5 research outputs found

    Lines Missing Every Random Point

    Full text link
    We prove that there is, in every direction in Euclidean space, a line that misses every computably random point. We also prove that there exist, in every direction in Euclidean space, arbitrarily long line segments missing every double exponential time random point.Comment: Added a section: "Betting in Doubly Exponential Time.

    Polynomial Space Randomness in Analysis

    Get PDF
    We study the interaction between polynomial space randomness and a fundamental result of analysis, the Lebesgue differentiation theorem. We generalize Ko\u27s framework for polynomial space computability in R^n to define weakly pspace-random points, a new variant of polynomial space randomness. We show that the Lebesgue differentiation theorem characterizes weakly pspace random points. That is, a point x is weakly pspace random if and only if the Lebesgue differentiation theorem holds for a point x for every pspace L_1-computable function

    Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension

    Get PDF
    We formulate the conditional Kolmogorov complexity of x given y at precision r, where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways. 1. We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E. We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2. 2. We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim(x|y) and Dim(x|y) of x given y, where x and y are points in Euclidean spaces. Intuitively these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y. We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well-studied dimensions dim(x) and Dim(x) and the mutual dimensions mdim(x:y) and Mdim(x:y)
    corecore