directly linked through citation

and share a similar topic. In the retrofit, we observe the best classification score is

obtained when β = 0.5. It means we are using an equal amount of information from

network and content. LDE also follow a similar pattern, but the experimentation

result shows that LDE is a difficult model to train. It is very sensitive to network and

content information and is not able to use the information optimally when training.

To understand the classification score in more depth, we visualized the embed-

dings from all the methods. The objective was to visualize the effectiveness of different

methods and to study the structure of the datasets. The goal is to bring documents

of different classes closer together in the vector space. In general, retrofit2 performed
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the best in separating the documents based on their classes. We also analyzed the

effect of adding network information on individual documents by tracking them using

different methods. We show that retrofit2 was successfully able to bring the identi-

fied documents back to their respective classes and also brought similar documents

together within the same class.

Limitations

The limitation of our method is that we need a vector representation of the documents

as an input. We cannot add citation information to the documents in their raw

text form. Secondly, our method is dependent on the quality of the network. If

the network is citing documents from different classes, then the addition of network

information will not separate the classes. Also, we can not add citation information

to the document embedding if it is not present in the network graph.

Future Work

Our research focuses on the linkage of document embeddings using the citation graph

only. But these documents can be linked together based on different relationships

like similar keywords and authors. In the future, it would be interesting to see how

our model responds when we try to add network information based on the common

keywords and authors. It will also be interesting to analyze the significance of β when

used in a different scenario like keywords.

In the end, we can conclude that the addition of network information to the

document embedding improves the classification score in general. This improvement

is dependent on the quality of the citation graph and the text length. We can also

conclude that retrofit significantly improves the classification score in all the dataset.
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Appendix: Clustering Results

Following figures shows the Silhouette score for Arxiv and ArxivCS datasets.

The clustering result for the Arxiv dataset is shown in the figure 50 using PV-

DBOW, node2vec and concatenation. Clustering result of PV-DBOW gave us a

Silhouette score of 0.3562 because many points in the cluster 2 are negative. Also

the distribution of points is not uniform. Node2vec improved the Silhouette score

but the overall distribution is the same and again many points in the cluster 0 are in

negative. Concatenation, decreased the Silhouette score to 0.3989 and cluster 3 has

many points in the negative.

Figure 51 shows the clustering result for both variants of the retrofit. Retrofit1

performed better than the other as the distribution is more uniform and Silhouette

mean is 0.3819.

For ArxivAbs, the clustering result for PV-DBOW, node2vec and concatenation

is shown in Figure 52. PV-DBOW did not perform well as it achieved the Silhouette

score of 0.4154. Also the cluster 1 has some points in the negative. Node2vec gave a

Silhouette score of 0.4051, but the distribution is not uniform and cluster 3 has many

points in the negative. Concatenation, decreases the mean Silhouette score to 0.388

and has many points in negative for the cluster 0.

Clustering result of both variants of retrofit is shown in the figure 53. Retrofit1,

gave the best Silhouette score of 0.4269. Retrofit2 performed relatively better, but

still cluster 2 and 1 have points in the negative.
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(a) PV-DBOW

(b) Node2vec

(c) Concatenation of PV-DBOW and Node2vec

FIGURE 50: Silhouette score of Arxiv dataset for PV-DBOW, node2vec and con-
catenation of PV-DBOW and node2vec
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(a) Retrofit1

(b) Retrofit2

FIGURE 51: Silhouette score of Arxiv dataset for retrofit1 and retrofit1
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(a) PV-DBOW

(b) Node2Vec

(c) Concatenation of PV-DBOW and Node2vec

FIGURE 52: Silhouette score of ArxivAbs dataset for PV-DBOW, node2vec and
concatenation of PV-DBOW and node2vec
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(a) Retrofit1

(b) Retrofit2

FIGURE 53: Silhouette score of ArxivAbs dataset for retrofit1 and retrofit2
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(a) PV-DBOW

(b) Node2vec

(c) Concatenation of PV-DBOW and Node2vec

FIGURE 54: Silhouette score of ArxivCS dataset for PV-DBOW, node2vec and con-
catenation of PV-DBOW and node2vec
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(a) Retrofit1

(b) Retrofit2

FIGURE 55: Silhouette score of ArxivCS dataset for retrofit1 and retrofit2

The clustering the results of CS papers is shown in Figure 54 for PV-DBOW,

node2vec and concatenation. Node2vec achieved the mean Silhouette score of 0.4620.

After concatenation, Silhouette score increased, and the distribution of cluster 0 be-

came all negative.

Clustering result of both retrofit variant is shown in Figure 55. Retrofit1 gave

much better Silhouette score of 0.301 but it has some points in negative for the

cluster 4. Retrofit2, has a smaller Silhouette score of 0.372.
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(a) PV-DBOW

(b) Node2vec

(c) Concatenation of PV-DBOW and Node2Vec

FIGURE 56: Silhouette score of ArxivCSAbs dataset for PV-DBOW, Node2Vec and
concatenation of PV-DBOW and Node2Vec
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(a) Retrofit1

(b) Retrofit2

FIGURE 57: Silhouette score of ArxivCSAbs dataset for retrofit1 and retrofit2
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