5,178 research outputs found

    Advances in Cybercrime Prediction: A Survey of Machine, Deep, Transfer, and Adaptive Learning Techniques

    Full text link
    Cybercrime is a growing threat to organizations and individuals worldwide, with criminals using increasingly sophisticated techniques to breach security systems and steal sensitive data. In recent years, machine learning, deep learning, and transfer learning techniques have emerged as promising tools for predicting cybercrime and preventing it before it occurs. This paper aims to provide a comprehensive survey of the latest advancements in cybercrime prediction using above mentioned techniques, highlighting the latest research related to each approach. For this purpose, we reviewed more than 150 research articles and discussed around 50 most recent and relevant research articles. We start the review by discussing some common methods used by cyber criminals and then focus on the latest machine learning techniques and deep learning techniques, such as recurrent and convolutional neural networks, which were effective in detecting anomalous behavior and identifying potential threats. We also discuss transfer learning, which allows models trained on one dataset to be adapted for use on another dataset, and then focus on active and reinforcement Learning as part of early-stage algorithmic research in cybercrime prediction. Finally, we discuss critical innovations, research gaps, and future research opportunities in Cybercrime prediction. Overall, this paper presents a holistic view of cutting-edge developments in cybercrime prediction, shedding light on the strengths and limitations of each method and equipping researchers and practitioners with essential insights, publicly available datasets, and resources necessary to develop efficient cybercrime prediction systems.Comment: 27 Pages, 6 Figures, 4 Table

    Secure Software Development: Issues and Challenges

    Full text link
    In recent years, technology has advanced considerably with the introduction of many systems including advanced robotics, big data analytics, cloud computing, machine learning and many more. The opportunities to exploit the yet to come security that comes with these systems are going toe to toe with new releases of security protocols to combat this exploitation to provide a secure system. The digitization of our lives proves to solve our human problems as well as improve quality of life but because it is digitalized, information and technology could be misused for other malicious gains. Hackers aim to steal the data of innocent people to use it for other causes such as identity fraud, scams and many more. This issue can be corrected during the software development life cycle, integrating security across the development phases, and testing of the software is done early to reduce the number of vulnerabilities that might or might not heavily impact an organisation depending on the range of the attack. The goal of a secured system software is to prevent such exploitations from ever happening by conducting a system life cycle where through planning and testing is done to maximise security while maintaining functionality of the system. In this paper, we are going to discuss the recent trends in security for system development as well as our predictions and suggestions to improve the current security practices in this industry.Comment: 20 Pages, 4 Figure

    Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence

    Full text link
    The evolution of cybersecurity has spurred the emergence of autonomous threat hunting as a pivotal paradigm in the realm of AI-driven threat intelligence. This review navigates through the intricate landscape of autonomous threat hunting, exploring its significance and pivotal role in fortifying cyber defense mechanisms. Delving into the amalgamation of artificial intelligence (AI) and traditional threat intelligence methodologies, this paper delineates the necessity and evolution of autonomous approaches in combating contemporary cyber threats. Through a comprehensive exploration of foundational AI-driven threat intelligence, the review accentuates the transformative influence of AI and machine learning on conventional threat intelligence practices. It elucidates the conceptual framework underpinning autonomous threat hunting, spotlighting its components, and the seamless integration of AI algorithms within threat hunting processes.. Insightful discussions on challenges encompassing scalability, interpretability, and ethical considerations in AI-driven models enrich the discourse. Moreover, through illuminating case studies and evaluations, this paper showcases real-world implementations, underscoring success stories and lessons learned by organizations adopting AI-driven threat intelligence. In conclusion, this review consolidates key insights, emphasizing the substantial implications of autonomous threat hunting for the future of cybersecurity. It underscores the significance of continual research and collaborative efforts in harnessing the potential of AI-driven approaches to fortify cyber defenses against evolving threats

    AI Approaches to Predictive Justice: A Critical Assessment

    Get PDF
    This paper addresses the domain of predictive justice, exploring the intersection of artificial intelligence (AI) and judicial decision-making. We will first introduce the concept of predictive justice, referring to the ongoing debate surrounding the potential automation of judicial decisions through AI systems. Then, we will examine the current landscape of AI approaches employed in predictive justice applications, providing a comprehensive overview of methodologies and technological advancements. Then, we delve into the phenomenology of predictive justice, highlighting the diverse spectrum of legal predictions achievable with contemporary AI systems. We also assess the extent to which these predictive AI systems are presently integrated into real-world judicial practices. Finally, the paper critically addresses recurrent fears and critiques associated with predictive justice. We sort these critiques into unreasonable objections, reasonable concerns with possible technical solutions, and reasonable concerns demanding further investigation. Navigating the complexities of these critiques, we offer some insights for future research and practical implementation. The nuanced approach taken in this study contributes to the ongoing discourse on predictive justice, emphasising the need for a balanced evaluation of its potential benefits and legal challenge

    Algorithms in future capital markets: A survey on AI, ML and associated algorithms in capital markets

    Get PDF
    This paper reviews Artificial Intelligence (AI), Machine Learning (ML) and associated algorithms in future Capital Markets. New AI algorithms are constantly emerging, with each 'strain' mimicking a new form of human learning, reasoning, knowledge, and decisionmaking. The current main disrupting forms of learning include Deep Learning, Adversarial Learning, Transfer and Meta Learning. Albeit these modes of learning have been in the AI/ML field more than a decade, they now are more applicable due to the availability of data, computing power and infrastructure. These forms of learning have produced new models (e.g., Long Short-Term Memory, Generative Adversarial Networks) and leverage important applications (e.g., Natural Language Processing, Adversarial Examples, Deep Fakes, etc.). These new models and applications will drive changes in future Capital Markets, so it is important to understand their computational strengths and weaknesses. Since ML algorithms effectively self-program and evolve dynamically, financial institutions and regulators are becoming increasingly concerned with ensuring there remains a modicum of human control, focusing on Algorithmic Interpretability/Explainability, Robustness and Legality. For example, the concern is that, in the future, an ecology of trading algorithms across different institutions may 'conspire' and become unintentionally fraudulent (cf. LIBOR) or subject to subversion through compromised datasets (e.g. Microsoft Tay). New and unique forms of systemic risks can emerge, potentially coming from excessive algorithmic complexity. The contribution of this paper is to review AI, ML and associated algorithms, their computational strengths and weaknesses, and discuss their future impact on the Capital Markets

    Spatiotemporal Analysis of Web News Archives for Crime Prediction

    Get PDF
    In today's world, security is the most prominent aspect which has been given higher priority. Despite the rapid growth and usage of digital devices, lucrative measurement of crimes in under-developing countries is still challenging. In this work, unstructural crime data (900 records) from the news archives of the previous eight years were extracted to predict the behavior of criminals' networks and transform it into useful information using natural language processing (NLP). To estimate the next move of criminals in Pakistan, we performed hotspot-based spatial analysis. Later, this information is fed to two different classifiers for possible identification and prediction. We achieved the maximum accuracy of 92% using K-Nearest Neighbor (KNN) and 62% using the Random Forest algorithm. In terms of crimes, the results showed that the most prevalent crime events are robberies. Thus, the usage of digital information archives, spatial analysis, and machine learning techniques can open new ways of handling a peaceful and sustainable society in eradicating crimes for countries having paucity of financial resources

    A framework for securing email entrances and mitigating phishing impersonation attacks

    Full text link
    Emails are used every day for communication, and many countries and organisations mostly use email for official communications. It is highly valued and recognised for confidential conversations and transactions in day-to-day business. The Often use of this channel and the quality of information it carries attracted cyber attackers to it. There are many existing techniques to mitigate attacks on email, however, the systems are more focused on email content and behaviour and not securing entrances to email boxes, composition, and settings. This work intends to protect users' email composition and settings to prevent attackers from using an account when it gets hacked or hijacked and stop them from setting forwarding on the victim's email account to a different account which automatically stops the user from receiving emails. A secure code is applied to the composition send button to curtail insider impersonation attack. Also, to secure open applications on public and private devices

    A Survey on Explainable AI for 6G O-RAN: Architecture, Use Cases, Challenges and Research Directions

    Full text link
    The recent O-RAN specifications promote the evolution of RAN architecture by function disaggregation, adoption of open interfaces, and instantiation of a hierarchical closed-loop control architecture managed by RAN Intelligent Controllers (RICs) entities. This paves the road to novel data-driven network management approaches based on programmable logic. Aided by Artificial Intelligence (AI) and Machine Learning (ML), novel solutions targeting traditionally unsolved RAN management issues can be devised. Nevertheless, the adoption of such smart and autonomous systems is limited by the current inability of human operators to understand the decision process of such AI/ML solutions, affecting their trust in such novel tools. eXplainable AI (XAI) aims at solving this issue, enabling human users to better understand and effectively manage the emerging generation of artificially intelligent schemes, reducing the human-to-machine barrier. In this survey, we provide a summary of the XAI methods and metrics before studying their deployment over the O-RAN Alliance RAN architecture along with its main building blocks. We then present various use-cases and discuss the automation of XAI pipelines for O-RAN as well as the underlying security aspects. We also review some projects/standards that tackle this area. Finally, we identify different challenges and research directions that may arise from the heavy adoption of AI/ML decision entities in this context, focusing on how XAI can help to interpret, understand, and improve trust in O-RAN operational networks.Comment: 33 pages, 13 figure
    corecore