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Abstract

The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other 

models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equi-

librium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability

and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock mo-

tion. Simulation has shown the validity of the control scheme. 
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1 Introduction*

Ramjet engine offers great potentialities to be 
as a propulsion system for supersonic guided mis-
siles because of its simplified construction, low spe-
cific weight, and operational economy. The realiza-
tion of the potential of this power plant is highly 
dependent upon the development of engine control 
systems capable of maintaining proper engine op-
eration. A propulsion system control is, in general, 
required to perform two basic services: (1) to main-
tain desired engine performance throughout a flight 
plan, (2) to avoid unsteady operation. Because ram-
jet engine performance and security are directly re-
lated to the position of the normal shock within the 
inlet, normal shock position control has been inves-
tigated for decades. 

In a ramjet inlet, supersonic flow is decelerated 
through a series of oblique shocks terminating with 

*Corresponding author. Tel.: +86-451-86413241. 
E-mail address: cuitao@hit.edu.cn
Foundation item: Hi-Tech Research and Development Program of China 

(2002AA723011)

a quasi-normal shock at the position slightly down-
stream the inlet throat. The location of the normal 
shock directly influences the inlet efficiency and the 
peak performance will be obtained with the shock 
position rightly at the throat. However, the system 
with the shock position at the inlet throat or up-
stream inlet throat is unstable[1], which will result in 
expulsion of the shock system (inlet unstart)[2-4].
Moreover, disturbances originating in the freestream 
(e.g., turbulence) or in the subsonic portion of the 
inlet (e.g., at the compressor face) can cause the 
terminal shock momentarily to move into the up-
stream side of the throat, and thereby leads to inlet 
unstart. Inlet unstart, in turn, will induce a loss of 
propulsive efficiency and an asymmetric pressuriza-
tion of the wing that would require large control 
surface forces to maintain aircraft control. The inlet 
tolerance can be improved by moving the normal 
shock farther downstream the inlet throat. However, 
this will increase the total pressure loss and might 
cause flow separation due to interaction between the 
stronger normal shock and the boundary layer. 
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Therefore, control of a terminal shock has a signifi-
cant influence on supersonic inlet performance[5].

Various mathematical models used to design 
the normal shock control system have been studied. 
Since a complete mathematical description of the 
dynamic behaviors of normal shock is not only 
complex, but also highly nonlinear[6], model lin-
earization becomes a common approximate method. 
Hurrell[7] used a linearizational method to investi-
gate the effects of downstream pressure distur-
bances on the normal shock. A linearization model 
was developed by Willoh[8] to capture the shock mo-
tion, and another model by Culick[9] and Sajben[10]

et al. to analyze the acoustic reflection and trans-
mission properties of the normal shock. More re-
cently, the linearizational model was extended by 
MacMartin[11] to represent the upstream and down-
stream perturbations as acoustic and entropy waves. 
A nonlinear model of shock wave trains in ducts 
with wall discontinuities was proposed by Alonso[12]

to analyze the nonlinear process of shock motion. 
However, the nonlinear model can not be used as 
control model. 

As from the previous studies, small perturba-
tion methods have been applied for approximation 
and simplification. However, a small perturbation 
model is only effective when a system operates 
about a certain nominal operating position. To solve 
the problem, piecewise-linear methods are applied 
to enlarge the operating range, but a contradiction 
between accuracy and complexity happens in the 
use of the methods, which means too many models 
will be involved complexities in the control system 
design, and, moreover, a few of them will result in 
low accuracy. Another shortcoming is the discon-
tinuous switching among different models, which 
may decreases the stability of the control system. 
With this consideration, Yu[13] developed an equilib-
rium manifold linearization model for nonlinear 
shock motion, which can achieve continuous global 
linearization with high accuracy and simplicity.  

Based on the equilibrium manifold lineariza-
tion model, this paper develops a gain scheduling 
control method for nonlinear shock motion. 

2 Equilibrium Manifold Linearization 

To begin with, a nonlinear plant is described by 
( ) [ ( ), ( )]
( ) [ ( ), ( )]

x t f x t u t

y t h x t u t
          (1) 

where f and h are smooth functions. The equilibrium 
manifold of the system described by Eq.(1) is a set 
defined as 

{( , ) | ( , ) 0}x u f x u           (2) 

Assuming that the equilibrium manifold should 
be parameterized by a smooth function [x( ), u( ),
y( )], where  is a scheduling variable, then 
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Linearizing Eq.(1) about its equilibrium mani-
fold yields the parameterized linearization family[10]
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3 Equilibrium Manifold Linearization for
 Modeling of Nonlinear Shock Motion 

The nonlinear model of a normal shock can be 
expressed as 

s
s 2

d
( , )

d
x

F x J
t

            (6) 

where xs is the normal shock position, and 2J  de-
notes the perturbation acoustic wave at downstream 
side of  the normal shock, which can be described 
by 

2 2 2
2

1
J u a

k
           (7) 

where subscript “2” denotes the locations down-
stream of the normal shock.  

According to Ref.[9], the unsteady shock mo-
tion can be expressed by  
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Assuming that upstream conditions should be 
constant, the upstream variables u1 and a1 can be 
expressed as a function of xs, while the downstream 
variables u2 and a2 as the perturbations. Eqs.(8)-(9) 
can be written into 
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where fu and fa represent the right-hand sides of 
Eqs.(8)-(9) respectively. 

According to the equilibrium manifold lineari-
zation method, the equilibrium manifold of nonlin-
ear shock motion is defined as 

s 2 s 2

s 2 s 2
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The partial differential coefficients are calcu-
lated by 
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where A is the cross-sectional area, and subscript 
“1” denote the locations upstream of the normal 
shock.  

After the equilibrium manifold and the partial 
differential coefficients have been calculated, the 
following final equations can be obtained: 
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The next step is to combine the perturbation 
variables of a2 and u2 into the acoustic perturbation 
wave 2J . According to the definition of 2J , the 
equilibrium manifold linearization model can be 
obtained as follows: 
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Parameterizing the equilibrium manifold by a 
scheduling variable  is an essential point of the 
method. The normal shock position xs is defined as 
a scheduling variable: 

sx                  (20) 

Then, the equilibrium manifold linearization model 
can be written into 
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where T(xs) is the integral time constant. 

4 Model Analysis 

The following analysis is aimed at better un-
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derstanding the connotative physical significance 
and application merits. 

4.1 The self-feedback mechanism of shock   
motion

As discussed above, the equilibrium manifold 
linearization model can achieve the decoupling of 
the steady-state and dynamic behaviors of the 
nonlinear shock motion, where the steady-state be-
haviors are described by the equilibrium manifold 

s 2 s{ , ( )}x J x , while the dynamic behaviors by the 
integral time constant T(xs).  

Firstly, the steady-state behaviors of the 
nonlinear shock motion are analyzed. Formally, 
when the system is on the equilibrium manifold, 

2J  will be determined by the shock position xs.
However, if the shock is in a constant-area channel, 

2J  will be constant and independent of xs. This 
means that the variable, which directly determines 
the value of 2J , is not the shock position xs, but the 
cross-sectional area A. With this, the equilibrium 
manifold can be redefined as 2{ , ( )}A J A , where, 
A=A(xs). Although the redefinition may be useless in 
mathematics, it may be helpful to understand the 
physical mechanism of the shock motion. 

Secondly, the dynamic behaviors of nonlinear 
shock motion are analyzed. From the view of con-
trol applications, the equilibrium manifold lineari-
zation model, described by Eq.(21), can be ex-
pressed as an integral process with a physical feed-
back shown in Fig.1. It indicates that the motion of 
a normal shock is a self-feedback system character-
ized by a self-balance or a dynamic imbalance. 

Fig.1  Equilibrium manifold linearization model. 

To investigate the self-feedback mechanism of 
the nonlinear shock motion, a residual error  is de-
fined as 

2 2 s[ ( )]J J A x           (23) 

where  is also the perturbation which provides the 

driving force. If  equals zero, the shock will be 
staying at a place.  

For a given acoustic wave 2J , can be acquired 
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where  is the eigen value of the residual error 
equation for determining the stability of the 
self-feedback system. As is known, the system will 
be unstable when  is positive, yet stable when   
negative. If  equals zero, the system will be in a 
critical state. As shown in Eq.(25), the sign of  is 
determined by dA/(Adx), therefore, the stability of 
the self-feedback system is determined by the pro-
file of the cross-sectional area. 

The self-feedback mechanism of the shock mo-
tion can be described as follows: in a diverging 
channel, the self-feedback system is negative and 
the shock motion is stable due to the resistance from 
the negative feedback; in a converging channel, the 
self-feedback system is positive feedback, and the 
shock motion is unstable due to the propulsion from 
the positive feedback; while in a constant-area 
channel, the self-feedback system will change into a 
pure integral process with no feedback, which 
means that with the constant perturbation , the 
shock moves at a constant speed dxs/dt, where the 
relation between  and dxs/dt is determined by the 
integral time constant T [A(xs)].

4.2 The application merits of the equilibrium
manifold linearization model 

Next, as shown in Fig.1, for any given value of 
the scheduling variable xs, the equilibrium manifold 

2 s[ ( )]J A x  and the integral time constant T [A(xs)]
can be automatically changed. In this way, a global 
linearization model is obtained with a good com- 
bination of high accuracy and low complexity. On 
the other hand, because the parameters of the model 
can be automatically scheduled by the scheduling 
variable xs, there is no need for any switching to 
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other different small perturbation models, such as 
the piecewise-linear method, which may decrease 
the stability of the control system.  

Another underlying merit of the equilibrium 
manifold linearization model worth pointing out is 
its further application in identifying the practical 
shock motion with test data. The actual supersonic 
inlet involves shock/turbulent boundary layer inter-
action, and the conclusions based on the theoretic 
model herein should be firstly considered as an ini-
tial guidance. Fortunately, the equilibrium manifold 
linearization method has an inimitable above-men-
tioned feature to achieve the decoupling of the 
steady-state and dynamic behaviors of the complex 
physical system. This is helpful in providing a 
simplified model configuration for identifications, 
in which the equilibrium manifold and the partial 
differential coefficients are the unknown functions 
of the scheduling variable xs to be identified. In 
practical identifications, the equilibrium manifold 
can be identified by the steady-state test data, and 
then the partial differential coefficients should be 
identified by the dynamic test data. 

5 Gain Scheduling Control Method 

The work to design a linearization gain sche- 
duled controller contains designing a linear control-
ler family corresponding to the plant linearization 
family. The results in a linear controller family are 
parametrized by the scheduling variable . These 
are local deviation signals associated with the lin-
earized plant near the equilibrium parametrized 
by . With this consideration, there is a natural link 
between the gain scheduling control and the equi-
librium manifold linearization model. 

Fig.2 shows the control system of shock mo-
tion including the perturbation waves, shock dy- 

Fig.2  Control system of shock motion. 

namics, actuator and controller. The actuator is a 
fuel-supplied system whose time constant is L. sx

is a designated value, d the disturbance signal, U the 
control variable which drives the fuel-supplied sys-
tem, and M is the fuel flow rate. 

5.1 Control shortcomings 

Controlling shock motion is to keep the shock 
at a designated position sx . Therefore, the main 
task is to compensate for disturbances. The control 
shortcomings are: (1) steady error 0C ; (2) peak 
value error of unit step disturbance m 20%C ; (3) 
phase reserve c 50°.

5.2 Control arithmetic 

Gain scheduling control is an effective way of 
controlling systems whose dynamics changes with 
the operating conditions. It is normally used in the 
control of nonlinear plants, in which the relationship 
between the plant dynamics and operating condi-
tions is known, and for which a single linear 
time-independent model is sufficient. A gain sched-
uling control system can be viewed as a feedback 
control system in which the feedback gains are ad-
justed using feedforward compensation. The typical 
design procedure of gain scheduling control in-
volves the following steps: (1) selection of schedul-
ing variable ; (2) construction of linear-invariant 
approximation to the plant at the ith operating point; 
(3) design of linear controller at each operating 
point; (4) design of gain scheduling scheme.  

As for the problem of regulation, PID regula-
tion is the commonly used method. Fig.3 shows the 
PID regulation system of shock motion. 

Fig.3  PID regulation system of shock motion. 

PID regulator can be described by 

p d
i

1( ) (1 )C s K T s
T s

        (26) 
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When the system meets with an external step 
disturbance, the proportion controller will work as a 
main factor at the early time. Therefore, the peak 
value error Cm is mainly determined by the propor-
tion Kp. Then the value of Kp is obtained by the 
given peak value error Cm. Thereafter, the phase 
reserve c is mainly determined by the integral time 
constant Ti. Because the integral controller will in-
troduce phase delay, derivative controller may be 
used to increase the phase reserve. 

Figs.4-5 show the results for the ith operating 
point, where the steady error C  equals zero, the 
peak value error of unit step disturbance Cm 19.2%, 
and the phase reserve c 53.6°. 

Fig.4  Close-loop response of the system with PID regulator. 

Fig.5  Bode figure of the system with PID regulator. 

Different control procedures for different oper-
ating points were designed as shown in Table 1 in-
cluding the design parameters for PID regulator and 
their corresponding shortcomings. It should be 
pointed out that there is a contradiction between the 
peak value error Cm and the bandwidth c. To limit 
the increase of system’s bandwidth, the peak value 
error must not be too low. 

After designing a set of controllers for different 
operating points, linearly interpolating parameter 
value method may be used to design the gain sched-
uling scheme. 

Table 1 Table of gain scheduling control 

xs Kp Ti Td C Cm c /(°)
–0.60 3.3 0.045 0.002 0 0.191 55.2 
–0.30 3.2 0.040 0.001 0 0.194 54.7 

0 3.0 0.040 0.001 0 0.192 53.6 
0.30 3.2 0.040 0.001 0 0.191 56.4 
0.60 4.3 0.066 0.004 0 0.187 54.7 
0.80 5.0 0.083 0.006 0 0.189 56.8 
0.90 5.4 0.100 0.010 0 0.186 54.5 
0.95 6.1 0.125 0.012 0 0.189 56.1 

Lagrange interpolating parameter value method 
is used as follows: 

p p
0 0,

i i
0 0,

d d
0 0,

nn
j

i
i i jj j i

nn
j

i
i i jj j i

nn
j

i
i i jj j i

x x
K K

x x

x x
T T

x x

x x
T T

x x

       (27) 

where the subscripts i and j denote different operat-
ing points. 

6 Simulation Results 

Fig.6 shows the comparison between gain 
scheduling control and gain fixing control with 
small disturbance (unit step disturbance), where the 
difference in peak value errors is only 0.4%. This 
means that the gain fixing control with small dis-
turbance is valid when a system operates near a cer-
tain nominal operating position. Fig.7 shows the 
comparison between gain scheduling control and 
gain fixing control with large disturbance (two and a 
half time the unit step disturbance), where the dif-
ference in peak value errors is about 12%. Fig.8 and 
Fig.9 show the time-dependent changes of control 
variable U and flue flow rates M with large distur-
bance respectively. 

The results show the merits of gain scheduling 
control based on the equilibrium manifold lineariza-
tion model. It should be pointed out that these re-
sults were acquired under the assumption of ignor-
ing the influences of upstream conditions. Taking 
this factor into account in the future, the nonlinear-
ity of the shock motion is anticipated to be 
strengthened accordingly, and the method proposed 
in this paper will be more effective. 
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Fig.6  Time-dependent changes of shock position with 
small disturbance. 

Fig.7  Time-dependent changes of shock position with large 
disturbance.

Fig.8  Time-dependent changes of control variable with 
large disturbance. 

Fig.9  Time-dependent changes of fuel flow rate with large 
disturbance.

7 Conclusions 

The equilibrium manifold linearization model 
is more accurate than the small perturbation lineari-

zation and simpler than the piecewise-linear method. 
Based on analysis of this model, this paper reveals 
the self-feedback mechanism of shock motion, 
which is important for describing the stability and 
dynamics of shock motion. Also based on this 
model, the paper designs a gain scheduling control 
scheme for nonlinear shock motion. Simulation 
shows the merits of the method when the system 
suffers from a large disturbance. 
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