
Open Research Online
The Open University’s repository of research publications
and other research outputs

A BASILar Approach for Building Web APIs on top of
SPARQL Endpoints
Conference or Workshop Item

How to cite:

Daga, Enrico; Panziera, Luca and Pedrinaci, Carlos (2015). A BASILar Approach for Building Web APIs on
top of SPARQL Endpoints. In: Proceedings of the Third Workshop on Services and Applications over Linked APIs
and Data (Maleshkova, Maria; Verborgh, Ruben and Stadtmüller, Steffen eds.), pp. 22–32.

For guidance on citations see FAQs.

c© 2015 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://ceur-ws.org/Vol-1359/paper4.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/30275777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://ceur-ws.org/Vol-1359/paper4.pdf
http://oro.open.ac.uk/policies.html

A BASILar Approach for Building Web APIs

on top of SPARQL Endpoints

Enrico Daga, Luca Panziera, and Carlos Pedrinaci

Knowledge Media Institute (KMI) - The Open University.
Walton Hall, MK76AA Milton Keynes, United Kingdom

{enrico.daga,luca.panziera,carlos.pedrinaci}@open.ac.uk
http://kmi.open.ac.uk

Abstract. The heterogeneity of methods and technologies to publish
open data is still an issue to develop distributed systems on the Web.
On the one hand, Web APIs, the most popular approach to offer data
services, implement REST principles, which focus on addressing loose
coupling and interoperability issues. On the other hand, Linked Data,
available through SPARQL endpoints, focus on data integration between
distributed data sources. The paper proposes BASIL, an approach to
build Web APIs on top of SPARQL endpoints, in order to benefit of the
advantages from both Web APIs and Linked Data approaches. Compared
to similar solution, BASIL aims on minimising the learning curve for
users to promote its adoption. The main feature of BASIL is a simple API
that does not introduce new specifications, formalisms and technologies
for users that belong to both Web APIs and Linked Data communities.

1 Introduction

Nowadays, the World Wide Web became the most effective medium to expose
data and information. A growing amount of organisations publish open data
in order to provide added value services for stakeholders and customers. The
increasing availability of open data sources enable the development of systems
that consume distributed data to setup innovative end-user services and new
businesses [11, 7]. However, the heterogeneity of methods and technologies to
publish open data is still an issue to develop distributed systems on the Web.

The scientific community already identified the concerns for building dis-
tributed applications based on online services that provide data and functionali-
ties [8]. The four key aspects to be considered for data services are: (i) support
of seamless data integration between distributed sources; (ii) loose coupling and
(iii) interoperability between data services and data consumer applications; (iv)
description of the service interfaces to allow service search and proper data
consumption by users and application.

Currently, the most adopted approach for publishing and consuming open
data between distributed agents on the Web are Web APIs. Based on REST
principles [3], Web APIs put a strong accent on addressing loose coupling and
interoperability. More recently, the Semantic Web community started promoting

Services and Applications over Linked APIs and Data – SALAD2015 22

Copyright held by the paper authors

the adoption of Linked Data principles [5], which focus on integration of open
data between distributed Web sources, enabled by RDF and SPARQL endpoints.

Web APIs and SPARQL endpoints have complementary advantages and
limits with respect to the concerns listed so far. In the current scenario, the ideal
solution is the combination of the two technologies in order to benefit of the
advantages from both REST and Linked Data. Nevertheless, to be adopted, an
integrated solution has to consider that the developer community behind Web
APIs has different background knowledge and skills compared with developers
from the Linked Data community. For instance, average Web API users do not
know SPARQL or RDF. In this context, this paper aims to answer the following
question: How is it possible to integrate the advantages of the two approaches in
a solution that minimises the barrier to adoption for developers from both Web
APIs and Linked Data communities?

The solution that we propose is BASIL (Building Apis SImpLy), an approach
to mediate between SPARQL endpoints and applications by generating Web
APIs from SPARQL queries stored and managed by an intermediate system.
BASIL have been designed to minimise the learning curve for its users. Data
consumers, which belong to the Web API community, do not require SPARQL
and RDF expertise to benefit of the open data. SPARQL, which is already a
data provider skill, is used to tailor Web APIs for data consumers.

The paper is structured as follows. Section 2 provides the motivations of
this work based on the real experience on publishing open data through the
data.open.ac.uk portal. The methodology and the requirements specification
for modelling BASIL is available in section 3. The proposed solution is described
in Section 4, while section 5 evaluates the benefits of BASIL for data consumers
and providers. Related work is discussed in section 6. Finally, section 7 provides
conclusions and future work.

2 Motivation and Case Study

The Open University, which the authors are affiliated, provides its own institu-
tional repositories as Linked Open Data through the data.open.ac.uk web portal
[2]. The portal makes available public data about academic degree qualifications,
courses, scholarly publications and educational resources of the University. Several
Web applications are currently to obtain official information by exploring linked
resources spread across the heterogeneous landscape of systems, websites and
repositories of the Open University. Since 2010, the data portal involved more
then five developers from different units of the University as data consumers,
and two developers as data providers, taking care of the database maintenance,
optimisation and evolution. During this experience, developers and providers
interacted frequently in order to cope with technical and design issues. From
this use case, the authors collected feedback looking backwards to conversations
in emails and informal discussions. While this feedback is not intended to be
understood as the sole truth of potential views, opinions or problems, indeed it
represents the issues that different developers (both consumers and providers)

Services and Applications over Linked APIs and Data – SALAD2015 23

Copyright held by the paper authors

have been facing in our use case. Nevertheless, we believe that the identified
issues are broadly relevant.

Consumers of data.open.ac.uk understand the benefit of RDF and SPARQL
for data integration, particularly relating assets from different sources to qualifi-
cations, courses and researchers of the University, but the two standards are not
a common skill of Web developers. Therefore, data consumers ask support from
providers for modelling and embedding SPARQL queries in their applications.
This approach has two side effects. First, embedding SPARQL queries in appli-
cations violates the principle of loose coupling of distributed systems, because
it creates a strong dependency between the source data model and the client
software. As consequence, data providers quickly loose a sight on the systems
relying on the data, thus loosing the capability of assessing the impact of schema
evolutions on existing queries. Second, modelling an efficient and consistent query
may require days of hard work. This approach does not allow other consumers to
reuse embedded queries. In addition, SPARQL makes harder the implementation
of caching solutions for providers, because each requirement can be expressed by
queries with same semantics but different syntaxes.

The feedback highlights that Web APIs are well known by Web developers
due their high diffusion. The fixed interface of the Web APIs assures the consumer
stability in the representation, and implements a proper loose coupling. However,
the Open University’s dataset evolves frequently. Each dataset evolution may
require adaptations of the Web API interface, which are time consuming for the
data provider and can break existing client systems. Moreover, Web APIs do not
allow consumers to benefit of data integration features provided by SPARQL.

3 Methodology and requirements specification

To face the issues raised by the case study, we perform an analysis by applying
the SWOT framework [6] to compare SPARQL endpoints and Web APIs as
methods for publishing open data. The analysis starts by (i) collecting the issues
and assign each to SPARQL endpoints or Web APIs. Then, (ii) the issues are
classified as Strength (S), Weaknesses (W), Opportunities (O) or Threats (T).
This phase includes removal of duplicate issues, merging of similar concepts
and abstraction of related issues. Afterwards, (iii) each issue is known to affect
Data Consumers (C) and/or Data Providers (P). Finally, (iv) issues are classified
according to the data services principles: Data Integration (di), Interoperability
(io), Loose Coupling (lc), and Description (de). Along with these key aspects,
we add a general principle: Adoption (ad), that we intend as the cost of the
approach adoption in terms of time, effort or resources for both data providers and
consumers. Table 1 shows the results of the analysis. During the development of
the analysis, we realised that strengths and opportunities of Web APIs overcome
weaknesses and threats of SPARQL endpoints, and viceversa. To help the reader,
we ordered the issues accordingly. For instance: S1S ! O1S ! W1A ! T1A.

The analysis provides a clear overview of the practical implications of the two
paradigms for both data providers and data consumers. Additionally, it shows
that SPARQL endpoint and Web APIs are complementary.

Services and Applications over Linked APIs and Data – SALAD2015 24

Copyright held by the paper authors

Issue Description Affects Aspect

SPARQL endpoint

S1S SPARQL is a rich query language, capable of selecting any portion
of the data and to exploit relations and paths between resources.

P,C di

S2S The output can be an RDF graph, a semantic meta model that
generalizes from specific syntaxes.

C di ,io

S3S The interaction is a standard protocol. P,C io,de
W1S RDF and SPARQL are not widespread technologies, and the

related data model may not be optimised for the needs of a
dedicated application

C di ,ad

W2S Some requests might require too many resources (CPU, RAM). P,C ad

W3S Embedded queries in the consumer’s code add a dependency
between the application and the provider’s data schema.

C lc

O1S The SPARQL query language allows for a deep data exploration
and design of task tailored views.

C di

O2S The RDF output can be integrated with other RDF data with
little effort.

C di ,io

O3S The data provider maintains a standard infrastructure. P ad

T1S Data consumers may decide not to use the service because of a
too steep learning curve (both for querying or post-processing of
the output).

C ad

T2S The data provider cannot optimize the infrastructure in advance
(or contribute to optimize the query) and the system could crash.

P lc

T3S Changes in the data schema will break existing embedded queries. C lc

Web API

S1A Web APIs can be made simple and intuitive, the data models are
made ad-hoc for specific tasks and reused by a wide community
of developers.

C di ,io,de

S2A Resources of the underlying infrastructure are controlled. P lc

S3A Each resource (request) is fully decoupled from the underlying
database schema.

P,C lc

W1A The set of possible requests and data objects is preordered. C di

W2A The output data model cannot be customized to better fit the
use case.

C io

W3A Interfaces and documentation need to be setup and maintained. P de,ad
O1A Web developers can use the service straight forward to inte-

grate the output in the applications. Data models are reused by
different applications.

C di ,ad

O2A The infrastructure can be easily optimized. P lc

O3A Evolutions in the stored data model in many cases can be reflected
in the way the API interacts with the database wihout disrupting
existing applications.

P,C lc

T1A The supported APIs may not cover relevant use cases, and may
be hard to extend.

P,C di ,io,ad

T2A Data consumers cannot easily implement data integration strate-
gies.

C di

T3A The cost for maintaining infrastructure and documentation in-
creases with the amount of functionalities/data provided.

P ad

Table 1: SWOT Analysis results.

Services and Applications over Linked APIs and Data – SALAD2015 25

Copyright held by the paper authors

Description Enforce Limits

di Explorable data, to be extracted and reused as RDF
as well as non-standard formats.

S1S O1S O1S

O2S S1A O1A

W1S T1A

T2A

io Customizable and reusable data models, relevant for
both consumers and providers, and formally specified.

S2S S3S O2S

S1A

W2A T1A

lc Do not introduce dependencies between the systems,
both sintactically and semantically

S2A S3A O2A

O3A

S3S T2S T3S

de Described for both human and agents with small effort S3S S1A W3A

ad No additional technologies, specifications or for-
malisms that introduce learning effort for both data
consumers and providers. Provide opportunities for
better sustainability (monitoring, caching).

O3S O1A W1S W2S

T1S W3A

T1A T3A

Table 2: Requirements

From this analysis, we extract the requirements listed in Table 2. These
requirements highlight that the ideal solution would integrate the strengths of
both approaches by reducing and possibly eliminate the weaknesses.

4 A BASILar approach

BASIL is designed as middleware system that mediates between SPARQL end-
points and applications. The architecture of BASIL is provided in figure 1. Three
actors are involved: data providers, data consumers and Web API tailors. Data
providers focus on maintenance and evolution of their SPARQL endpoints and
data provided. Data consumers use tailored Web APIs as mean to access data.
BASIL introduces Web API tailors as a new actor of the process of publishing
and consuming data. Tailors model Web APIs for data consumers through API
specifications. An API specification defines: a data source, and the portion of
data to be returned by the API, and the input parameters. A SPARQL query is
the formalisms used to specify input parameters and output data of a single API.
Queries are stored in the BASIL middleware. Each time an API is consumed, its
query is executed on the related endpoint, then the query result is returned. In
addition, tailors can specify views for each Web API. A view is an alternative
presentation of an API results based on a template or script1. In a concrete
scenario, the Web API tailor can be a member of the data provider organisation
that builds APIs for data consumers, which are not SPARQL experienced, or
a data consumer who has SPARQL knowledge and prefers to benefit of the
advantages of Web APIs.

1 E.g., a view can be a HTML representation of the results defined by a XSLT or a
transformation of the API output by maintaining the data format. The advantage of
views is to adapt the output of a Web API to applications with special needs. For
instance, a view can be handy to develop snippets to be embedded in web pages
with no further processing. Our definition of view is inherited from the popular
Model-View-Controller (MVC) pattern.

Services and Applications over Linked APIs and Data – SALAD2015 26

Copyright held by the paper authors

BASIL API

Data Provider

consumes
data or views

Web
API

Data Consumer

Linked Data Cloud

tailors WEB API
(API specification)

Web API Tailor

.

.

.

Web
API maintains

SPARQL
endpoint

defines view
(template)

Web
API

Web
API

Fig. 1: The BASIL architecure

BASIL2 provides as a CRUD API over HTTP3. To create a new API, tailors
define a SPARQL query. For instance, listing 1.1 provides a real query modelled
by a maintainer of data.open.ac.uk to support a developer requesting to extract
a list of open educational resources related to a given qualification4. The example
query returns extracts, video, text, audio of current courses that are related to
qualifications provided by the Open University (e.g., Master degree in Computer
Science). Each qualification has an ID code (e.g., q18). In order to make the
qualification ID an input parameter of the tailored API, the variable ?_qid has
been defined. BASIL considers a mapping between API parameters and SPARQL
variables by adding a underscore in the begin of the variable name as convention.
Details on variable name conventions for parameters mappings are provided in
Table 3. The creation of the API is performed with a HTTP PUT request to
http://basil.kmi.open.ac.uk/basil?endpoint=http://data.open.ac.uk/sparql.

The query parameter endpoint defines the SPARQL endpoint and the request
body contains a SPARQL query that defines the view on the dataset. This
operation triggers the generation of a set of resources:

/basil/x68shwt3Qw ! base resource, redirects to /spec
/basil/x68shwt3Qw/api ! to retrieve the data
/basil/x68shwt3Qw/spec ! to get and update the stored query
/basil/x68shwt3Qw/explain ! to inspect the query after variables substitution
/basil/x68shwt3Qw/view ! to manage views
/basil/x68shwt3Qw/api-docs ! to access the Swagger description

In order to support data consumers, BASIL makes available the Swagger5 docu-
mentation of the API as subresource of the API specification. Swagger is chosen
because it provides interactive documentation which allow developers to test
the API before the integration in the application. A Web API can be consumed
2 The source code is available at https://github.com/the-open-university/basil
3 The documentation is available at http://basil.kmi.open.ac.uk/docs
4 The complete SPARQL query is available at https://gist.github.com/enridaga/
3b71423df42328ea2110

5 https://github.com/swagger-api/swagger-spec

Services and Applications over Linked APIs and Data – SALAD2015 27

Copyright held by the paper authors

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
...
SELECT DISTINCT
(?related as ?identifier) ?type (STR(?label) AS ?title) (STR(?location) AS ?link)
FROM <http://data.open.ac.uk/context/youtube>
FROM <http://data.open.ac.uk/context/audioboo>
FROM <http://data.open.ac.uk/context/podcast>
FROM <http://data.open.ac.uk/context/openlearn>
FROM <http://data.open.ac.uk/context/course>
FROM <http://data.open.ac.uk/context/qualification>
FROM <http://data.open.ac.uk/context/xcri>
WHERE {
BIND(IRI(CONCAT("http://data.open.ac.uk/qualification/",?_qid)) AS ?qualification)
{ # related video podcasts
?related podcast:relatesToQualification ?qualification .
?related a podcast:VideoPodcast .
?related rdfs:label ?label .
optional { ?related bazaar:download ?location }
BIND("VideoPodcast" as ?type) .

} UNION { # related audio podcasts ...
} UNION { # related audioboo posts ...
} UNION { # related openlearn units ...
} UNION { # related youtube videos
?related a schema:VideoObject .
?related yt:relatesToQualification ?qualification .
BIND("YoutubeVideo" AS ?type) .
?related media:download ?location .
?related rdfs:label ?label .

}
}

Listing 1.1: SPARQL query that specifies a tailored API

SPARQL variable name Description

?_<name> The variable specifies the API parameter <name> (manda-
tory, by default). The value is encorporated in the query
as plain literal.

?__<name> The parameter <name> is optional.
?_<name>_iri The variable is substituted with the parameter value as

a IRI.
?_<name>_<lang> The parameter value is considered as literal with the

language <lang> (e.g., en,it,es, etc.).
?_<name>_<xsd-datatype> The specification includes an XSD data type (e.g.,

integer,date, etc.) .
?_<name>_<prefix>_<type> The specification includes a custom data type:

<prefix>:<type> (e.g., rdf:HTML).

Table 3: SPARQL variable name convention for Web API parameters mapping

Services and Applications over Linked APIs and Data – SALAD2015 28

Copyright held by the paper authors

through a HTTP GET in different ways:

/basil/x68shwt3Qw/api?qid=q18 with content negotiation
/basil/x68shwt3Qw/api.json?qid=q18 or .xml, .rdf, .jsonld, .csv, .nt, .ttl, . . .
/basil/x68shwt3Qw/api.html-list?qid=q18 preprocess the output using the
html-list view script

When the BASIL API receives a tailored API invocation, the value of the
parameter qid substitutes the variable ?_qid in the specification query that will
be executed. Then, the result of the query is returned to the data consumer,
according to a data format specified through content negotiation. The supported
response formats are plain XML, JSON and CSV without namespaces, for data
consumers that are not familiar with Linked Data, and Semantic Web Standards
(such as, RDF+XML, N3 and Turtle), for SPARQL experts. For instance, listing
1.2 shows the JSON output of the query in the previous example (Listing
1.1) Moreover, users can customize the output with user-defined views using
template or scripting languages (Mustache6 and JavaScript7, in the reference
implementation).
{

"vars": ["identifier", "type", "label", "link"],
"items": [

{
"link": "https://audioboo.fm/boos/1695040",
"label": "Holism: the whole truth (2\/10)@en",
"type": "AudiobooPost",
"identifier": "http://data.open.ac.uk/audioboo/post/1695040"

},
{

"link": "https://audioboo.fm/boos/1695018",
...
]

}

Listing 1.2: Tailored API output as JSON

5 Evaluation of Benefits

BASIL would be extremely beneficial in a setting like data.open.ac.uk, even
more when deployed as a cloud service for the Web of Data. Through its approach,
BASIL fulfils the four requirements of a data service as follows.

Data integration is guaranteed by design, relying on SPARQL and RDF. Use
cases include vocabulary rewriting, inferences materialisation, data refactoring,
cleaning, and patching. In addition, the output can be customised to better fit
the use case of web developers, including ready made HTML snippets to be
directly embedded in web sites.
6 https://mustache.github.io/
7 https://developer.mozilla.org/en-US/docs/Web/JavaScript

Services and Applications over Linked APIs and Data – SALAD2015 29

Copyright held by the paper authors

Interoperability towards consumer applications is enforced by relying on
Web APIs, and towards publishing systems using the SPARQL specification.
Generated APIs can be shared and reused by different consumers, and API
specifications (queries) can be exploited by data providers to analyse usage and
perform optimisations on the underlying infrastructure.

BASIL guarantees loose coupling. Client applications do not depend di-
rectly on the remote data schema. Evolutions in the remote data service can be
reflected in API specifications without changing the consumer application. Simi-
larly, the requirements of the client application can evolve without requesting the
provider to enhance the publishing infrastructure. By decoupling the data require-
ment specification from the retrieval operation, the middleware can implement
sophisticated solutions to improve efficiency, response time, availability.

BASIL support the service description, by providing Swagger specifications
for each tailored API. The collection of API descriptions can be published as
a data catalogue. The semantics of the queries could be used to boost search
and discovery of APIs or implement explanation services. With BASIL, the
effort made on query design can be directly exploited by similar use cases. Data
providers can access a collection of queries, and contribute to optimise them.
Data providers could allocate appropriate computational resources for requests
coming from a trusted middleware, and reduce the ones offered to unknown
visitors. Organisations can invest in maintaining BASIL descriptions and reduce
the cost of the infrastructure by simply specifying queries instead of developing
Web APIs from scratch,

The BASIL approach brings the opportunity of boost a sustainable adoption

of open data published as RDF and SPARQL, without the need for additional
technologies, specifications or formalisms for both data consumers and providers,
as proposed by existing approaches.

6 Related Work

Encapsulated views and stored procedures are common in relational databases
[10] as methods to improve efficiency, enforce security, data integrity, and to
decouple the application logic from the database schema. This tradition inspired
our approach. However, distributed applications based on open data are dissimilar
under some key aspects, particularly the unpredictability of the consumer’s use
cases. This difference lead to many of the concerns addressed in this paper,
like the need for decoupling the data specification from the data consumer’s
application logic, but also from the data provider’s system.

The Linked Data Platform8 is a W3C recommendation to perform CRUD
operations on resources exposed as Linked Data. The specification enables con-
suming or modifying linked data resources through REST, by packaging a single
Web API serving RDF data. However, the way data is provided is full RDF, and
the specification does not give recommendation on how to customise the data

8 http://www.w3.org/TR/ldp/

Services and Applications over Linked APIs and Data – SALAD2015 30

Copyright held by the paper authors

model or distribute the different roles in the design flow. Approaches based on
storing SPARQL queries on the server side have been proposed by the Linked
Data API9 specification, which have been implemented by ELDA10 and Open
PHACTS [4]. A similar facility is provided by The Data Tank11. As well as
BASIL, both attempts hide the complexity of the SPARQL specification to the
data consumer through a Web API. Nevertheless, the two approaches introduce
additional formalisms for API specification, which highly increase the learning
curve of potential adopters. Less recent approaches include implementation of ad
hoc APIs to bridge the gap between Semantic Web URIs and well known codes.
One example is The RDF book mashup [1]. The relation between Web services
and Linked Data has been analysed in [9]. In this context, approaches to bridge
the gap between services and linked data have been proposed. In [12], the authors
propose a method to publish existing Web APIs as Linked Data. The same issue
has been addressed by introducing functional descriptions of hypermedia services
in [13]. Compared to [9, 12, 13], this paper addresses the opposite issue. BASIL
exploits the benefits of Web APIs on top of SPARQL endpoints as simple and
intuitive bridge between the Semantic Web and the Web developer communities.

7 Conclusion and Future Work

Web APIs and SPARQL endpoints are two complementary approaches to provide
open data on the Web. The advantages of the two methods have been combined
in BASIL, an approach for Building Apis SImpLy on top of SPARQL endpoints.
With our approach data consumers, that belong to the Web API community,
can access the Linked Data cloud by adopting well-known paradigms. On the
other side, data providers can benefit of queries stored in BASIL for a better
maintenance, optimisation and evolution of their own data services. BASIL
envisage a new role in the open data consumption life-cycle: the Web API tailor,
a SPARQL expert from the data provider organisation or third-party that fills
the gap between Linked Data and Web API worlds.

For the future, we will apply BASIL on data.open.ac.uk in order to perform
a user-based evaluation with developers to explore pros and cons of BASIL.
We want to provide meta level RDF descriptions of APIs, including aspects
like provenance (with PROV-O). The tailored APIs could be exposed also as a
data catalogue, for example with DCAT. BASIL can give us the opportunity to
study methods to improve availability, for example integrating an approach like
linked data fragments [14], and research on new methods for query federation by
composing APIs seamlessly using SPARQL from, graph or service clauses.

9 https://github.com/UKGovLD/linked-data-api
10 http://www.epimorphics.com/web/tools/elda.html
11 http://docs.thedatatank.com/4.3/spectql and http://docs.thedatatank.com/4.

3/sparql

Services and Applications over Linked APIs and Data – SALAD2015 31

Copyright held by the paper authors

References

1. Bizer, C., Cyganiak, R., Gauss, T.: The RDF Book Mashup: From Web APIs to a
Web of Data. In: Proc. of the Workshop on Scripting for the Semantic Web (2007)

2. Daga, E., d’Aquin, M., Adamou, A., Brown, S.: The Open University Linked Data
- data.open.ac.uk. Semantic Web Journal (2015), to appear.

3. Fielding, R.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California - Irvine (2000)

4. Groth, P., Loizou, A., Gray, A.J., Goble, C., Harland, L., Pettifer, S.: API-centric
Linked Data integration: The Open PHACTS Discovery Platform case study. Web
Semantics: Science, Services and Agents on the WWW 29(0), 12 – 18 (2014)

5. Heath, T., Bizer, C.: Linked data. Synthesis Lectures on the Semantic Web: Theory
and Technology 1(1), 1–136 (2011)

6. Hill, T., Westbrook, R.: SWOT analysis: it’s time for a product recall. Long range
planning 30(1), 46–52 (1997)

7. Huijboom, N., Van den Broek, T.: Open data: an international comparison of
strategies. European journal of ePractice 12(1), 4–16 (2011)

8. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: a Research Roadmap. International Journal of Cooperative Information
Systems 17(2), 223–255 (2008)

9. Pedrinaci, C., Domingue, J.: Toward the next wave of services: Linked Services for
the Web of data. Journal of Universal Computer Science 16(13), 1694–1719 (2010)

10. Ramakrishnan, R., Gehrke, J.: Database management systems. Osborne/McGraw-
Hill (2000)

11. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: The Semantic Web–ISWC 2014, pp.
245–260. Springer (2014)

12. Speiser, S., Harth, A.: Integrating linked data and services with linked data services.
In: The Semantic Web: Research and Applications, pp. 170–184. Springer (2011)

13. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Vallés, J.G., Van de Walle,
R.: Functional descriptions as the bridge between hypermedia apis and the semantic
web. In: Proc. of the WS-REST workshop. pp. 33–40. ACM (2012)

14. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de
Walle, R.: Web-scale querying through linked data fragments. In: Proceedings of
the 7th Workshop on Linked Data on the Web (2014)

Services and Applications over Linked APIs and Data – SALAD2015 32

Copyright held by the paper authors

