31,291 research outputs found

    Sub-structural Niching in Estimation of Distribution Algorithms

    Full text link
    We propose a sub-structural niching method that fully exploits the problem decomposition capability of linkage-learning methods such as the estimation of distribution algorithms and concentrate on maintaining diversity at the sub-structural level. The proposed method consists of three key components: (1) Problem decomposition and sub-structure identification, (2) sub-structure fitness estimation, and (3) sub-structural niche preservation. The sub-structural niching method is compared to restricted tournament selection (RTS)--a niching method used in hierarchical Bayesian optimization algorithm--with special emphasis on sustained preservation of multiple global solutions of a class of boundedly-difficult, additively-separable multimodal problems. The results show that sub-structural niching successfully maintains multiple global optima over large number of generations and does so with significantly less population than RTS. Additionally, the market share of each of the niche is much closer to the expected level in sub-structural niching when compared to RTS

    Exploiting linkage information and problem-specific knowledge in evolutionary distribution network expansion planning

    Get PDF
    This article tackles the Distribution Network Expansion Planning (DNEP) problem that has to be solved by distribution network operators to decide which, where, and/or when enhancements to electricity networks should be introd uced to satisfy the future power demands. Because of many real-world details involved, the structure of the problem is not exploited easily using mathematical programming techniques, for which reason we consider solving this problem with evolutionary algorithms (EAs). We compare three types of EAs for optimizing expansion plans : the classic genetic algorithm (GA), the estimation-of-distribution algorith m (EDA), and the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA). Not fully k nowing the structure of the problem, we study the effect of linkage learning through the use of three linkage models: univariate, marginal product, and linkage tree. We furthermore experiment with the impact of incorporating different levels of proble m-specific knowledge in the variation operators. Experiments show that the use of problem-specific variation operators is far more important for the classic GA to find high-quality solutions. In all EAs, the marginal product model and its linkage learning pro cedure have difficulty in capturing and exploiting the DNEP problem structure. GOMEA, especially when combined with the linkage tree structure, is found to have the most robust performance by far

    Learning and Searching Pseudo-Boolean Surrogate Functions from Small Samples

    Get PDF
    When searching for input configurations that optimise the output of a system, it can be useful to build a statistical model of the system being optimised. This is done in approaches such as surrogate model-based optimisation, estimation of distribution algorithms and linkage learning algorithms. This paper presents a method for modelling pseudo-Boolean fitness functions using Walsh bases and an algorithm designed to discover the non-zero coefficients while attempting to minimise the number of fitness function evaluations required. The resulting models reveal linkage structure that can be used to guide a search of the model efficiently. It presents experimental results solving benchmark problems in fewer fitness function evaluations than those reported in the literature for other search methods such as EDAs and linkage learners
    • …
    corecore