41,159 research outputs found

    The Generalized Quasi-linearization Method for Reaction Diffusion Equations on an Unbounded Domain

    Get PDF
    AbstractThe method of generalized quasi-linearization has been well developed for ordinary differential equations. In this paper, we extend the method of generalized quasi-linearization to reaction diffusion equations on an unbounded domain. The iterates, which are solutions of linear equations starting from lower and upper solutions, converge uniformly and monotonically to the unique solution of the nonlinear reaction diffusion equation in an unbounded domain. Initially an existence theorem for the linear nonhomogeneous reaction diffusion equation in an unbounded domain has been proved under improved conditions. The quadratic convergence has been proved by using a comparison theorem of reaction diffusion equations with ordinary differential equations. This avoids the computational complexity of the quasi-linearization method, since the computation of Green's function at each stage of the iterates is avoided

    Network Identification for Diffusively-Coupled Systems with Minimal Time Complexity

    Full text link
    The theory of network identification, namely identifying the (weighted) interaction topology among a known number of agents, has been widely developed for linear agents. However, the theory for nonlinear agents using probing inputs is less developed and relies on dynamics linearization. We use global convergence properties of the network, which can be assured using passivity theory, to present a network identification method for nonlinear agents. We do so by linearizing the steady-state equations rather than the dynamics, achieving a sub-cubic time algorithm for network identification. We also study the problem of network identification from a complexity theory standpoint, showing that the presented algorithms are optimal in terms of time complexity. We also demonstrate the presented algorithm in two case studies.Comment: 12 pages, 3 figure

    Gain Scheduling Control of Nonlinear Shock Motion Based on Equilibrium Manifold Linearization Model

    Get PDF
    AbstractThe equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme

    Quantum algorithms for linear and non-linear fractional reaction-diffusion equations

    Full text link
    High-dimensional fractional reaction-diffusion equations have numerous applications in the fields of biology, chemistry, and physics, and exhibit a range of rich phenomena. While classical algorithms have an exponential complexity in the spatial dimension, a quantum computer can produce a quantum state that encodes the solution with only polynomial complexity, provided that suitable input access is available. In this work, we investigate efficient quantum algorithms for linear and nonlinear fractional reaction-diffusion equations with periodic boundary conditions. For linear equations, we analyze and compare the complexity of various methods, including the second-order Trotter formula, time-marching method, and truncated Dyson series method. We also present a novel algorithm that combines the linear combination of Hamiltonian simulation technique with the interaction picture formalism, resulting in optimal scaling in the spatial dimension. For nonlinear equations, we employ the Carleman linearization method and propose a block-encoding version that is appropriate for the dense matrices that arise from the spatial discretization of fractional reaction-diffusion equations

    High-order regularized regression in Electrical Impedance Tomography

    Full text link
    We present a novel approach for the inverse problem in electrical impedance tomography based on regularized quadratic regression. Our contribution introduces a new formulation for the forward model in the form of a nonlinear integral transform, that maps changes in the electrical properties of a domain to their respective variations in boundary data. Using perturbation theory the transform is approximated to yield a high-order misfit unction which is then used to derive a regularized inverse problem. In particular, we consider the nonlinear problem to second-order accuracy, hence our approximation method improves upon the local linearization of the forward mapping. The inverse problem is approached using Newton's iterative algorithm and results from simulated experiments are presented. With a moderate increase in computational complexity, the method yields superior results compared to those of regularized linear regression and can be implemented to address the nonlinear inverse problem

    Multiparameter spectral analysis for aeroelastic instability problems

    Full text link
    This paper presents a novel application of multiparameter spectral theory to the study of structural stability, with particular emphasis on aeroelastic flutter. Methods of multiparameter analysis allow the development of new solution algorithms for aeroelastic flutter problems; most significantly, a direct solver for polynomial problems of arbitrary order and size, something which has not before been achieved. Two major variants of this direct solver are presented, and their computational characteristics are compared. Both are effective for smaller problems arising in reduced-order modelling and preliminary design optimization. Extensions and improvements to this new conceptual framework and solution method are then discussed.Comment: 20 pages, 8 figure
    • …
    corecore