765 research outputs found

    Digital Signal Processing and Machine Learning System Design using Stochastic Logic

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2017. Major: Electrical/Computer Engineering. Advisor: Keshab Parhi. 1 computer file (PDF); xxii, 172 pages.Digital signal processing (DSP) and machine learning systems play a crucial role in the fields of big data and artificial intelligence. The hardware design of these systems is extremely critical to meet stringent application requirements such as extremely small size, low power consumption, and high reliability. Following the path of Moore's Law, the density and performance of hardware systems are dramatically improved at an exponential pace. The increase in the number of transistors on a chip, which plays the main role in improvement in the density of circuit design, causes rapid increase in circuit complexity. Therefore, low area consumption is one of the key challenges for IC design, especially for portable devices. Another important challenge for hardware design is reliability. A chip fabricated using nanoscale complementary metal-oxide-semiconductor (CMOS) technologies will be prone to errors caused by fluctuations in threshold voltage, supply voltage, doping levels, aging, timing errors and soft errors. Design of nanoscale failure-resistant systems is currently of significant interest, especially as the technology scales below 10 nm. Stochastic Computing (SC) is a novel approach to address these challenges in system and circuit design. This dissertation considers the design of digital signal processing and machine learning systems in stochastic logic. The stochastic implementations of finite impulse response (FIR) and infinite impulse response (IIR) filters based on various lattice structures are presented. The implementations of complex functions such as trigonometric, exponential, and sigmoid, are derived based on truncated versions of their Maclaurin series expansions. We also present stochastic computation of polynomials using stochastic subtractors and factorization. The machine learning systems including artificial neural network (ANN) and support vector machine (SVM) in stochastic logic are also presented. First, we propose novel implementations for linear-phase FIR filters in stochastic logic. The proposed design is based on lattice structures. Compared to direct-form linear-phase FIR filters, linear-phase lattice filters require twice the number of multipliers but the same number of adders. The hardware complexities of stochastic implementations of linear-phase FIR filters for direct-form and lattice structures are comparable. We propose stochastic implementation of IIR filters using lattice structures where the states are orthogonal and uncorrelated. We present stochastic IIR filters using basic, normalized and modified lattice structures. Simulation results demonstrate high signal-to-error ratio and fault tolerance in these structures. Furthermore, hardware synthesis results show that these filter structures require lower hardware area and power compared to two's complement realizations. Second, We present stochastic logic implementations of complex arithmetic functions based on truncated versions of their Maclaurin series expansions. It is shown that a polynomial can be implemented using multiple levels of NAND gates based on Horner's rule, if the coefficients are alternately positive and negative and their magnitudes are monotonically decreasing. Truncated Maclaurin series expansions of arithmetic functions are used to generate polynomials which satisfy these constraints. The input and output in these functions are represented by unipolar representation. For a polynomial that does not satisfy these constraints, it still can be implemented based on Horner's rule if each factor of the polynomial satisfies these constraints. format conversion is proposed for arithmetic functions with input and output represented in different formats, such as cosπx\text{cos}\,\pi x given x[0,1]x\in[0,1] and sigmoid(x)\text{sigmoid(x)} given x[1,1]x\in[-1,1]. Polynomials are transformed to equivalent forms that naturally exploit format conversions. The proposed stochastic logic circuits outperform the well-known Bernstein polynomial based and finite-state-machine (FSM) based implementations. Furthermore, the hardware complexity and the critical path of the proposed implementations are less than the Bernstein polynomial based and FSM based implementations for most cases. Third, we address subtraction and polynomial computations using unipolar stochastic logic. It is shown that stochastic computation of polynomials can be implemented by using a stochastic subtractor and factorization. Two approaches are proposed to compute subtraction in stochastic unipolar representation. In the first approach, the subtraction operation is approximated by cascading multi-levels of OR and AND gates. The accuracy of the approximation is improved with the increase in the number of stages. In the second approach, the stochastic subtraction is implemented using a multiplexer and a stochastic divider. We propose stochastic computation of polynomials using factorization. Stochastic implementations of first-order and second-order factors are presented for different locations of polynomial roots. From experimental results, it is shown that the proposed stochastic logic circuits require less hardware complexity than the previous stochastic polynomial implementation using Bernstein polynomials. Finally, this thesis presents novel architectures for machine learning based classifiers using stochastic logic. Three types of classifiers are considered. These include: linear support vector machine (SVM), artificial neural network (ANN) and radial basis function (RBF) SVM. These architectures are validated using seizure prediction from electroencephalogram (EEG) as an application example. To improve the accuracy of proposed stochastic classifiers, an approach of data-oriented linear transform for input data is proposed for EEG signal classification using linear SVM classifiers. Simulation results in terms of the classification accuracy are presented for the proposed stochastic computing and the traditional binary implementations based datasets from two patients. It is shown that accuracies of the proposed stochastic linear SVM are improved by 3.88\% and 85.49\% for datasets from patient-1 and patient-2, respectively, by using the proposed linear-transform for input data. Compared to conventional binary implementation, the accuracy of the proposed stochastic ANN is improved by 5.89\% for the datasets from patient-1. For patient-2, the accuracy of the proposed stochastic ANN is improved by 7.49\% by using the proposed linear-transform for input data. Additionally, compared to the traditional binary linear SVM and ANN, the hardware complexity, power consumption and critical path of the proposed stochastic implementations are reduced significantly

    A New Stochastic Inner Product Core Design for Digital FIR Filters

    Get PDF
    Stochastic computing (SC) is a computational technique with computational operations governed by probability instead of arithmetic rules. It recently found promising applications in digital and image processing areas and attracted attentions of researchers. In this paper, a new stochastic inner product (multiply and accumulate) core with an improved scaling scheme is presented for improving the accuracy and fault tolerance performance of SC based finite impulse response (FIR) digital filters. The proposed inner product core is designed using tree structured multiplexers which is capable of reducing the critical path and fault propagation in the stochastic circuitry. The designed inner product core can lead to construction of SC based light weight and multiplierless FIR digital filters. As a result, an SC based FIR digital FIR filter is implemented on Altera Cyclone V FPGA which operates on stochastic sequences of 256-bits length (8-bits precision level). Experimental results show that the developed filter has lower hardware cost, better accuracy and higher fault tolerance level compared with other stochastic implementations

    Low power digital signal processing

    Get PDF

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    A New Stochastic Inner Product Core Design for Digital FIR Filters

    Full text link

    Low Power Digital Filter Implementation in FPGA

    Get PDF
    Digital filters suitable for hearing aid application on low power perspective have been developed and implemented in FPGA in this dissertation. Hearing aids are primarily meant for improving hearing and speech comprehensions. Digital hearing aids score over their analog counterparts. This happens as digital hearing aids provide flexible gain besides facilitating feedback reduction and noise elimination. Recent advances in DSP and Microelectronics have led to the development of superior digital hearing aids. Many researchers have investigated several algorithms suitable for hearing aid application that demands low noise, feedback cancellation, echo cancellation, etc., however the toughest challenge is the implementation. Furthermore, the additional constraints are power and area. The device must consume as minimum power as possible to support extended battery life and should be as small as possible for increased portability. In this thesis we have made an attempt to investigate possible digital filter algorithms those are hardware configurable on low power view point. Suitability of decimation filter for hearing aid application is investigated. In this dissertation decimation filter is implemented using ‘Distributed Arithmetic’ approach.While designing this filter, it is observed that, comb-half band FIR-FIR filter design uses less hardware compared to the comb-FIR-FIR filter design. The power consumption is also less in case of comb-half band FIR-FIR filter design compared to the comb-FIR-FIR filter. This filter is implemented in Virtex-II pro board from Xilinx and the resource estimator from the system generator is used to estimate the resources. However ‘Distributed Arithmetic’ is highly serial in nature and its latency is high; power consumption found is not very low in this type of filter implementation. So we have proceeded for ‘Adaptive Hearing Aid’ using Booth-Wallace tree multiplier. This algorithm is also implemented in FPGA and power calculation of the whole system is done using Xilinx Xpower analyser. It is observed that power consumed by the hearing aid with Booth-Wallace tree multiplier is less than the hearing aid using Booth multiplier (about 25%). So we can conclude that the hearing aid using Booth-Wallace tree multiplier consumes less power comparatively. The above two approached are purely algorithmic approach. Next we proceed to combine circuit level VLSI design and with algorithmic approach for further possible reduction in power. A MAC based FDF-FIR filter (algorithm) that uses dual edge triggered latch (DET) (circuit) is used for hearing aid device. It is observed that DET based MAC FIR filter consumes less power than the traditional (single edge triggered, SET) one (about 41%). The proposed low power latch provides a power saving upto 65% in the FIR filter. This technique consumes less power compared to previous approaches that uses low power technique only at algorithmic abstraction level. The DET based MAC FIR filter is tested for real-time validation and it is observed that it works perfectly for various signals (speech, music, voice with music). The gain of the filter is tested and is found to be 27 dB (maximum) that matches with most of the hearing aid (manufacturer’s) specifications. Hence it can be concluded that FDF FIR digital filter in conjunction with low power latch is a strong candidate for hearing aid application

    Evolvable hardware platform for fault-tolerant reconfigurable sensor electronics

    Get PDF
    corecore