5,102 research outputs found

    Built-In Self-Test Methodology for A/D Converters

    Get PDF
    A (partial) Built-in Self-Test (BIST) methodology is proposed for analog to digital (A/D) converters. In this methodology the number of bits of the A/D converter that needs to be monitored externally in a test is reduced. This reduction depends, among other things, on the frequency of the applied test signal. At low test signal frequencies only the least significant bit (LSB) needs to be monitored and a "full" BIST becomes feasible. An analysis is made of the trade-off between the size of the on-chip test circuitry and the accuracy of this BIST techniqu

    14-bit 2.2-MS/s sigma-delta ADC's

    Get PDF

    Methodology for testing high-performance data converters using low-accuracy instruments

    Get PDF
    There has been explosive growth in the consumer electronics market during the last decade. As the IC industry is shifting from PC-centric to consumer electronics-centric, digital technologies are no longer solving all the problems. Electronic devices integrating mixed-signal, RF and other non-purely digital functions are becoming new challenges to the industry. When digital testing has been studied for long time, testing of analog and mixed-signal circuits is still in its development stage. Existing solutions have two major problems. First, high-performance mixed-signal test equipments are expensive and it is difficult to integrate their functions on chip. Second, it is challenging to improve the test capability of existing methods to keep up with the fast-evolving performance of mixed-signal products demanded on the market. The International Technology Roadmap for Semiconductors identified mixed-signal testing as one of the most daunting system-on-a-chip challenges;My works have been focused on developing new strategies for testing the analog-to-digital converter (ADC) and digital-to-analog converter (DAC). Different from conventional methods that require test instruments to have better performance than the device under test, our algorithms allow the use of medium and low-accuracy instruments in testing. Therefore, we can provide practical and accurate test solutions for high-performance data converters. Meanwhile, the test cost is dramatically reduced because of the low price of such test instruments. These algorithms have the potential for built-in self-test and can be generalized to other mixed-signal circuitries. When incorporated with self-calibration, these algorithms can enable new design techniques for mixed-signal integrated circuits. Following contents are covered in the dissertation:;(1) A general stimulus error identification and removal (SEIR) algorithm that can test high-resolution ADCs using two low-linearity signals with a constant offset in between; (2) A center-symmetric interleaving (CSI) strategy for generating test signals to be used with the SEIR algorithm; (3) An architecture-based test algorithm for high-performance pipelined or cyclic ADCs using a single nonlinear stimulus; (4) Using Kalman Filter to improve the efficiency of ADC testing; and (5) A testing algorithm for high-speed high-resolution DACs using low-resolution ADCs with dithering

    Fully digital-compatible built-in self-test solutions to linearity testing of embedded mixed-signal functions

    Get PDF
    Mixed-signal circuits, especially analog-to-digital and digital-to-analog converters, are the most widely used circuitry in electronic systems. In the most of the cases, mixed-signal circuits form the interface between the analog and digital worlds and enable the processing and recovering of the real-world information. Performance of mixed-signal circuits, such as linearity and noise, are then critical to any applications. Conventionally, mixed-signal circuits are tested by mixed-signal automatic test equipment (ATE). However, along with the continuous performance improvement, using conventionally methods increases test costs significantly since it takes much more time to test high-performance parts than low-performance ones and mixed-signal ATE testers could be extremely expensive depending on the test precision they provide. Another factor that makes mixed-signal testing more and more challenging is the advance of the integration level. In the popular system-on-chip applications, mixed-signal circuits are deeply embedded in the systems. With less observability and accessibility, conventionally external test methods can not guarantee the precision of the source signals and evaluations. Test performance is then degraded. This work investigates new methods using digital testers incorporated with on-chip, built-in self-test circuits to test the linearity performance of data converters with less test cost and better test performance. Digital testers are cheap to use since they only offer logic signals with direct connections. The analog sourcing and evaluation capabilities have to be absorbed by the on-chip BIST circuits, which, meanwhile, could benefit the test performance with access to the internal circuit nodes. The main challenge of the digital-compatible BIST methods is to implement the BIST circuits with enough high test performance but with low design complexity and cost. High-resolution data converter testing needs much higher-precision analog source signals and evaluation circuits. However, high-precision analog circuits are conventionally hard to design and costly, and their performance is subject to mismatch errors and process variations and cannot be guaranteed without careful testing. On the digital side, BIST circuits usually conduct procedure control and data processing. To make the BIST solution more universal, the control and processing performed by the digital BIST circuits should be simple and not rely on any complex microcontroller and DSP block. Therefore, the major tasks of this dissertation are 1) performance-robust analog BIST circuit design and 2) test procedure development. Analog BIST circuits in this work consist of only low-accuracy analog components, which are usually easy to design and cost effective. The precision is then obtained by applying the so-called deterministic dynamic element matching technique to the low-accuracy analog cells. The test procedure and data processing designed for the BIST system are simple and can be implemented by small logic circuits. In this dissertation, we discuss the proposed BIST solutions to ADC and DAC linearity testing in chapter 3 and chapter 5, respectively. In each case, the structure of the test system, the test procedure, and the theoretical analysis of the test performance are presented. Simulation results are shown to verify the efficacy of the methods. The ADC BIST system is also verified experimentally. In addition, chapter 4 introduces a system-identification based reduced-code testing method for pipeline ADCs. This method is able to reduce test time by more than 95%. And it is compatible with the proposed BIST method discussed in chapter 3

    Design-for-Test of Mixed-Signal Integrated Circuits

    Get PDF

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process
    • …
    corecore