3 research outputs found

    Higher-Order MSL Horn Constraints

    Get PDF

    LambdaY-Calculus With Priorities

    Get PDF
    International audienceThe lambdaY-calculus with priorities is a variant of the simply-typed lambda calculus designed for higher-order model-checking. The higher-order model-checking problem asks if a given parity tree automaton accepts the Böhm tree of a given term of the simply-typed lambda calculus with recursion. We show that this problem can be reduced to the same question but for terms of lambdaY-calculus with priorities and visibly parity automata; a subclass of parity automata. The latter question can be answered by evaluating terms in a simple powerset model with least and greatest fixpoints. We prove that the recognizing power of powerset models and visibly parity automata are the same. So, up to conversion to the lambdaY-calculus with priorities, powerset models with least and greatest fixpoints are indeed the right semantic framework for the model-checking problem. The reduction to lambdaY-calculus with priorities is also efficient algorithmically: it gives an algorithm of the same complexity as direct approaches to the higher-order model-checking problem. This indicates that the task of calculating the value of a term in a powerset model is a central algo-rithmic problem for higher-order model-checking

    Linearity in higher-order recursion schemes

    No full text
    International audienceHigher-order recursion schemes (HORS) have recently emerged as a promising foundation for higher-order program verification. We examine the impact of enriching HORS with linear types. To that end, we introduce two frameworks that blend non-linear and linear types: a variant of the λY -calculus and an extension of HORS, called linear HORS (LHORS).First we prove that the two formalisms are equivalent and there exist polynomial-time translations between them. Then, in order to support model-checking of (trees generated by) LHORS, we propose a refined version of alternating parity tree automata, called LNAPTA, whose behaviour depends on information about linearity. We show that the complexity of LNAPTA model-checking for LHORS depends on two type-theoretic parameters: linear order and linear depth. The former is in general smaller than the standard notion of order and ignores linear function spaces. In contrast, the latter measures the depth of linear clusters inside a type. Our main result states that LNAPTA model-checking of LHORS of linear order n is n-EXPTIME-complete, when linear depth is fixed. This generalizes and improves upon the classic result of Ong, which relies on the standard notion of order.To illustrate the significance of the result, we consider two applications: the MSO model-checking problem on variants of HORS with case distinction (RSFD and HORSC) on a finite domain and a call-by-value resource verification problem. In both cases, decidability can be established by translation into HORS, but the implied complexity bounds will be suboptimal due to increases in type order. In contrast, we show that the complexity bounds derived by translations into LHORS and appealing to our result are optimal in that they match the respective hardness results
    corecore