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Abstract

When searching for input configurations that optimise the output of a system, it can be useful
to build a statistical model of the system being optimised. This is done in approaches such as
surrogate model-based optimisation, estimation of distribution algorithms and linkage learning
algorithms. This paper presents a method for modelling pseudo-Boolean fitness functions using
Walsh bases and an algorithm designed to discover the non-zero coefficients while attempting
to minimise the number of fitness function evaluations required. The resulting models reveal
linkage structure that can be used to guide a search of the model efficiently. It presents ex-
perimental results solving benchmark problems in fewer fitness function evaluations than those
reported in the literature for other search methods such as EDAs and linkage learners.
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1 Introduction

Black box optimisation is the challenge of choosing a solution to a given problem based purely
on the relative scores of different candidate solutions. Search methods involve evaluating can-
didate solutions, either one at a time or in groups, and using the results of those evaluations to
attempt to generate new, better solutions by a mixture of exploiting what can be learned from
good solutions that have gone before and exploring new possible solutions. Such processes are
known as metaheuristics and include local search algorithms like iterated local search (Lourengo
et al., 2003) and simulated annealing (S. Kirkpatrick, 1983); as well as population based meth-
ods such as genetic algorithms (Goldberg, 1989b) and particle swarm optimisation (Kennedy,
2001). The function that takes a candidate solution as input and produces a score (or cost) as
output is known as the fitness function and a common goal when performing such searches is to
minimise the number of fitness function evaluations required to find a suitable solution.

The fitness function is generally a computer simulation of the real world process to be
optimised. In cases where this simulation takes a long time to run or is expensive to evaluate for
other reasons, it is particularly important to be able to find a good solution in as few evaluations
as possible. One approach to minimising the number of times an expensive fitness function
needs to be evaluated during a search involves sampling (input, out put) pairs from the function
and using the resulting data set to build a predictive model. Some functions can be modelled
in fewer evaluations than are needed to perform a search. When the resulting model is faster to
evaluate than the full simulation, a longer search can take place in a reduced time span.

Speeding up the evaluation of expensive fitness functions is the most common reason for
using a fitness function model, but it is not the only one. Once the model is built, it still needs
to be searched and some models are easier to search than others. A model’s representation can

(©201X by the Massachusetts Institute of Technology Evolutionary Computation X(X): XXX-XXX


https://core.ac.uk/display/223234282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1162/evco_a_00257

K. Swingler

expose facts about the fitness function that can be exploited during a search. The most useful
of these are facts about the way in which input variables interact in their effect on the function
output. This is known as linkage and knowing the linkage structure of a function can provide
valuable insights for metaheuristic search algorithms. For example, it can guide crossover in
a genetic algorithm to avoid splitting blocks of values that work together. For additively de-
composable problems, it can reveal subsets of variables that can be optimised independently
from the others. Local search algorithms rely on evaluations of the fitness function within a
small neighbourhood of the current search point and knowing the linkage structure can allow
incremental partial evaluations to be made very efficiently.

Much of the work on surrogate models has concerned continuous optimisation problems.
This paper will focus on combinatorial optimisation problems, which can be encoded as pseudo-
Boolean inputs to a fitness function. The main contribution of the paper is to demonstrate an
approach that explicitly aims to minimise the number of fitness function evaluations required to
build a surrogate model. This is of particular importance when fitness evaluations are expensive.
Section 2 describes some existing approaches to fitness function modelling and motivates the
current work. Section 3 describes Mixed Order Hyper Networks and the qualities they have that
make them suitable as surrogate models. Some experiments are documented in Section 4 and
Section 5 suggests further work that needs to be done.

2 Existing Work

Approaches to improving optimisation using statistical modelling can be roughly split into three
different types. Surrogate model-based optimisation (SMBO) attempts to reproduce the fit-
ness function to speed up the search as described above. The models may fully replace the
original fitness function or be used in conjunction with it to guide the search. Estimation of
Distribution Algorithms (EDAs) build models of only the more promising areas of the search
space and are used in an evolutionary paradigm where only the better examples from each gener-
ation are used to build the model, which is then sampled to produce further candidate solutions.
Linkage learning algorithms (LLAs) use statistical learning of the relationships among input
variables as a way to inform other search techniques such as genetic algorithms. This may in-
volve building statistical models or make use of a linkage analysis such as that provided by
performing a Walsh decomposition of the fitness function.

2.1 Surrogate Model-Based Optimisation

Surrogate model-based optimisation (SMBO) attempts to replicate a fitness function in the form
of a predictive model as part of a search process. Models are built by sampling and evaluating
candidate solutions to generate a training data set. Once built, the model must be searched to
find an optimal input pattern. Learning the model has been addressed using a variety of methods.
Neural networks are popular for surrogate models (Holena et al., 2010) and have the advantage
of allowing partial derivatives of the output to be calculated at each input variable, which is
very useful for gradient based searches. The representation of multilayer perceptrons makes it
difficult to explicitly fix or infer linkage structure, however, so that information is not available
to guide linkage based search. Radial basis functions have also been proposed as surrogate
models (Gutmann, 2001), as have Gaussian processes (Frean and Boyle, 2008), and the closely
related Kriging technique (Willmes et al., 2003).

Fitness functions with high dimensional inputs have been addressed using dimensionality
reduction techniques such as proper orthogonal decomposition (also known as principal compo-
nents analysis). This process transforms the training data into a new set of orthogonal variables
ordered by the amount of variance they contain. Lower variance variables can be discarded to
simplify a model and attempt to solve the optimisation problem in a new, smaller search space.

2 Evolutionary Computation  Volume x, Number x



Learning and Searching pseudo-Boolean Functions

Such methods are popular in the optimisation of aerodynamic design (Iuliano and Quagliarella,
2013).

There has been little work published on pseudo-Boolean fitness function models, possibly
because many of the benchmark problems are not expensive to evaluate. However, other benefits
of modelling such as linkage discovery and fast partial function evaluation mean that modelling
pseudo-Boolean fitness functions is still worthwhile. Recent examples include the use of radial
basis functions to solve combinatorial problems (Kim et al., 2014) and a low order Walsh basis
to model pseudo-Boolean problems (Verel et al., 2018), as described in Section 2.3. Reviews of
the use of surrogate fitness models can be found in (Jin, 2005) and (Jin, 2011).

2.2 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) use a statistical model of the distribution of
promising regions of search space, combining model bias with sample bias in an iterative process
that alternates between model building and the use of the model to generate a new population
of candidate solutions. In some cases, the models can be simpler than would be needed by a
surrogate model as only a subspace of the problem is modelled at each generation. The cost of
this is that more samples from the original fitness function are required to allow the selection
of better solutions to take place. For a comprehensive introduction to EDAs, see (Pelikan et al.,
2015).

Many different approaches to modelling the distribution in an EDA have been proposed,
covering the full range of levels of model bias. In contrast to the literature on SMBO, much
of the EDA literature addresses pseudo-Boolean problems. Many of the EDA models that have
been proposed use some form of graphical model to represent the probability distribution of
promising candidate solutions. The simplest were first order models like the Univariate Marginal
Distribution Algorithm (UMDA) (Miihlenbein, 1997) and Population Based Incremental Learn-
ing (PBIL) (Baluja and Caruana, 1995). Algorithms like the Bivariate Marginal Distribution
Algorithm (BMDA) (Pelikan and Miihlenbein, 1999) have an explicit level of model bias, mod-
elling only bivariate interactions, for example. Markov Random Fields can be given any level of
model bias and have been used in EDAs such as DEUM (Shakya et al., 2009) and MARLEDA
(Alden and Miikkulainen, 2013). Bayesian networks have also been used to model distributions
in EDAs, for example the Bayesian Optimisation Algorithm (BOA) (Pelikan et al., 2000) and
a hierarchical version (hBOA) (Pelikan, 2005) have been proposed. Both deep Boltzmann ma-
chines (Probst and Rothlauf, 2015) and restricted Boltzmann machines (Probst et al., 2014) have
also been used as EDAs.

2.3 Linkage Learning

If the inputs to a fitness function do not interact in their effect on the output score, optimisation
simply involves finding the best value for each variable independently. For all interesting prob-
lems, however, there are interactions among the inputs and their nature determines the difficulty
with which an optimal solution may be found. Consequently, much effort has been expended
in studying such interactions, which are often referred to as the linkage problem. It has been
widely studied in terms of the proximity of genes in a chromosome in genetic algorithms (Harik
and Goldberg, 1997) and many algorithms have been proposed that attempt to direct crossover
in GAs based on linkage learning. For example, the Linkage Tree Genetic Algorithm (LTGA)
(Thierens, 2010) mixes model building and linkage discovery by building a linkage tree that
is used to generate new solutions in which groups of linked variables are undisturbed from the
previous generation. More recently, the term linkage has come to refer to the study of the inter-
actions among input variables across all metaheuristic approaches (Chen, 2008). Methods for
detecting linkage among variables include simple pairwise tests such as probing (Heckendorn
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and Wright, 2004) or entropy based tests used in EDAs such as DEUM (Shakya et al., 2012)
and the ECGA (Harik et al., 2006).

The problem with testing pairs of variables for linkage is that it ignores higher order inter-
actions. It is not generally possible to infer anything about higher order interactions from the
presence or absence of pairwise interactions and evaluating groups of more than two variables
incurs an exponentially increasing computational cost. (Coffin and Smith, 2008), for example
point out that most EDA searches are greedy and start from a search for pairwise interactions that
can fail to find higher order interactions that are not signalled by similar ones at lower orders.
They suggest that researchers ‘bite the bullet’ and search for higher order linkages or employ a
hybrid method involving both an EDA and linkage detection such as D’ (Tsuji et al., 2004).

2.4 Walsh Decomposition

Another useful way of investigating linkage is to use a Walsh decomposition of the fitness func-
tion. Walsh functions (Walsh, 1923) form a basis for functions in f: {—1,1}” — R and have
been widely used as a tool for assessing linkage, see (Goldberg, 1989a) and (Davidor, 1990)
for some early work. A Walsh decomposition consists of a weighted sum of Walsh functions,
which each acts on a unique subset of the input variables. Each Walsh function, y; selects an
associated subset of inputs and calculates the parity across those variables in the current input
pattern being evaluated. This parity, in {—1, 1} is multiplied by the associated Walsh coefficient,
®; and added to the sum. Any function with ®; = 0 has no effect on the sum and so indicates
that the variables it selects do not interact. Discovering which Walsh functions have a non-zero
coefficient is equivalent to detecting all the linkages in a fitness function. This is very useful,
but a full decomposition requires every possible input pattern to be evaluated, which makes it
interesting for analysing problems of few variables, but impractical as an optimisation tool in
general so a method for discovering the zero valued Walsh coefficients in fewer fitness function
evaluations is required. The Walsh decomposition of a function is represented as the sum:

21
fX) =Y oy;X) (1)
j=0
where
Wi(X) = BX A jpin) @)

where @ (X) is a parity count function that returns 1 if the number of values set to 1 in X is even
and -1 otherwise and jj;, is the binary vector representation of the index j. The X A j;, uses the
binary vector representation of j to select the subset of variables in X operated on by y;(X).

Specific fitness functions have been analysed using a Walsh decomposition, for example
(Heckendorn and Whitley, 1997) present a Walsh based analysis of NK landscapes. Walsh func-
tions have recently been used as a basis for surrogate fitness functions (Verel et al., 2018) but
without an attempt to address the question of finding the correct model bias, other than by using
existing knowledge of the fitness function’s linkage order. The number of coefficients to be es-
timated grows exponentially with linkage order and the required number of data samples grows
linearly with the number of coefficients to be estimated so stricter control of that number is im-
portant when modelling expensive functions. (Verel et al., 2018) limit the number of coefficients
they estimate by only modelling up to a low linkage order. The number of coefficients at order
k in a model of p variables is (‘;), so the number of fitness function evaluations required to build
models with larger k grows quickly.
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2.5 Motivation

A Walsh decomposition of a pseudo-Boolean function will reveal its linkage structure but for
every unique coefficient you wish to calculate, you need a single unique fitness function evalua-
tion. Many of the coefficients evaluate to zero, but data are still required for the decomposition,
so discovering a sparse model over p variables still requires (Z) fitness evaluations for each link-
age order k included in the model. For a full decomposition, these sum to 2”. If the final sparse
model has only w coefficients, then that model could be built from only w fitness evaluations if
only the correct structure were known. The correct structure is not generally known (the point
of doing the decomposition is to discover it!) so the challenge is to discover the correct structure
from a reduced sample of fitness evaluations.

This paper presents Mixed Order Hyper Networks (MOHNS), which use a Walsh-like de-
composition, a hypergraph representation and linear parameter estimation to model arbitrary
fitness functions. An algorithm is presented that needs a limited number, # fitness function eval-
uations to search for non-zero coefficients over m > n possible linkage combinations and that is
often observed in experiments to be successful. For example, 5,000 fitness evaluations are used
in one experiment to find the correct Walsh coefficients from among over 2 million possibilities.
Searching the MOHN, once it is built, is made more efficient than searching a black box fitness
function (regardless of how expensive that function is) by the linkage structure it reveals. Ex-
amples of local search and variable neighbourhood search that exploit the MOHN structure are
presented.

3 Mixed Order Hyper Networks

Binary Mixed Order Hyper Networks (MOHNS) represent any function in f : {—1,1}? —
R as a weighted sum of products of (possibly overlapping) subsets of the input vari-
ables.  For example, any function with three inputs, f(X;,X,,X3) and a continu-
ous valued output can be represented as a weighted sum of products from the set
{c,(X1),(X2),(X3), (X1 X2), (X1X3), (X2X3), (X1 X2X3) } where the ¢ represents an offset constant.
More generally, any function f(X) with X € {1,—1}? can be represented by a set of weights,
W where each weight, W; consists of a value, ®; € R and a set of indices of the connected
variables, I;. The pseudo-Boolean function is represented as

fxX) =Y o, [Ix 3)
J icl Jj
Equation 3 is linear in the parameters, ®; and represents a multivariate power series. A full
description of the structure, training and use of MOHNSs can be found in (Swingler, 2016a).

3.1 Learning the MOHN Coefficients

This section describes methods for estimating the coefficients of a fixed structure MOHN, in
which the linkage structure defined in the weight index set I does not change during learning.
The coefficients of a fixed structure MOHN can be learned from a sample of fitness function
evaluations. With X = X;...X, representing the p inputs to the fitness function, let X be the
n X p matrix that represents n candidate solutions and let Y = y; ...y, be the corresponding n
fitness scores. The design matrix, Z used to estimate the coefficients is built by expanding each
row in X by the products defined in I. A single row, Z = Z ...Z; is calculated with

zZi=1]x )

el j
The full design matrix, Z has n rows and j columns. To include a constant in the model,
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a first column, Zj in the design matrix is used with all of its values equal to one. The ordinary
least squares (OLS) coefficients can be estimated using

o= (2"2)"'7"Y (5)

or, for a more numerically stable estimate, use the Moore-Penrose pseudo-inverse:

0=7"Y ©6)

where ® is the resulting vector of coefficients, one for each column in Z. Alternatively, Z can
be used as the inputs and Y as the target outputs to a gradient descent approach to estimation.
Equation 3 is linear in its parameters, which means that the least squares cost function is convex
and has a single global minimum.

Minimising the least squares cost gives an unbiased estimate of the MOHN coefficients.
Regularisation can be introduced using the lasso (Tibshirani, 1996), which adds a term to the cost
function designed to reduce the L; norm of the weights vector, ®. This shrinks the coefficient
values and forces some of them to zero. Lasso is used in the algorithm for discovering the
correct MOHN structure, described below. (Swingler, 2015) gives a full description of the
MOHN learning rules.

3.1.1 MOHN Structure Discovery Algorithm

When the correct linkage structure is unknown, it must be discovered as part of the function
learning process. Let the index set corresponding to the correct structure for a given fitness
function be I* and let I* C I mean that I contains all the weights in I* plus some additional
spurious connections. This section discusses a method for finding the correct linkage structure,
I*, given samples from a fitness function. In the trivial case, we can choose a connection set
I that is big enough to guarantee that I* C I and then build an unbiased model using least
squares as described above. When the fitness samples are noise free, an unbiased estimate of the
coefficients on the weights connected by I can be made from a sample of size n = |I|. That is
to say, one noise free sample per coefficient is required. In such cases, the spurious coefficients
will all have estimated coefficients of zero. Removing those connections leaves the remaining
correct structure, I*.

The problem is that evaluating the fitness function [I| times to train the model is expensive.
Training a smaller model reduces the required number of fitness function evaluations but also
reduces the chance of the model containing all the weights in I*. The solution is to iteratively
add and remove coefficients from a model, retraining at each iteration with the same sample of
data. This moves the expense away from evaluating the fitness model and onto building multiple
models.

(Swingler, 2016b) presents a method for discovering the right structure (i.e., which weights
to include) for a MOHN from a set of training examples. In the MOHN Structure Discovery
Algorithm (MSDA), weights are added and removed in an iterative process designed to control
the number of parameters in the model at any one time, which controls the number of data
samples required. Weights are added by selecting from a distribution over the weight orders.
The choice of this distribution is guided by assumptions about the linkage order of the function
being modelled and the number of inputs to the model. For small models where no preference
for linkage order exists, a discrete uniform distribution could be used but in all of the work
reported here, a discrete Laplace distribution was used with a mode set to be the lowest order at
which there are still untried weights. The Laplace distribution is defined as

1 c—x|
fulx) = ﬁef% @)
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where A controls the width of the distribution and ¢ defines the mode. The mode, ¢ increases
as the search progresses, so that the more time there is available to perform the search, the
higher the order of weights that are considered becomes. Domain knowledge, if available, can
be used to bias this distribution further. The distribution is also updated in response to the orders
of the weights that are kept or discarded from the model at each iteration. Orders at which
previously added weights have been kept in the model are more likely to be sampled than those
from which weights have been deleted. This attempts to exploit regularities in the linkage order
of the function being learned.

Rather than using least squares to estimate the coefficients during structure discovery, lasso
is used. In a model that contains some of the correct connections and some spurious connec-
tions, but which also lacks some required connections, the lasso regularisation can be used to
force the coefficients on the spurious connections to zero. These weights are then removed and
replaced with new ones selected as described above. Once removed, the same weight cannot
be added again for a number of iterations. This avoids the same weight being added and re-
moved repeatedly. Once the new weights have been added, the coefficients are re-estimated.
The coordinate descent search used to estimate the coefficients with the lasso cost function can
start with remaining coefficients already set to their current values, which speeds up the error
minimisation process.

Algorithm 1 presents a simplified version of the MOHN Structure Discovery Algorithm.
For a full description, see (Swingler, 2016b).

Algorithm 1 MOHN Structure Discovery Algorithm

Let W < 0 be the set of weights in the current model

Let H be the full set of possible weights

Initialise a discrete distribution, P(I) forI € H

repeat
Sample some weights, C from H, each with probability P(I) without replacement
AddCto W
Remove C from H
Estimate the weight values for the resulting network, W using lasso
Remove the weights in W with zero valued coefficients
Update the weights distribution, P(I) towards those orders that are useful

until Stopping criteria are met

The structure discovery algorithm has a number of hyperparameters, which are described
here. The size, n of the sample of fitness function evaluations effects the speed with which the
algorithm can discover the correct structure. Larger samples lead to faster learning times as they
allow more weights to be included at each model iteration. The trade-off is with the cost of each
evaluation. The choice of cost functions for learning the weights is restricted here to squared
error or lasso, though others could be used. Lasso is preferred as it automatically sets some
weight values to zero and simplifies the decision of which weights to remove. The number of
weights maintained in the network should be kept so that it is always less than the number of
data samples being learned so the number added at each iteration depends on how many have
been removed.

3.2 Interpreting the MOHN Structure

The linkage structure of a MOHN function is explicitly represented in the edges of the hyper-
graph. Any input with no weight attached to it has no effect on the fitness score and can be
removed from the model. Functions that produce a disconnected graph (one in which there are
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some variables that cannot be reached by a path from some others) are additively decomposable
into subfunctions defined by the subgraphs. Each subgraph can be optimised separately and the
global optimum of the whole function is found at the point where each subgraph is at its global
optimum.

A MOHN can also be considered as a set of weighted constraints among subsets of vari-
ables. W; defines a constraint with strength ®; across the variables in the index set I; such
that the sign of ®; dictates whether the product of the values across the variables indexed by I;
should be positive or negative and the magnitude of ®; dictates the relative importance of the
constraint. Maximising the output of the MOHN function is equivalent to maximising the sum
of the satisfied weight values. This observation is the basis of the weight satisfaction search
described in Section 3.5.

Partial function evaluations are possible from any point in input space. The effect on the
output of moving from input point x to a new point, x¥’ where x’ differs from x in only a subset
of variables, z can be evaluated by considering only the weights and other variables that are
connected to the members of z. Consider a function with p inputs and a simple hill climb algo-
rithm in which a single variable is flipped (undergoing a change of sign) if the result improves
the fitness score. Let us define the sparsity of a MOHN, s as the average number of weights
connected to a variable. A full evaluation of the MOHN requires p variables to be considered,
but an incremental update can be done by considering only s variables, a reduction to s/p. In
large problems (say, p > 1000) and sparse networks (s < 10), this represents a significant gain
in efficiency.

Evaluations of the average output from the modelled function given a partial input are also
simple. Given an input in {—1,1,0}” where 0 indicates a missing or unknown value, a MOHN
will output the average value across all input patterns that are made by keeping the {—1,1}
values fixed and replacing the 0 values with every possible combination across those values. In
the field of metaheuristics, such subspaces of the input are known as schemata. This averaging
is done in a single evaluation by the MOHN and is a consequence of the way it represents the
function as a sum of schema averages.

3.3 MOHN:Ss as Universal Function Models

Model bias in a MOHN is controlled by the choice of which weights to include or exclude. A
MOHN with only first order weights and a constant is equivalent to a multiple regression model,
taking the form

. p
fx) =Y X (®)
i=0

which is the simplest form the model can take without removing variables. Bias can be reduced
by introducing higher order weights. A fully connected MOHN has 27 weights, and forms
a basis for all functions in f : {—1,1}” — R. Each weight, ®; contributes to a single basis
function, ;[ J;ex, Xi. The MOHN basis is equivalent to the Walsh basis with a change of sign in
the parameters on the odd ordered weights. See (Swingler, 2015) for a proof of this equivalence.

3.4 MOHN Search Heuristics

Once a fitness function has been modelled, the model must be searched to find the optimal input
configuration. Two possible types of efficiency can be gained from a knowledge of the network
structure. Partial evaluations allow local searches to be carried out more quickly as each step
does not require a full evaluation of the function and other search techniques may be guided by
the linkage patterns the network reveals. This section proposes three methods for searching a
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MOHN. The first two make use of the partial evaluation efficiency and the third demonstrates a
variable neighbourhood search guided by the MOHN structure.

3.4.1 Local Search

Let us first consider how local search methods can be efficiently implemented in a MOHN. A
simple hill climb can be performed by evaluating the impact on the function output of flipping
a single input variable at a time. Consider a variable, X; selected uniformly at random during
a local search from a current location, x. Changing the sign of X; is a candidate local search
step to a new point, x’, which should be taken if f(x) < f(x'). A partial evaluation of the nodes
connected to X; in the MOHN hypergraph for X; = 1 and X; = —1 will reveal which of the two
values produces the higher score. Alternatively, a high order version of the node update rule
used in a Hopfield neural network (Hopfield, 1982) will determine the maximising value for X;
given the values on the nodes to which it is connected. First we calculate the activation on Xj,
called a;:

a; = Z ((,Oj H Xk> )
j:iEIj kGIj\i

where j:i € I; makes j iterate over each weight connected to X;, ®; is the weight value asso-

ciated with W; and k € I; \ i iterates over the indices of every node connected to W;, except X;

itself. A variable’s value is then calculated using the threshold function in Equation 10.

X, = 1 1fai>F) (10)
—1 otherwise

Setting the values of X to an initial pattern and then repeatedly applying equations 9 and
10 to nodes selected uniformly at random without replacement causes the MOHN to move to an
attractor state, from which those equations cause no further change to the node values. This point
represents a local minimum in the energy function and a local optimum in the MOHN function.
Each calculation in Equation 9 uses only those weights connected to the candidate variable,
X; and so introduces efficiency gains over evaluating the full fitness function proportionate to
the sparsity of the variable’s connectivity. Repeating this process from randomly selected start
points represents a random restart hill climb (RRHC).

For functions with many local optima, RRHC is an inefficient search method. An improve-
ment can be made by setting values with a probability related to the improvement any change
will make using simulated annealing (SA) (S. Kirkpatrick, 1983). SA allows local steps to a
new point, with a score of y' that is lower than the current point’s score, y with a probability
dependent on the difference between y’ and y and a temperature control, T, which makes large
steps more likely earlier in the search. The probability of making such a move is defined as

1
I+exp((y) —y)/T)

and as with a local search, the computational cost of calculating the difference y' —y depends on
the number of weights and variables connected to the variable under consideration, not the size
of the entire function as we can replace y' —y with the activation a; from Equation 9.

P(y,y,T) =

)

3.5 Weight Satisfaction Search

The limitation of a local search that changes a single variable at each step is that it can fall into
local minima in the MOHN energy space (equivalent to local optima in the fitness function).
Random restart hill climbing attempts to solve this problem by repeatedly climbing from random
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start points. In functions where the basin of attraction of the global optimum is small, the process
is reduced to a random search for a starting point in that basin of attraction, which can be very
inefficient. Local minima in a single variable neighbourhood hill climb occur when two or
more variables interact in their effect on the output. Knowing which variables interact allows an
algorithm to become less local in its search by enumerating all the combinations over a small set
of connected variables. This approach is known as variable neighbourhood search (Mladenovié
and Hansen, 1997) and in a MOHN, the membership of each search neighbourhood can be
defined by the connectivity pattern of the network. This is particularly useful in functions that are
additively decomposable because the independent subgraphs revealed by the MOHN structure
can be optimised independently.

High order weights encode weak constraints among several input variables, offering an
insight into candidate moves in a variable sized neighbourhood. Any variables that are not con-
nected (i.e., there is no path between them in the hypergraph) may be optimised separately and
those that are connected will often form smaller subsets of variables over which it may be possi-
ble to find optimal values. Algorithm 2 describes a variable neighbourhood search algorithm that
defines the current neighbourhood as all the points that can be reached by changing the variables
connected to a single weight. Weights are chosen uniformly randomly without replacement until
all have been tried once in an iteration.

Algorithm 2 High Order Weight Satisfaction Search

X; =rand{—1,1}Vi > Choose a random starting point
repeat
ch = FALSE > Keep track of whether or not a change has been made
visited = 0 > Keep track of which weights have been visited
repeat
Wi =rand(W; : j ¢ visited) > Pick a random unvisited weight
temp ={X;:ie€1l;} > Make a note of its connected values for later comparison
{Xi:ie€I;} =argmax(f(X)) > Find the pattern across the connected variables that
X;:i€l;

maximises network function output
if X; : i € I; # temp then

ch=TRUE
end if > If a change was made to any variable’s value, note the fact
visited = visited UW; > Add the weight to the visited set
until ||visited| = |W| > Loop until all weights have been visited
until ch = FALSE > Loop if any variable has changed

The number of patterns tried when finding the optimum for a given weight is 2° where o
is the order of the weight, so networks with high order weights can produce slow searches. The
search can lead to local optima so may need to be repeated. The simplest approach that we
propose is a random restart weight satisfaction search, (RRWSS), which repeats Algorithm 2
from random starting points.

4 Experimental Results

This section compares the use of a MOHN as a surrogate fitness function to several approaches
and benchmark fitness functions from the literature. In each case, a full MOHN model is built
and then searched until a solution is found. Each benchmark fitness function has a known global
optimum with a known score and the task in all cases is for the algorithm to discover that solution
in the fewest evaluations of the fitness function. For comparison, the number of fitness function
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evaluations required by other methods are reported directly from the literature.

For each experiment, the hyperparameters for the structure discovery algorithm were set as
follows. The number of weights added at each training iteration was a third of the number of
training examples, with a limit to prevent the number of parameters exceeding the number of
samples. Lasso was used to estimate the coefficients, which were removed if their value went to
zero. The initial probability distribution from which weight orders were picked was a discrete
Laplace with a mode of 1 and A = 1, which causes the probability of weights at orders over 5
to be almost zero (but does not rule out the distribution mode moving up past that point). No
hard limit on the weight orders that the algorithm might consider was set. The weight picking
distribution simply favours those with lower order. Discarded weights are stored in a list that
prevents them from being tried again. The list is emptied every 15 training iterations. The
algorithm stops when the error on an independent validation sample from the fitness function
reaches zero. In each experiment, the number of fitness evaluations was fixed and no additional
samples were made during the learning process. Trials were repeated to verify that the algorithm
completed successfully every time, so the reported number of fitness evaluations is a fixed value,
not an average over trials.

4.1 Comparing MOHNs and BMDA

The Bivariate Marginal Distribution Algorithm (BMDA) (Pelikan and Miihlenbein, 1999) is
a second order EDA that models conditional probabilities with a pairwise variable interaction
graph. Pelikan and Miihlenbein present results that measure the number of fitness function
evaluations required to find a global optimum for three different fitness functions using BMDA.
This section considers one of them: the quadratic fitness function:

faX) =Y f(Xoi1,X0) (12)
i=1
where f>(u,v) is

Fo(u,v) =0.9—0.9(u+v) +1.9uv (13)

where u,v € {0, 1}. For the sake of comparison, this domain is used in the following experiments
and inputs of -1 to the MOHN are simply replaced with a value of 0 before evaluation with
Equation 13. Pelikan and Miihlenbein pair variables from randomised locations, so there is no
prior knowledge about which input interacts with which. No matter how the variables are paired,
there are always p/2 pairs in a function of p variables.

(Pelikan and Miihlenbein, 1999) report results for a genetic algorithm (GA) and the BMDA
algorithm. Functions of between 20 and 120 variables were tested and the number of function
evaluations required by BMDA for a model of 120 inputs was around 16,000 and the average
number required by the GA was 140,000.

4.1.1 Experiment 1: Fixed Model Structure

If we assume that we know the level of model bias required, in other words, we know that the
function has second order interactions only, but that we do not know which variables interact, we
can use the OLS learning rule to discover the interacting pairs from a fixed structure second order
MOHN. There are p(p — 1) /2 possible second order interactions among p variables, so we know
that a sample of p(p— 1)/2 fitness function evaluations is required to learn the function perfectly.
Any weights that have a coefficient of zero after learning can be discarded, leaving only the p/2
non-zero weights that correspond to the pairs in the fitness function. As the function is additively
decomposable (variable pairs do not overlap), a weight satisfaction search can trivially find the
optimum solution by independently optimising the variable pairs defined by the weights.
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This simple solution makes the same assumption about model bias that BMDA makes
(all interactions are of second order only) and can provably solve the 120 input problem in
120(120 — 1) /2 = 7140 fitness evaluations, which is less than half the number required by the
BMDA. If the second order assumption is relaxed, the problem becomes more difficult because
interactions of any order must be considered and there are 27 of those in a model with p inputs.
This also provides an opportunity to reduce the number of samples required as the structure
discovery algorithm can be used. The next experiment addresses this.

4.1.2 Experiment 2: Structure Discovery

The MOHN structure discover algorithm was run on each model from size 20 to 120 in steps
of 10. A sample size of p(p — 1)/4 was used for each model of size p, making a rather arbi-
trary halving of the number of samples used compared to training a full second order model.
No maximum weight order was set, however, leaving the MSDA to discover for itself that all
connections were of second order.

The MOHN Structure Discovery Algorithm was able to find the correct MOHN structure
and weights in every trial from size 20 to 120, achieving an error of zero and finding the optimal
input pattern. A summary of the results achieved in (Pelikan and Miihlenbein, 1999), a fully
connected second order MOHN and MSDA are shown in Figure 1. The number of fitness
evaluations required to optimise the function are plotted against the number of variables in the
function input. In the original paper, Pelikan and Miihlenbein also showed the results for a
genetic algorithm but they were so much higher than the figures presented here they have been
excluded from the chart. The GA required 140,000 fitness evaluations for the 120 variable
version of the function.

Comparing MOHN and BMDA

I I I T I I
15000 | BMDA
2 - - - Static MOHN
2 MSDA
2 10,000 |-
<
>
@ P
g 5,000/ e
£
£
O |
| | | |

| |
20 40 60 80 100 120
Number of Inputs

Figure 1: Number of fitness function evaluations required to optimise the quadratic fitness func-
tion using BMDA and a MOHN. The top line shows the figures for BMDA taken from (Pelikan
and Miihlenbein, 1999), and the other two are different approaches to training a MOHN. Note
that the MSDA requires fewer evaluations, even though it is searching a much larger space than
the other two, fixed, methods.

4.2 Comparing MOHNs and Markov Random Field EDAs

A Markov Random Field (MRF) can be used to model any distribution over a set of binary
random variables. The model can then be sampled using Gibbs sampling. This has led several
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researchers to investigate the use of MRFs for modelling distributions of promising solutions in
EDAs. This section compares two MRF based EDAs from the literature with a MOHN fitness
model given the task of optimising different Ising models. The EDAs are Density Estimation us-
ing Markov Random Fields (DEUM) (Shakya et al., 2009) and Markovian Learning Estimation
of Distribution Algorithm (MARLEDA) (Alden and Miikkulainen, 2013).

4.2.1 Ising Spin Glass Learning

An Ising spin glass model defines an energy function over a lattice of neighbouring variables. It
calculates a weighted sum of the products of the values on each set of variables in a neighbour-
hood.

H(X)=-Y Ji;XX; (14)
(i.j)
where J; ; represents the weight of the connection between variables X; and X;. The notation
(i,J) defines X; and X; as neighbours. In a 2D Ising model, each variable has four neighbours
(above, below, left and right) and in a 3D lattice there are six neighbours. In all cases, the field
is toroidal so that there are no edge variables with fewer neighbours.

The Ising model has been a popular choice of fitness function in the EDA literature as
finding the input values that maximise the output of Equation 14 is a challenging problem.
DEUM (Shakya et al., 2009), was tested on 2D Ising models of 100, 200 and 400 variables.
MARLEDA (Alden and Miikkulainen, 2013) was tested on 2D Ising models of 400 variables
and sDEUM (Valentini et al., 2012) reported results from a 125 variable 3D Ising model. Both
attempt to discover the correct structure for the MRF using tests on pairwise interactions among
the variables. MARLEDA uses a chi-square test to identify pairs of variables that interact and
DEUM calculates mutual information to the same end. DEUM infers higher order connections
from cliques in the second order graph.

A 10 x 10 Ising function in the form of Equation 14 is defined by 200 parameters so if the
structure is known but the coefficients are unknown, the coefficients can be estimated exactly by
a MOHN from 200 fitness function evaluations. If the structure is not known, but the assumption
that variables are connected only in pairs is made, then the situation is the same as it was for the
quadratic function described above. There are p(p — 1)/2 possible connections. The structure
can be discovered from that many fitness function evaluations. In the case of a 100 variable Ising,
that is 4,950 samples. That figure can be improved upon further using the MOHN Structure
Discovery Algorithm, which adds and removes weights in an attempt to reduce the number of
samples required. In (Shakya et al., 2009), the 100 variable MRF was built using a population
of 30,000 fitness evaluations from which 5,000 were selected to estimate the structure and just
250 were used for the parameter estimation. These quantities were fixed by design and not
discovered as part of the learning process.

Experimental Results Experiments were performed with randomly generated 10 x 10 Ising
models. In each experiment, a MOHN was used to model the fitness function and the model was
then searched to reveal the solution that minimised the Ising energy function using simulated
annealing, as described in Section 3.4.1. The learning process used the MSDA to discover the
correct structure and estimate the parameter values at the same time. The optimal state for the
Ising model was obtained using the on line resource from the University of Cologne !.

A sample of 3,000 fitness function evaluations was generated to train the model, which
is a slightly arbitrary amount, chosen to be significantly less than the 4,950 required to try
every second order weight. As Ising models have only second order relationships, the algorithm

Uhttp://www.informatik.uni-koeln.de/spinglass/
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quickly learned that only second order parameters were needed and converged on the correct
structure. At the point where the model parameters included all of the 200 required parameters
for the model, the training error dropped to zero and the algorithm terminated. In all cases, 3,000
samples were sufficient for the model to learn correctly and the simulated annealing process
produced the correct energy minimisation state.

Figure 2 shows the training and validation RMSE of the MOHN by epoch as it learned
one of the Ising models. The error trace reflects a number of properties of the algorithm. The
reduction in error during coordinate descent is visible between peaks that show the points where
weights are discarded and new weights are added. It is also clear from the trace that although
these changes in weights cause the error to spike, they do not take the error back up to the point
it was at when the network was new. This is evidence of the efficiency of the error descent
approach over learning each network from scratch at each iteration. Validation error is greater
than training error while the MSDA is searching for the correct weights, but as more of the
required weights are found, the gap between the training and validation error closes until, at the
point where the model is correct, they converge.

Figure 3 shows the number of weights at each order from 1 to 5 in the network as it learned,
with the top line showing the total number of weights. Note the spikes at iterations 15 and 30
where the history of weights to avoid was emptied and the way the number of second order
weights grows as the rest reduce in number in the second half of the training. At the final step,
the number of second order weights reaches 200 (which is the correct number) and the rest all
drop to zero.

RMSE by Epoch During Training

T T T -
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Figure 2: Training and Validation RMSE during MSDA learning of a 100-node Ising model
from 3,000 training samples.

4.3 3D Ising Models, Simulated Annealing and hBOA

An approach to choosing which weights to include in an MRF EDA was proposed by (Valentini
et al., 2012), who used the lasso to set unused weights to zero in an approach they called Sparsi-
fied DEUM (sDEUM). They presented results comparing standard DEUM, sDEUM, simulated
annealing and hBOA given the task of finding the global optimum in a 3D Ising model. A 3D
model extends the neighbourhood of each node to those other nodes that are its neighbours in a
cube. The largest model analysed in (Valentini et al., 2012) contained 5 X 5 X 5 = 125 nodes and
it is that size of network that is used to compare the performance of a MOHN. sDEUM required
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Weight Counts by Order
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Figure 3: Weight counts at different orders during MSDA learning a 100 node Ising model.

an average of around 20,000 evaluations of the 125 node Ising energy function to find an optimal
input pattern. The next experiment attempts to solve the same problem in 5,000 evaluations.

4.3.1 Experimental Results

The MSDA was used to discover the correct structure of randomly generated 3D Ising models
of 125 nodes. For each trial, a training set of 5,000 examples was generated, consisting of
uniformly random input patterns and their associated output from the Ising energy function. In
each of the 20 trials, the MOHN was able to learn the correct structure and weights of the target
3D Ising model from a sample of 5,000 fitness function evaluations (i.e., the sum of errors on
validation data was zero). Figure 4 reproduces part of Figure 3 from (Valentini et al., 2012)
showing the results reported in that paper for a 125 node Ising model with an additional entry
for the MOHN.
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Fitness Evaluations on 3D Ising Search
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Figure 4: Average number of fitness evaluations (log scale) required to find the first optimal
solution to a 3D Ising model by different algorithms.

4.4 Comparing Performance on mk-Trap Problems

Trap functions are common in optimisation research because they can lead heuristic search
algorithms into local optima from which it is very difficult to escape. mk-trap functions are
counting functions based on m concatenated subvectors of k variables. An input vector is split
into non-overlapping subvectors, C C X of size k and each subvector is scored separately. The
function output is the sum of the subvector scores. Each subvector is scored by counting the
number of bits set to 1 and letting patterns with k 1s (all of them) score k, but letting patterns
with < k 1s score k — 1 — b where b is the number of bits set to 1:

k, ifb=k
f(€)= { k—1—b, otherwise (15)
and the sum is calculated as
fX)=1Y f(©) (16)

ccX

This section compares MOHN performance on mk-trap problems to the Bayesian Optimi-
sation Algorithm (Pelikan et al., 2000), the Linkage Tree Genetic Algorithm (Thierens, 2010)
and two Boltzmann machine based EDAs. Boltzmann machines are a type of neural network that
use a stochastic activation function that enables them to model probability distributions. They
represent dynamic systems that can be used to generate data in a Boltzmann distribution using
Gibbs sampling. Both deep Boltzmann machines (Probst and Rothlauf, 2015) and restricted
Boltzmann machines (Probst et al., 2014) have been used to build EDAs for combinatorial opti-
misation.

Both (Probst and Rothlauf, 2015) and (Probst et al., 2014) present results for searching mk-
trap problems of various sizes with Boltzmann EDAs, reporting the number of fitness evaluations
and the CPU time taken to find a solution. They used an AMD Opteron 6272 processor with
2.1 GHz. For comparison, the MOHN process was run on a single core Intel i7 processor
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running at 2.5 GHz. (Probst and Rothlauf, 2015) used deep Boltzmann machines in a method
called DBM-EDA and (Probst et al., 2014) used restricted Boltzmann machines in a method
called RBM-EDA. Both papers compared the performance of the EDAs to that of a Bayesian
Optimisation Algorithm (BOA) on a number of problems including the mk-trap.

Unlike the method reported above for MRF EDAs, the Boltzmann EDAs make use of a
number of generations of a cycle of data generation, selection and modelling to perform an
evolutionary search. The principle behind an evolutionary EDA is that the model can be simpler
as only the space of promising (and eventually, very good) solutions is modelled. The risks
associated with the evolutionary approach are that larger samples from the fitness function may
be needed to build multiple populations. This is in contrast to the approach of building and then
sampling an accurate model reported by (Malago et al., 2011) and (Shakya et al., 2009) and
employed by the MOHN model-and-search approach.

4.4.1 Experimental Results

Four different mk-trap problems were modelled and searched using a MOHN. They were four
bit traps over 40 and 80 bits, and five bit traps over 25 and 50 bits. The MSDA was used
with the same hyperparameter settings for every trial. Lasso was used to estimate the network
parameters at each structure discovery iteration and the number of fitness function samples used
for learning was fixed for each experiment based on the size of the problem and the number of
samples reported by (Probst and Rothlauf, 2015). Each fitness function was modelled 10 times,
each with a new fixed sized sample of fitness evaluations. The purpose of the repeated trials is
not to calculate an average number of evaluations required (that value is fixed) but to verify that
a solution can be found reliably.

In all cases, the MOHN was able to model and successfully search the fitness function in far
fewer evaluations and in much less time than the results reported for LTGA, RBM-EDA, DBM-
EDA and BOA. Table 1 summarises the results, taking data from (Thierens, 2010), (Probst and
Rothlauf, 2015) and (Probst et al., 2014). Note that the results from the DBM-EDA are for
trials where the global optimum was found 90% of the time or more. All other results provide
numbers where all searches found the global optimum. The BOA and DBM-EDA figures were
taken from Table 1 in (Probst and Rothlauf, 2015). The figures for RBM-EDA are approximate
as they were read from the graphs in Figure 3 in (Probst et al., 2014).
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Problem | Algorithm | Evaluations Time
4-trap BOA 13,673 | 2,728
40 bits DBM-EDA 47,231 | 2,201
RBM-EDA 16,000 150
MOHN 2,000 22
4-trap BOA 43,777 | 43,935
80 bits DBM-EDA 153,278 | 13,271
RBM-EDA 160,000 | 1,100
MOHN 10,000 170
5-trap BOA 14,924 | 1,384
25 bits DBM-EDA 13,291 566
LTGA 15,069 -
MOHN 1,000 8
S5-trap BOA 47,904 | 20,199
50 bits DBM-EDA 49,886 3060
RBM-EDA 63,000 300
LTGA 43,933 -
MOHN 20,000 295

Table 1: Number of unique fitness function evaluations and CPU time in seconds required to find
the global optimum in different mk-trap functions using a MOHN and the figures presented for
DBM-EDA and BOA (Probst and Rothlauf, 2015), RBM-EDA (Probst et al., 2014) and LTGA
(Thierens, 2010).

The models built by the MOHN were searched using weight satisfaction search (see Section
3.5), which was able to find the global optimum in a single pass of the algorithm. This is very
fast, adding only one or two seconds to the total search time because the function is perfectly
suited to the WSS as each trap is small and can be solved independently. These mk-trap problems
are easy to search once the structure is known but the structure is not trivial to discover so almost
all of the time taken to arrive at a solution is taken up by the modelling process.

The reader might ask whether the time gained by making fewer fitness function evaluations
is lost to the model building process. Table 1 shows some evidence that the MOHN approach
is faster than some other methods but more generally the answer will depend on how expensive
the fitness function evaluations are. There is a trade-off between the number of fitness function
evaluations available and the number of iterations required by the structure discovery algorithm.
Efficiency will also depend on the number of parameters required to model the fitness function.
Some functions are expensive to model but easy to search and such problems will never be
solved quickly by a surrogate model approach. The model building process for a MOHN has
not been found to be as time consuming as some other methods as the combination of a convex
cost function and the use of warm starts from one iteration to the next of the MSDA speeds
up the learning process. Evidence for this can be seen in Figure 2, in which the error does not
increase appreciably with each addition of new weights during the MSDA search.

4.4.2 Visualising the MOHN

The connection structure of a MOHN can reveal useful insights into the fitness function it repre-
sents. We have already noted that the mk-trap MOHN is easy to search as it reveals the additively
decomposable nature of the function. This can be seen by visualising the MOHN in a heat map.
Figure 5 shows an example for a correctly fitted 5-trap problem over two repeated traps. The
interactions among the variables in each trap are plain to see, as is the lack of inter-trap connec-
tions. It is also clear that any extra or missing weights would be identifiable to the human eye
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from the pattern formed in Figure 5, which allows a human element to be included in the search
for the correct weights to include in a model.

Weight Orders

1 2 3 4 5
1 Trap 1
e ...."'-. %'-:'-'.n EEEEE nﬁ II
10 Trap 2
Figure 5: Weights of a MOHN trained on two concatenations of a 5 bit trap. Each column rep-
resents one weight, a visible pixel indicates a connected variable, and weights increase in order
(the number of variables connected) from left to right. Each row represents a single variable so
the number of pixels in a column indicates the order of the weight and the index of the variables
it connects. For example, there are two order 5 weights, one in each trap. The blocks that make
up each trap are easy to identify and the fact that the function is additively decomposable is clear

from the diagram as there are no connections from within one block to another. We can see that
the maximum weight order is 5 and that variables within blocks are fully connected.

5 Conclusions

This paper has presented MOHNSs as universal fitness function models for pseudo-Boolean prob-
lems. An incremental model building approach is used to discover linkage structure from a
sample of fitness function evaluations that is much smaller than the number of potential vari-
able interactions being searched. This reduces the number of fitness function evaluations re-
quired to build an accurate model. MOHNSs expose the linkage structure of the function they are
trained on, which can be used to guide a search of the model for the optimal input configuration.
MOHNSs have been shown to be able to model and optimise fitness functions including quadrat-
ics, Ising models and mk-traps in far fewer evaluations than reported in the literature for EDAs
and linkage learning algorithms.

There are many similarities among some of the other methods described in this paper and
the MOHN approach. A fully connected MOHN represents a Walsh-like basis and a partially
connected MOHN learns the non-zero coefficients in a similar manner to that used by (Verel
et al., 2018) to build surrogate models. The MOHN Structure Discovery Algorithm attempts
to reduce the number of fitness samples required, unlike that of (Verel et al., 2018). The graph
structure of Markov Random Field models such as DEUM represents non-zero Walsh coeffi-
cients in its connectivity pattern. DEUM uses OLS to learn the parameters and SDEUM uses
lasso. The two differences are that DEUM learns the log of the fitness values to allow samples
from the model to follow a Boltzmann distribution and chooses the connectivity pattern by fully
connecting all cliques in the graph produced by testing for paired dependencies. The MOHN
model is presented here in a surrogate model-based optimisation framework, but the MSDA is
suitable for learning the structure of an MRF with very little modification.

5.1 Research Questions

This work motivates a number of new research questions. Although the results presented in
this paper show that MOHNs can model certain benchmark problems efficiently, it is clear that
these functions are well suited to the modelling approach. They have low order linkage among
variables and in some cases are additively decomposable. It is easy to imagine functions with
linkage at many different orders or even with full linkage at all orders.
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Three strands of further work are ongoing. The structure discovery algorithm currently
works from a fixed sample of fitness evaluations. In future work, the algorithm will iteratively
take further samples as they are needed. Other methods for searching models once they are built
are also under development, including the use of the linkage structure to guide a GA and variable
interaction graph searching methods (Chicano et al., 2014). Finally, a hybrid model-and-search
approach is needed in which the data generated by a metaheuristic search are modelled con-
currently with the search, making use of each evaluation once for the search and once in the
model. It is hoped that this may provide an effective method for making double use of each
fitness function evaluation.
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