523 research outputs found

    Short Group Signatures via Structure-Preserving Signatures: Standard Model Security from Simple Assumptions

    Get PDF
    International audienceGroup signatures are a central cryptographic primitive which allows users to sign messages while hiding their identity within a crowd of group members. In the standard model (without the random oracle idealization), the most efficient constructions rely on the Groth-Sahai proof systems (Euro-crypt'08). The structure-preserving signatures of Abe et al. (Asiacrypt'12) make it possible to design group signatures based on well-established, constant-size number theoretic assumptions (a.k.a. " simple assumptions ") like the Symmetric eXternal Diffie-Hellman or Decision Linear assumptions. While much more efficient than group signatures built on general assumptions, these constructions incur a significant overhead w.r.t. constructions secure in the idealized random oracle model. Indeed, the best known solution based on simple assumptions requires 2.8 kB per signature for currently recommended parameters. Reducing this size and presenting techniques for shorter signatures are thus natural questions. In this paper, our first contribution is to significantly reduce this overhead. Namely, we obtain the first fully anonymous group signatures based on simple assumptions with signatures shorter than 2 kB at the 128-bit security level. In dynamic (resp. static) groups, our signature length drops to 1.8 kB (resp. 1 kB). This improvement is enabled by two technical tools. As a result of independent interest, we first construct a new structure-preserving signature based on simple assumptions which shortens the best previous scheme by 25%. Our second tool is a new method for attaining anonymity in the strongest sense using a new CCA2-secure encryption scheme which is simultaneously a Groth-Sahai commitment

    Bounded-Collusion IBE from Key Homomorphism

    Get PDF
    In this work, we show how to construct IBE schemes that are secure against a bounded number of collusions, starting with underlying PKE schemes which possess linear homomorphisms over their keys. In particular, this enables us to exhibit a new (bounded-collusion) IBE construction based on the quadratic residuosity assumption, without any need to assume the existence of random oracles. The new IBE’s public parameters are of size O(tλlogI) where I is the total number of identities which can be supported by the system, t is the number of collusions which the system is secure against, and λ is a security parameter. While the number of collusions is bounded, we note that an exponential number of total identities can be supported. More generally, we give a transformation that takes any PKE satisfying Linear Key Homomorphism, Identity Map Compatibility, and the Linear Hash Proof Property and translates it into an IBE secure against bounded collusions. We demonstrate that these properties are more general than our quadratic residuosity-based scheme by showing how a simple PKE based on the DDH assumption also satisfies these properties.National Science Foundation (U.S.) (NSF CCF-0729011)National Science Foundation (U.S.) (NSF CCF-1018064)United States. Defense Advanced Research Projects Agency (DARPA FA8750-11-2-0225

    Born and Raised Distributively: Fully Distributed Non-Interactive Adaptively-Secure Threshold Signatures with Short Shares

    Get PDF
    International audienceThreshold cryptography is a fundamental distributed computational paradigm for enhancing the availability and the security of cryptographic public-key schemes. It does it by dividing private keys into nn shares handed out to distinct servers. In threshold signature schemes, a set of at least t+1≤nt+1 \leq n servers is needed to produce a valid digital signature. Availability is assured by the fact that any subset of t+1t+1 servers can produce a signature when authorized. At the same time, the scheme should remain robust (in the fault tolerance sense) and unforgeable (cryptographically) against up to tt corrupted servers; {\it i.e.}, it adds quorum control to traditional cryptographic services and introduces redundancy. Originally, most practical threshold signatures have a number of demerits: They have been analyzed in a static corruption model (where the set of corrupted servers is fixed at the very beginning of the attack), they require interaction, they assume a trusted dealer in the key generation phase (so that the system is not fully distributed), or they suffer from certain overheads in terms of storage (large share sizes). In this paper, we construct practical {\it fully distributed} (the private key is born distributed), non-interactive schemes -- where the servers can compute their partial signatures without communication with other servers -- with adaptive security ({\it i.e.}, the adversary corrupts servers dynamically based on its full view of the history of the system). Our schemes are very efficient in terms of computation, communication, and scalable storage (with private key shares of size O(1)O(1), where certain solutions incur O(n)O(n) storage costs at each server). Unlike other adaptively secure schemes, our schemes are erasure-free (reliable erasure is a hard to assure and hard to administer property in actual systems). To the best of our knowledge, such a fully distributed highly constrained scheme has been an open problem in the area. In particular, and of special interest, is the fact that Pedersen's traditional distributed key generation (DKG) protocol can be safely employed in the initial key generation phase when the system is born -- although it is well-known not to ensure uniformly distributed public keys. An advantage of this is that this protocol only takes one round optimistically (in the absence of faulty player)

    Algebraic Restriction Codes and Their Applications

    Get PDF
    Consider the following problem: You have a device that is supposed to compute a linear combination of its inputs, which are taken from some finite field. However, the device may be faulty and compute arbitrary functions of its inputs. Is it possible to encode the inputs in such a way that only linear functions can be evaluated over the encodings? I.e., learning an arbitrary function of the encodings will not reveal more information about the inputs than a linear combination. In this work, we introduce the notion of algebraic restriction codes (AR codes), which constrain adversaries who might compute any function to computing a linear function. Our main result is an information-theoretic construction AR codes that restrict any class of function with a bounded number of output bits to linear functions. Our construction relies on a seed which is not provided to the adversary. While interesting and natural on its own, we show an application of this notion in cryptography. In particular, we show that AR codes lead to the first construction of rate-1 oblivious transfer with statistical sender security from the Decisional Diffie-Hellman assumption, and the first-ever construction that makes black-box use of cryptography. Previously, such protocols were known only from the LWE assumption, using non-black-box cryptographic techniques. We expect our new notion of AR codes to find further applications, e.g., in the context of non-malleability, in the future
    • …
    corecore