28 research outputs found

    Symbol Based Precoding in The Downlink of Cognitive MISO Channels

    Get PDF
    This paper proposes symbol level precoding in the downlink of a MISO cognitive system. The new scheme tries to jointly utilize the data and channel information to design a precoding that minimizes the transmit power at a cognitive base station (CBS); without violating the interference temperature constraint imposed by the primary system. In this framework, the data information is handled at symbol level which enables the characterization the intra-user interference among the cognitive users as an additional source of useful energy that should be exploited. A relation between the constructive multiuser transmissions and physical-layer multicast system is established. Extensive simulations are performed to validate the proposed technique and compare it with conventional techniques.Comment: CROWNCOM 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Resource Allocation in Underlay and Overlay Spectrum Sharing

    Get PDF
    As the wireless communication technologies evolve and the demand of wireless services increases, spectrum scarcity becomes a bottleneck that limits the introduction of new technologies and services. Spectrum sharing between primary and secondary users has been brought up to improve spectrum efficiency. In underlay spectrum sharing, the secondary user transmits simultaneously with the primary user, under the constraint that the interference induced at the primary receiver is below a certain threshold, or a certain primary rate requirement has to be satisfied. Specifically, in this thesis, the coexistence of a multiple-input single-output (MISO) primary link and a MISO/multiple-input multiple-output (MIMO) secondary link is studied. The primary transmitter employs maximum ratio transmission (MRT), and single-user decoding is deployed at the primary receiver. Three scenarios are investigated, in terms of the interference from the primary transmitter to the secondary receiver, namely, weak interference, strong interference and very strong interference, or equivalently three ranges of primary rate requirement. Rate splitting and successive decoding are deployed at the secondary transmitter and receiver, respectively, when it is feasible, and otherwise single-user decoding is deployed at the secondary receiver. For each scenario, optimal beamforming/precoding and power allocation at the secondary transmitter is derived, to maximize the achievable secondary rate while satisfying the primary rate requirement and the secondary power constraint. Numerical results show that rate splitting at the secondary transmitter and successive decoding at the secondary receiver does significantly increase the achievable secondary rate if feasible, compared with single-user decoding at the secondary receiver. In overlay spectrum sharing, different from underlay spectrum sharing, the secondary transmitter can utilize the knowledge of the primary message, which is acquired non-causally (i.e., known in advance before transmission) or causally (i.e., acquired in the first phase of a two-phase transmission), to help transmit the primary message besides its own message. Specifically, the coexistence of a MISO primary link and a MISO/MIMO secondary link is studied. When the secondary transmitter has non-causal knowledge of the primary message, dirty-paper coding (DPC) can be deployed at the secondary transmitter to precancel the interference (when decoding the secondary message at the secondary receiver), due to the transmission of the primary message from both transmitters. Alternatively, due to the high implementation complexity of DPC, linear precoding can be deployed at the secondary transmitter. In both cases, the primary transmitter employs MRT, and single-user decoding is deployed at the primary receiver; optimal beamforming/precoding and power allocation at the secondary transmitter is obtained, to maximize the achievable secondary rate while satisfying the primary rate requirement and the secondary power constraint. Numerical results show that with non-causal knowledge of the primary message and the deployment of DPC at the secondary transmitter, overlay spectrum sharing can achieve a significantly higher secondary rate than underlay spectrum sharing, while rate loss occurs with the deployment of linear precoding instead of DPC at the secondary transmitter. When the secondary transmitter does not have non-causal knowledge of the primary message, and still wants to help with the primary transmission in return for the access to the spectrum, it can relay the primary message in an amplify-and-forward (AF) or a decode-and-forward (DF) way in a two-phase transmission, while transmitting its own message. The primary link adapts its transmission strategy and cooperates with the secondary link to fulfill its rate requirement. To maximize the achievable secondary rate while satisfying the primary rate requirement and the primary and secondary power constraints, in the case of AF cooperative spectrum sharing, optimal relaying matrix and beamforming vector at the secondary transmitter is obtained; in the case of DF cooperative spectrum sharing, a set of parameters are optimized, including time duration of the two phases, primary transmission strategies in the two phases and secondary transmission strategy in the second phase. Numerical results show that with the cooperation from the secondary link, the primary link can avoid outage effectively, especially when the number of antennas at the secondary transceiver is large, while the secondary link can achieve a significant rate. Power is another precious resource besides spectrum. Instead of spectrum efficiency, energy-efficient spectrum sharing focuses on the energy efficiency (EE) optimization of the secondary transmission. The EE of the secondary transmission is defined as the ratio of the achievable secondary rate and the secondary power consumption, which includes both the transmit power and the circuit power at the secondary transmitter. For simplicity, the circuit power is modeled as a constant. Specifically, the EE of a MIMO secondary link in underlay spectrum sharing is studied. Three transmission strategies are introduced based on the primary rate requirement and the channel conditions. Rate splitting and successive decoding are deployed at the secondary transmitter and receiver, respectively, when it is feasible, and otherwise single-user decoding is deployed at the secondary receiver. For each case, optimal transmit covariance matrices at the secondary transmitter are obtained, to maximize the EE of the secondary transmission while satisfying the primary rate requirement and the secondary power constraint. Based on this, an energy-efficient resource allocation algorithm is proposed. Numerical results show that MIMO underlay spectrum sharing with EE optimization can achieve a significantly higher EE compared with MIMO underlay spectrum sharing with rate optimization, at certain SNRs and with certain circuit power, at the cost of the achievable secondary rate, while saving the transmit power. With rate splitting at the secondary transmitter and successive decoding at the secondary receiver if feasible, a significantly higher EE can be achieved compared with the case when only single-user decoding is deployed at the secondary receiver. Moreover, the EE of a MIMO secondary link in overlay spectrum sharing is studied, where the secondary transmitter has non-causal knowledge of the primary message and employs DPC to obtain an interference-free secondary link. Energy-efficient precoding and power allocation is obtained to maximize the EE of the secondary transmission while satisfying the primary rate requirement and the secondary power constraint. Numerical results show that MIMO overlay spectrum sharing with EE optimization can achieve a significantly higher EE compared with MIMO overlay spectrum sharing with rate optimization, at certain SNRs and with certain circuit power, at the cost of the achievable secondary rate, while saving the transmit power. MIMO overlay spectrum sharing with EE optimization can achieve a higher EE compared with MIMO underlay spectrum sharing with EE optimization.Aufgrund der rasanten Entwicklung im Bereich der drahtlosen Kommunikation und der stĂ€ndig steigenden Nachfrage nach mobilen Anwendungen ist die Knappheit von FrequenzbĂ€ndern ein entscheidender Engpass, der die EinfĂŒhrung neuer Funktechnologien behindert. Die gemeinsame Benutzung von Frequenzen (Spektrum-Sharing) durch primĂ€re und sekundĂ€re Nutzer ist eine Möglichkeit, die Effizienz bei der Verwendung des Spektrums zu verbessern. Bei der Methode des Underlay-Spektrum-Sharing sendet der sekundĂ€re Nutzer zeitgleich mit dem primĂ€ren Nutzer unter der EinschrĂ€nkung, dass fĂŒr den primĂ€ren Nutzer die erzeugte Interferenz unterhalb eines Schwellwertes liegt oder gewisse Anforderungen an die Datenrate erfĂŒllt werden. In diesem Zusammenhang wird in der Arbeit insbesondere die Koexistenz von Mehrantennensystemen untersucht. Dabei wird fĂŒr die primĂ€re Funkverbindung der Fall mit mehreren Sendeantennen und einer Empfangsantenne (MISO) angenommen. FĂŒr die sekundĂ€re Funkverbindung werden mehrere Sendeantennen und sowohl eine als auch mehrere Empfangsantennen (MISO/MIMO) betrachtet. Der primĂ€re Sender verwendet Maximum-Ratio-Transmission (MRT) und der primĂ€re EmpfĂ€nger Einzelnutzerdecodierung. FĂŒr den sekundĂ€ren Nutzer werden außerdem am Sender eine Datenratenaufteilung (rate splitting) und am EmpfĂ€nger entweder eine sukzessive Decodierung – sofern sinnvoll – oder andernfalls eine Einzelnutzerdecodierung verwendet. Im Unterschied zur Methode des Underlay-Spektrum-Sharing kann der sekundĂ€re Nutzer beim Verfahren des Overlay-Spektrum-Sharing die Kenntnis ĂŒber die Nachrichten des primĂ€ren Nutzers einsetzen, um die Übertragung sowohl der eigenen als auch der primĂ€ren Nachrichten zu unterstĂŒtzen. Das Wissen ĂŒber die Nachrichten erhĂ€lt er entweder nicht-kausal, d.h. vor der Übertragung, oder kausal, d.h. wĂ€hrend der ersten Phase einer zweistufigen Übertragung. In der Arbeit wird speziell die Koexistenz von primĂ€ren MISO-Funkverbindungen und sekundĂ€ren MISO/MIMO-Funkverbindungen untersucht. Bei nicht-kausaler Kenntnis ĂŒber die primĂ€ren Nachrichten kann der sekundĂ€re Sender beispielsweise das Verfahren der Dirty-Paper-Codierung (DPC) verwenden, welches es ermöglicht, die Interferenz durch die primĂ€ren Nachrichten bei der Decodierung der sekundĂ€ren Nachrichten am sekundĂ€ren EmpfĂ€nger aufzuheben. Da die Implementierung der DPC mit einer hohen KomplexitĂ€t verbunden ist, kommt als Alternative auch eine lineare Vorcodierung zum Einsatz. In beiden FĂ€llen verwendet der primĂ€re Transmitter MRT und der primĂ€re EmpfĂ€nger Einzelnutzerdecodierung. Besitzt der sekundĂ€re Nutzer keine nicht-kausale Kenntnis ĂŒber die primĂ€ren Nachrichten, so kann er als Gegenleistung fĂŒr die Mitbenutzung des Spektrums dennoch die Übertragung der primĂ€ren Nachrichten unterstĂŒtzen. HierfĂŒr leitet er die primĂ€ren Nachrichten mit Hilfe der Amplify-And-Forward-Methode oder der Decode-And-Forward-Methode in einer zweitstufigen Übertragung weiter, wĂ€hrenddessen er seine eigenen Nachrichten sendet. Der primĂ€re Nutzer passt seine Sendestrategie entsprechend an und kooperiert mit dem sekundĂ€ren Nutzer, um die Anforderungen an die Datenrate zu erfĂŒllen. Nicht nur das Spektrum sondern auch die Sendeleistung ist eine wichtige Ressource. Daher wird zusĂ€tzlich zur Effizienz bei der Verwendung des Spektrums auch die Energieeffizienz (EE) einer sekundĂ€ren MIMO-Funkverbindung fĂŒr das Underlay-Spektrum-Sharing-Verfahren analysiert. Wie zuvor wird fĂŒr den sekundĂ€ren Nutzer am Sender eine Datenratenaufteilung (rate splitting) und am EmpfĂ€nger entweder eine sukzessive Decodierung oder eine Einzelnutzerdecodierung betrachtet. Weiterhin wird die EE einer sekundĂ€ren MIMO-Funkverbindung fĂŒr das Overlay-Spektrum-Sharing-Verfahren untersucht. Dabei nutzt der sekundĂ€re Nutzer die nicht-kausale Kenntnis ĂŒber die primĂ€ren Nachrichten aus, um mittels DPC eine interferenzfreie sekundĂ€re Funkverbindung zu erhalten

    Peak Power Minimization in Symbol-level Precoding for Cognitive MISO Downlink Channels

    Get PDF
    This paper proposes a new symbol-level precoding scheme at the cognitive transmitter that jointly utilizes the data and channel information to reduce the effect of nonlinear amplifiers, by reducing the maximum antenna power under quality of service constraint at the cognitive receivers. In practice, each transmit antenna has a separate amplifier with individual characteristics. In the proposed approach, the precoding design is optimized in order to control the instantaneous power transmitted by the antennas, and more specifically to limit the power peaks, while guaranteeing some specific target signal-to-noise ratios at the receivers and respecting the interference temperature constraint imposed by the primary system. Numerical results show the effectiveness of the proposed scheme, which outperforms the existing state of the art techniques in terms of reduction of the power peaks

    The Road to Next-Generation Multiple Access: A 50-Year Tutorial Review

    Full text link
    The evolution of wireless communications has been significantly influenced by remarkable advancements in multiple access (MA) technologies over the past five decades, shaping the landscape of modern connectivity. Within this context, a comprehensive tutorial review is presented, focusing on representative MA techniques developed over the past 50 years. The following areas are explored: i) The foundational principles and information-theoretic capacity limits of power-domain non-orthogonal multiple access (NOMA) are characterized, along with its extension to multiple-input multiple-output (MIMO)-NOMA. ii) Several MA transmission schemes exploiting the spatial domain are investigated, encompassing both conventional space-division multiple access (SDMA)/MIMO-NOMA systems and near-field MA systems utilizing spherical-wave propagation models. iii) The application of NOMA to integrated sensing and communications (ISAC) systems is studied. This includes an introduction to typical NOMA-based downlink/uplink ISAC frameworks, followed by an evaluation of their performance limits using a mutual information (MI)-based analytical framework. iv) Major issues and research opportunities associated with the integration of MA with other emerging technologies are identified to facilitate MA in next-generation networks, i.e., next-generation multiple access (NGMA). Throughout the paper, promising directions are highlighted to inspire future research endeavors in the realm of MA and NGMA.Comment: 43 pages, 38 figures; Submitted to Proceedings of the IEE

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore