22,337 research outputs found

    Link prediction in graph construction for supervised and semi-supervised learning

    Get PDF
    Many real-world domains are relational in nature since they consist of a set of objects related to each other in complex ways. However, there are also flat data sets and if we want to apply graph-based algorithms, it is necessary to construct a graph from this data. This paper aims to: i) increase the exploration of graph-based algorithms and ii) proposes new techniques for graph construction from flat data. Our proposal focuses on constructing graphs using link prediction measures for predicting the existence of links between entities from an initial graph. Starting from a basic graph structure such as a minimum spanning tree, we apply a link prediction measure to add new edges in the graph. The link prediction measures considered here are based on structural similarity of the graph that improves the graph connectivity. We evaluate our proposal for graph construction in supervised and semi-supervised classification and we confirm the graphs achieve better accuracy.São Paulo Research Foundation (FAPESP) (grants: 2013/12191-5, 2011/21880-3 and 2011/22749-8

    Interactive graph construction for graph-based semi-supervised learning

    Get PDF
    Semi-supervised learning (SSL) provides a way to improve the performance of prediction models (e.g., classifier) via the usage of unlabeled samples. An effective and widely used method is to construct a graph that describes the relationship between labeled and unlabeled samples. Practical experience indicates that graph quality significantly affects the model performance. In this paper, we present a visual analysis method that interactively constructs a high-quality graph for better model performance. In particular, we propose an interactive graph construction method based on the large margin principle. We have developed a river visualization and a hybrid visualization that combines a scatterplot, a node-link diagram, and a bar chart, to convey the label propagation of graph-based SSL. Based on the understanding of the propagation, a user can select regions of interest to inspect and modify the graph. We conducted two case studies to showcase how our method facilitates the exploitation of labeled and unlabeled samples for improving model performance

    Empirical stationary correlations for semi-supervised learning on graphs

    Full text link
    In semi-supervised learning on graphs, response variables observed at one node are used to estimate missing values at other nodes. The methods exploit correlations between nearby nodes in the graph. In this paper we prove that many such proposals are equivalent to kriging predictors based on a fixed covariance matrix driven by the link structure of the graph. We then propose a data-driven estimator of the correlation structure that exploits patterns among the observed response values. By incorporating even a small fraction of observed covariation into the predictions, we are able to obtain much improved prediction on two graph data sets.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS293 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Graph Based Semi-supervised Learning with Convolution Neural Networks to Classify Crisis Related Tweets

    Full text link
    During time-critical situations such as natural disasters, rapid classification of data posted on social networks by affected people is useful for humanitarian organizations to gain situational awareness and to plan response efforts. However, the scarcity of labeled data in the early hours of a crisis hinders machine learning tasks thus delays crisis response. In this work, we propose to use an inductive semi-supervised technique to utilize unlabeled data, which is often abundant at the onset of a crisis event, along with fewer labeled data. Specif- ically, we adopt a graph-based deep learning framework to learn an inductive semi-supervised model. We use two real-world crisis datasets from Twitter to evaluate the proposed approach. Our results show significant improvements using unlabeled data as compared to only using labeled data.Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1805.0515

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    spa: Semi-Supervised Semi-Parametric Graph-Based Estimation in R

    Get PDF
    In this paper, we present an R package that combines feature-based (X) data and graph-based (G) data for prediction of the response Y . In this particular case, Y is observed for a subset of the observations (labeled) and missing for the remainder (unlabeled). We examine an approach for fitting Y = Xò + f(G) where ò is a coefficient vector and f is a function over the vertices of the graph. The procedure is semi-supervised in nature (trained on the labeled and unlabeled sets), requiring iterative algorithms for fitting this estimate. The package provides several key functions for fitting and evaluating an estimator of this type. The package is illustrated on a text analysis data set, where the observations are text documents (papers), the response is the category of paper (either applied or theoretical statistics), the X information is the name of the journal in which the paper resides, and the graph is a co-citation network, with each vertex an observation and each edge the number of times that the two papers cite a common paper. An application involving classification of protein location using a protein interaction graph and an application involving classification on a manifold with part of the feature data converted to a graph are also presented.
    • …
    corecore