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The method of generalized quasi-linearization has been well developed for
ordinary differential equations. In this paper, we extend the method of generalized
quasi-linearization to reaction diffusion equations on an unbounded domain. The
iterates, which are solutions of linear equations starting from lower and upper
solutions, converge uniformly and monotonically to the unique solution of the
nonlinear reaction diffusion equation in an unbounded domain. Initially an exis-
tence theorem for the linear nonhomogeneous reaction diffusion equation in an
unbounded domain has been proved under improved conditions. The quadratic
convergence has been proved by using a comparison theorem of reaction diffusion
equations with ordinary differential equations. This avoids the computational
complexity of the quasi-linearization method, since the computation of Green’s
function at each stage of the iterates is avoided.  © 1999 Academic Press

Key Words: Unbounded domain; generalized quasi-linearization; reaction diffu-
sion equation; quadratic convergence.

1. INTRODUCTION

It is well known that the method of quasi-linearization [1] is a construc-
tive method of proving the existence of solutions of initial and boundary
value problems. The main advantage of the method in addition to quadratic
convergence is that the iterates are solutions of linear and mildly nonlinear
equations. See [11] for first-order ordinary differential equations and [7]
for reaction diffusion equations. In [6, 7] we refer to the method of
guasi-linearization as generalized quasi-linearization, since we no longer
require the forcing function to be convex or concave, as the original
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guasi-linearization method. Furthermore, the method of upper and lower
solutions is used as in the monotone method to obtain simultaneously
increasing and decreasing sequences. Further the iterates are solutions of
linear equations. In this paper, we extend the generalized quasi-lineariza-
tion method to reaction diffusion equations in an unbounded domain. We
develop the method of generalized quasi-linearization such that the forcing
function f(z, x,u) is split as fi(¢, x,u) + f,(¢, x, w) + f5(¢, x, u), where
fi(¢, x,u) can be made convex, f,(¢,x,u) can be made concave, and
f3(¢, x,u) is bounded and Lipschitzian. In this case, the iterates are
solutions of simple nonlinear equations. However, if f,(¢,x,u) =0, the
iterates are solutions of linear equations. These linear iterates converge
guadratically to the unique solution of the nonlinear reaction diffusion
eguation. However, the rate of convergence is linear in [4, 7, 8, 9].

2. PRELIMINARIES

In this section we list the assumptions and recall some known existence
and comparison results that are needed to develop our main result. See
[3-7] for details.

We define the closed set

A ={(t, x,u): vo(t, x) <u <wy(t x),(t,x) €0r=[0,T]xR"}.
We consider the reaction diffusion equation with the Cauchy problem of

the form

du i N
- — Lu =f(t,x,u) in Oy = (0,T] X RY, (2.1)

u(0,x) = uy(x) in RY,
where L is a strictly uniform elliptic operator defined by
N 02 N

J
L= a. (t,x + b(t, x)— + cy(t,x).
wZ:l i )ax,. 7x, El i( )ﬂxi o2, x)

Here f(t, x,u) = f,(t, x,u) + f,(t, x,u) + f5(t, x, u).
We list the following assumptions for convenience.

(A4,) Let fi(¢, x,u), f,(¢, x,u), f3(t, x,u) be such that F(¢,x,u) =
fi(t, x,u) + ®(z, x,u) and d(¢, x, u) are uniformly convex in u on A (i.e.,
fruw + ¥, =0and &, > 0). Also let G(¢, x, u) = f,(¢t, x,u) + V(t, x,u)

and W(¢, x, u) be uniformly concave in u on A (e, f,,, + ¥, <0 and
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¥, <0), and f;, is a bounded continuous in u on A. In addition, let

F(t,x,u), G(t, x,u), and f,(r, x,u) € C*/%22([0,T] X R x R", R). Further-
more, let

|F,(t,x, &) + G,(t,x,m) — D, (¢, x,m) — ¥, (t,x,&)| < M(le2 +1),
(2.2)

where (¢, x, £) and (¢, x, ) € A.
In fact, it is enough to assume that

F(t,x,w5) + G,(t,x,00) — ®,(t,x,00) — ¥, (t,x,wg) <M(Ix|* + 1),
El(t'x’UO) + Gu(t7x’W0) - (I)u(t:wio) - q}u(t’x'UO)

instead of (2.2).

(A4)) () ay;, b, ¢, are bounded. For each ¢ € (0,7), a;; € C** (O,
R), b, € C***(Qr, R). Here q,; satisfies

N
dolé* < X a(1, %) & < dyl €1,

ij=1

where d, and d, are independent of (z, x).

(||) f(¢, x,u) is holder continuous in ¢ and x, and If(t x,u) <
MyeP*’ where M, and B are constants M, > 0, B < (4Td,)~*

(i) uy(x) € C?** and |uy(x) < Agje P,

DeriniTION 2.1, We say a function v, € C*?[Q,, R] is called a lower
solution of (2.1) if

dvg I3
— —Lvy < f(t,x,v
= Loy < f(1,x,05),

0(0, x) < uy(x),

and an upper solution of (2.1) if the reversed inequality holds.

We state the following maximum principle from [3] and comparison
theorem from [5], which we need in the main result to prove the mono-
tonicity of iterates and quadratic convergence part, respectively.
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THEOREM 2.1. ulLet (¢, x) satisfy
u R
E—Lu—l—cuzO in Qr
u(0,x) >0,

where L is the elliptic operator defined by

N 072 N J
L= a. (t,x + b(t,x)— +c,(t,x
l"jz=:1 l,]( )07)([07 i; l( )o'?x,» 0( )

such that
la; ;| <M, |b(t,x)| <M(lx| + 1),
and |c(t, x)| < M(|x|* + 1), and u(t, x) > —Bexp( B|x)), where M, B, B
are positive constants. Then we have
u(t,x) =0 inQ.
See [3] for details of the proof.
THEOREM 2.2.  Suppose that
(i) m e CY%(Q;, R,) such that m, — Lm < f(¢t, x, m), where f(t,
x,u) € C[Q; X R, R] and the operator L is elliptic.
(i geC(0,T]1 X R,,R) and let r(¢t,0, y,) > 0 is the maximal solu-
tion of the differential equations
y'=g(ty), y(0) =y, =0

existing for t > 0 and

f(t,x,z) <g(t,z), z>0.
i) m(0, x) <r(0,0, y,) forx € R.
Then m(t, x) < r(¢,0, y,) on Q.

See [5] for details.

In the following, we prove the existence of a unique solution of the
following Cauchy problem, where the coefficient c(z, x) is unbounded but
satisfies some growth condition such as x|,

First we recall some known results from [3].

Let T'(z, x; 7, £) be the fundamental solution of the uniformly parabolic
operator

52

N
-—+c
1”(?xo”x +Lb 0

i=1

i,
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Let f(z, x) be a function defined from Q to R, where Q = (0,T) X R".
We consider the potential function to be

V(t,x) = [OtfRNr(t,x;T,g)f(T,g)dng.

THEOREM 2.3.  Assume that f is a measurable function and | f| < Me PI1xI*:
then V(t, x) is a continuous function in Q.

THEOREM 24.  Assume that f(¢, x) is a continuous function and |f| <
MeP™" in Q. Then V(t, x), where (t, x) € Q, has the continuous first-order
partial derivative with respect to x and

aV(t, x)

t J
ax; LLNﬁr(f’x;T-f)f(T,f)dgdf_

THEOREM 2.5. If f(¢, x) is continuous in Q, fis loccglly Holder continuous
in x € RY uniformly with respect to t, and | f| < MeP*", then V(t, x) has the
continuous second-order partial derivative in x.

THEOREM 2.6. Let the assumptions of Theorem 2.5 hold. Then JV(t,
x)/ dt exists and is continuous in Q.

Now we prove the main result of this section. We prove the existence of
the solution of the following Cauchy problem, using the monotone method.
Consider the Cauchy problem
Ju I R
— —Lu+cu=g(t,x,u In ,
91 8( ) Or (2.3)
u(0, x) = ug(x),

where

where ¢, is the bounded function and
la; | <M, |b(t,x)| <M, Je(t,x)| < M(Ix* + 1),

where M is a positive constant and g(z, x, u) is a continuous function in A.

THEOREM 2.7.  Assume (A,)(i) and (A)iii) hold and there exists v, and
wo € CH2[Q;, R], which are lower and upper solutions of (2.3) such that
vo(t, x) < wy(t, x) on Q. Furthermore, let g(t, x) satisfy

gt x,a) —g(t,x, ) = —My(a — B)
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for vy < B < a<wy, and let M, be a positive constant. Then the Cauchy
problem (2.3) has a unique solution belonging to C*?[Qy, R] such that

vo(t,x) <u(t,x) <wy(t,x) onQy.

Proof. We construct the sequences {v,} and {w,} as solutions of the
linear equations

Jau,
ot _Lvn +M1Un = (_C + Ml)Unfl +g(t’xiun71)’
0,(0, x) = uo(x),
and
ow,
It _LWn +M1Wn = (—C +M1)Wn—1 +g(t"x'wn—l)'

w,(0,x) = up(x),

where n = 1,2,3,....

We can show as in [7, 3] that v,,w, € C*2(Q) for n = 1,2,3,..., are
such that

Vg <V, < S0, SW, < =+ <w; < W,

It is easy to show that v,(¢, x), w,(t, x) converge uniformly and monotoni-
cally such that lim,_ . v,(¢t,x) = v(¢, x), lim,_  w/(t, x) = w(t, x). Fur-
thermore, we can show that v and w satisfy

v(t, x) =jotfRNF(t,x;T,f)(—C(fyT)U(?T)
+g(7,&,0)) dédr +TO(1, x),
w(t,x) = jotfRNF(t,x;T,f)(—C(fyT)W(?T)

+g(7,&,0)) dédr +TO(1, x),
where

JO(t,x) = /RNF(t,x;O, E)ug( &) dE.

Clearly, JO(t, x) € C*?(Q). Furthermore, v and w are Lebesgue mea-
surable functions such that v, <v <w < w,. Using Theorems 2.3, 2.4,
2.5, and 2.6, it is easy to prove that v and w are the classical solutions of
(2.3). Finally, we have to prove that v = w. Let @ = v — w; then we have

Ja
— —La+ca=g(t,x,v) —g(t,x,w)>—-Ma,
a(x,0) =0.

Using the Maximum Principle, we have « > 0, i.e., v > w. Hence, v = w.
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Remark 1. The above result is an improvement compared with the
results of [6], since we have not assumed c(¢, x) to be bounded. We note
that the above method is a constructive method of proving the existence of
the unique solution of (2.3). However, the order of convergence of the
sequences is linear.

3. GENERALIZED QUASI-LINEARIZATION

In this section we develop the method of generalized quasi-linearization.
The method of generalized quasi-linearization yields monotone sequences
that converge uniformly and monotonically to the unique solution of (2.1).
Furthermore, we can show that the convergence is quadratic when the
concerned functions are bounded.

THEOREM 3.1.  Let vy and w, be lower and upper solutions of (2.1) and,
furthermore, let assumptions (A,) and (A,) hold. Then there exist monotone
sequences {v,} and {w,} that converge uniformly and monotonically to the
unique solution u of (2.1).

Proof.  From (A,) it is easy to see that f(z, x, u) satisfies
f(t,x,u) = fi(t, x,0) + fo(t,x,0) + f3(t, x,u)
+[F,(t,x,0) + G,(t,x,u) — D,(t,x,u)
-, (t,x,0)](u —v). (3.1)
Let v,,w, be the solutions of the IVP of the form
Jv,

9 Loy = fi(t, x,00) + f5(t, x,09) + f3(t, x,01)

+[F,(t,x,09) + G,(t, x,wy) — D, (1, x, W) (3.2)
=W, (¢, x,09)](v1 = vo)
04(0, x) = uy(x)
and

aw,
at

— Lwy = fi(t, x,wo) + fo(t, x,wo) + f5(t, x, wy)
+[Fu(t'x!wo) + Gu(t'x’UO) - q)u(t'x'UO) (33)
=W, (1, x,w) [ (wy — wy)
wi(0, x) = uy(x).
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First, we will show that v, and w, are the lower and upper solutions of
(3.2) and (3.3), respectively. Clearly, v, is the lower solution of (3.2).
Similarly, using (3.1), we have

M _ Lwy > f(t,x,wg)
Jdt
= f1(t, x,wo) + fo(2, %, wo) + f3(2, x,wo)
> fi(t, x,00) + fo(1, x,00) + f3(2, x,w,)
+[F,(t,x,09) + G,(t, x,wy) — D, (1, x,w)
—W,(t,x,09)](Wo — vo),
and

wo(0,x) > ug(x).

This proves w, is an upper solution of (3.2). Similarly, we can prove v,
and w, are the lower and upper solutions of (3.3). Therefore, the solutions
of (3.2) and (3.3) exist and are unique, by Theorem 2.7. This proves
Vg S Uy, Wy < W,

Next we show that vy < v, <w; <w,. Let vy =0, — w,; then we have

dy

— — Ly =f,(t,x,vq) — f1(t, x, wy)

+[F,(t,x,00) — ®,(1, x,wp)[[(vy = wy) + (wo — )]
+ fo(t, x,00) — fo(t, x,wq)
+[G,(t, x,wo) — W, (1, x,00)][(vy = wy) + (wg — vg)]
+ f3(t, x,0y) — f3(t, x,wy).

Using the fact that

fi(t x,00) = fi(t, x,wo) + [F,(t,x,00) — ®,(1, x,wp)|[(wg — vy) <0
folt, x,00) = fo(t,x,w0) + [G (1, x,w5) — W, (1, x,00)] (Wo — 1) <0,

and using the Mean Value Theorem on f;(z, x, u), we have

dy

E —L’)/S [Fu(t’x’UO) + Gu(t'x'WO) - (Du(t’x’WO) - \I,u(t’x’UO)]y

+f3u(l'xv§)y
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for some ¢ € A, so that |f, (¢, x, ) <M by (A,) and (0, x) < 0. By
Maximum Principle Theorem 2.1, we have y(¢, x) < 0. Therefore, we have
Vg S Uy S Wy < wy.
Now, we assume that for some k > 1, we have
Vg SV < 0 S o SO SWe <o W< < wyp < Wy,

where v; and w; are solutions of the system

av;
ot — Lu; = fi(t, x,0,_q) + fo(t, x,0,_1) + f3(t, x,0;)

+[E(t,x,0_1) + G (t, x,w,_1) = (¢, x,w,_,) (3.4)
_q'u(tvx:Ui—l)](Ui —Ui_1)
0;(0, x) = ug(x)
and

aw;
a1 = Lw; = fi(t, x,w;y) + fo(8, %, w;y) + fa(t, x,w;)
+H[F,(t, x,w,_1) + G (2, x,0,_1) — O (t,x,0;_1) (3.5)
_q’u(t’xnwi—l)](wi_wi—l)n
w;(0,x) = uo(x),

fori=1,2,...,k
Let v,,, and w, ., be solutions of the mildly nonlinear equations

Vs 1
ot

= Lugyq = fi(t, x,00) + fo(t, x,0) + f3(8 %, 044)

+[Fu(t"xlvk) +Gu(t!x’wk) _(I)u(t'x'wk) (36)

=W, (1, %,0) ] (Vg1 — Vg)
Vs 1(0, x) = uo(x)

— Lwy g = fi(t x,wy) + (8, x,wi) + [t x, Wi )
+[Fu(t’xlwk) + Gu(t’xiuk) - (Du(t’x’uk) (37)
=W, (t, x, W) [ (W1 — wi),

Wir1(0, x) = ug(x),

respectively.
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We will prove that v, < v, ; < w;,; <w, on Oy.
First, we show that v, and w, are lower and upper solutions of (3.6),
respectively. Using (3.1), we have

+[Et(t'x'vk—l) + Gu(t'x’wk—l) - (I)u(t’x’wk—l)
=W, (1, x,0_1)] (v = V1)
< fi(t, x,00) + fo(t, x,00) + f3(8,x,0,),

which prove that v, is the lower solution of (3.6). Similarly, using (3.1), we
also have

% — Lw, = fi(t, x,wi_q) + fo(t,x,wi_q) + f3(2,x,wy)
+[F(t x,w_q) + G(t,x,0,_1) = (2, x,0,_4)
=W, (¢, x,wi_ 1) ] (W — wi_q)
> fi(t, x,w) + fo(t x,we) + f3(8 x,wy)
+ F(t,x,00)(Wemq — v) + @8, x, Wi 1) (0 — wiy)
+[G, (1, x,wi_1) = W (1, x,0) [ (Wemy — 1)
+ [F (2, x,wi_q) + G (1, x,0, 1) — (1, x,0,_1)
-V, (1, x'wk—l)](wk - Wi_1)
> fi(t,x,wi) + fo(8 x,w) + f(8, x,wy)
+ F (6 x,0) (W — o) + @8, x,w ) (0 — wie_q)
+[G, (1, x,w) = B (2, x,0) ] (We_y = 1;)
+[F,(t,x,0,) + G, (8, x,w,) — D, (1, x,w)
=W, (1, x,0)](we = we_y)
> fi(t, x,w) + fo(8, x,wi) + f3(8, %, wy)
+[F,(t,x,0) + G, (1, x,w;) — ®,(t, x,w,)
=W, (1, x,0) ] (we — 1),
and

wi(0,x) = ug(x).
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This proves that w, is the upper solution of (3.6). Therefore, using
Theorem 2.7, there exists a unique solution v, , , such that v, < v, ; < w,.

Similarly, we can prove that there exists a unique solution w,,, such
that v, <w,,, <w,. To prove that v,,, <w,,, let y=v, ; —w, ;.
Then we have

dy
Frin Ly < [F(t,x,v;) + G,(t,x,w;) — ®,(t, x,w,) — VY, (¢, x,0,) ]y

+ ot %, 8)y,

where ¢ € A, so that |f,,(t, x, )l <M by A, and y(0, x) < 0. By Maxi-
mum Principle Theorem 2.1, we have y(z, x) < 0. Therefore, v, < v, <
Wiv1 = Wi

Using mathematical induction, it is easy to see that v, and w, satisfy

Vg <0, < r <0, <w, < - <w, <w,, foralln.

Now using standard arguments as in the proof of Theorem 2.7, one can
show that the sequences {v,} and {w,} converge uniformly and monotoni-
cally to the unique solution of (2.1) on Q.

THEOREM 3.2. Let the assumptions of Theorem 3.1 hold. Furthermore,
suppose vy and w, are bounded functions and functions |f,|, |f5 |, |F,|, |G,],
|E, ) 1G, )L 1D, D, | [P, [P, | are bounded by M for t, x,u on A, where M
is a positive constant. Then the convergence of the sequences of Theorem 3.1
is quadratic.

Proof. Let a;,, = ult,x) —v;,, >0, By =Wy —u >0 Then we
have

ak+1(0' X) =0, Bk+1(o* )C) =0
Hence

day
ot

— Loy,

= f(t,x,u) — {fi(t, x,00) + (1, %,0,) + fo(t, x,0411)
+[F,(t,x,0) + G (1, x,w;) — (1, x,w,)
— W, (1, x,0)] (Vg1 — V)
=f(t, x,u) = fit,x,0,) = fo(t,x,0,) = f5(t, X, 04041)
_[Fu(t’xvvk) + Gu(t'x!wk) - q)u(t’x'wk)

=V, (6, x,0)] (Vs —u +u—vy)



GENERALIZED QUASI-LINEARIZATION METHOD 655

< [F(t,x,u) = F(t,x,0)] e + [G,(1,x,0,) = G (¢, x,w)] oy
+H[F(t x,0) + G (1, x,w) — @ (8, x,wp) = W (1,2, 00) e
+H[ @t x, W) — D (1, x,00) | oy
+[ W (1, x,0) =W, (t,x u)]ay + o (1%, €) iy

<Ma?+ M[ B, + oy ]ay + 5May,, + M[ B, + ;. ]a; + Ma}

=4Ma? + 5May ., + 2Ma, B,

< 5Ma} + 5May ., + MBZ.

Similarly,

MPBrs1

Py — LBy < MBZ + 5MBy, 1 + M.

Using Comparison Theorem 2.2, we get

0 <, (t,x) < foteSM(””maxQT{SMa,f + MpB2} ds.

Therefore,
maxlu — v, 4| < te®Tmax{5Mlu — v, + Mlu — w,|*}.
Similarly,
1 5MT 2 2
maxlu — w,, | < ze maX{Mlu—wkI + Mlu — v,| }

This completes the proof.
The population genetics problem of [7, p. 38] clearly illustrates the
application of Theorems 3.1 and 3.2.
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