783 research outputs found

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    Developing front-end Web 2.0 technologies to access services, content and things in the future Internet

    Get PDF
    The future Internet is expected to be composed of a mesh of interoperable web services accessible from all over the web. This approach has not yet caught on since global user?service interaction is still an open issue. This paper states one vision with regard to next-generation front-end Web 2.0 technology that will enable integrated access to services, contents and things in the future Internet. In this paper, we illustrate how front-ends that wrap traditional services and resources can be tailored to the needs of end users, converting end users into prosumers (creators and consumers of service-based applications). To do this, we propose an architecture that end users without programming skills can use to create front-ends, consult catalogues of resources tailored to their needs, easily integrate and coordinate front-ends and create composite applications to orchestrate services in their back-end. The paper includes a case study illustrating that current user-centred web development tools are at a very early stage of evolution. We provide statistical data on how the proposed architecture improves these tools. This paper is based on research conducted by the Service Front End (SFE) Open Alliance initiative

    Knowledge Organization Systems (KOS) in the Semantic Web: A Multi-Dimensional Review

    Full text link
    Since the Simple Knowledge Organization System (SKOS) specification and its SKOS eXtension for Labels (SKOS-XL) became formal W3C recommendations in 2009 a significant number of conventional knowledge organization systems (KOS) (including thesauri, classification schemes, name authorities, and lists of codes and terms, produced before the arrival of the ontology-wave) have made their journeys to join the Semantic Web mainstream. This paper uses "LOD KOS" as an umbrella term to refer to all of the value vocabularies and lightweight ontologies within the Semantic Web framework. The paper provides an overview of what the LOD KOS movement has brought to various communities and users. These are not limited to the colonies of the value vocabulary constructors and providers, nor the catalogers and indexers who have a long history of applying the vocabularies to their products. The LOD dataset producers and LOD service providers, the information architects and interface designers, and researchers in sciences and humanities, are also direct beneficiaries of LOD KOS. The paper examines a set of the collected cases (experimental or in real applications) and aims to find the usages of LOD KOS in order to share the practices and ideas among communities and users. Through the viewpoints of a number of different user groups, the functions of LOD KOS are examined from multiple dimensions. This paper focuses on the LOD dataset producers, vocabulary producers, and researchers (as end-users of KOS).Comment: 31 pages, 12 figures, accepted paper in International Journal on Digital Librarie

    Semantic Web meets Web 2.0 (and vice versa): The Value of the Mundane for the Semantic Web

    No full text
    Web 2.0, not the Semantic Web, has become the face of “the next generation Web” among the tech-literate set, and even among many in the various research communities involved in the Web. Perceptions in these communities of what the Semantic Web is (and who is involved in it) are often misinformed if not misguided. In this paper we identify opportunities for Semantic Web activities to connect with the Web 2.0 community; we explore why this connection is of significant benefit to both groups, and identify how these connections open valuable research opportunities “in the real” for the Semantic Web effort

    Mapping web personal learning environments

    Get PDF
    A recent trend in web development is to build platforms which are carefully designed to host a plurality of software components (sometimes called widgets or plugins) which can be organized or combined (mashed-up) at user's convenience to create personalized environments. The same holds true for the web development of educational applications. The degree of personalization can depend on the role of users such as in traditional virtual learning environment, where the components are chosen by a teacher in the context of a course. Or, it can be more opened as in a so-called personalized learning environment (PLE). It now exists a wide array of available web platforms exhibiting different functionalities but all built on the same concept of aggregating components together to support different tasks and scenarios. There is now an overlap between the development of PLE and the more generic developments in web 2.0 applications such as social network sites. This article shows that 6 more or less independent dimensions allow to map the functionalities of these platforms: the screen dimensionmaps the visual integration, the data dimension maps the portability of data, the temporal dimension maps the coupling between participants, the social dimension maps the grouping of users, the activity dimension maps the structuring of end users–interactions with the environment, and the runtime dimensionmaps the flexibility in accessing the system from different end points. Finally these dimensions are used to compare 6 familiar Web platforms which could potentially be used in the construction of a PLE

    DBpedia Mashups

    Get PDF
    If you see Wikipedia as a main place where the knowledge of mankind is concentrated, then DBpedia – which is extracted from Wikipedia – is the best place to find machine representation of that knowledge. DBpedia constitutes a major part of the semantic data on the web. Its sheer size and wide coverage enables you to use it in many kind of mashups: it contains biographical, geographical, bibliographical data; as well as discographies, movie meta-data, technical specifications, and links to social media profiles and much more. Just like Wikipedia, DBpedia is a truly cross-language effort, e.g., it provides descriptions and other information in various languages. In this chapter we introduce its structure, contents, its connections to outside resources. We describe how the structured information in DBpedia is gathered, what you can expect from it and what are its characteristics and limitations. We analyze how other mashups exploit DBpedia and present best practices of its usage. In particular, we describe how Sztakipedia – an intelligent writing aid based on DBpedia – can help Wikipedia contributors to improve the quality and integrity of articles. DBpedia offers a myriad of ways to accessing the information it contains, ranging from SPARQL to bulk download. We compare the pros and cons of these methods. We conclude that DBpedia is an un-avoidable resource for pplications dealing with commonly known entities like notable persons, places; and for others looking for a rich hub connecting other semantic resources

    ICWE 2016 rapid mashup challenge: Introduction

    Get PDF
    The ICWE 2016 Rapid Mashup Challenge is the second installment of a series of challenges that aim to engage researchers and practitioners in showcasing and discussing their work on assisting mashup development. This introduction provides the reader with the general context of the Challenge, its objectives and motivation, and the requirements contributions were asked to satisfy so as to be eligible for participation. A summary of the contributions that were selected for presentation in the 2016 edition anticipates the content of the remainder of this volume

    Linked Data - the story so far

    No full text
    The term “Linked Data” refers to a set of best practices for publishing and connecting structured data on the Web. These best practices have been adopted by an increasing number of data providers over the last three years, leading to the creation of a global data space containing billions of assertions— the Web of Data. In this article, the authors present the concept and technical principles of Linked Data, and situate these within the broader context of related technological developments. They describe progress to date in publishing Linked Data on the Web, review applications that have been developed to exploit the Web of Data, and map out a research agenda for the Linked Data community as it moves forward

    A BASILar Approach for Building Web APIs on top of SPARQL Endpoints

    Get PDF
    The heterogeneity of methods and technologies to publish open data is still an issue to develop distributed systems on the Web. On the one hand, Web APIs, the most popular approach to offer data services, implement REST principles, which focus on addressing loose coupling and interoperability issues. On the other hand, Linked Data, available through SPARQL endpoints, focus on data integration between distributed data sources. The paper proposes BASIL, an approach to build Web APIs on top of SPARQL endpoints, in order to benefit of the advantages from both Web APIs and Linked Data approaches. Compared to similar solution, BASIL aims on minimising the learning curve for users to promote its adoption. The main feature of BASIL is a simple API that does not introduce new specifications, formalisms and technologies for users that belong to both Web APIs and Linked Data communities
    corecore