28 research outputs found

    Linear/Quadratic Programming-Based Optimal Power Flow using Linear Power Flow and Absolute Loss Approximations

    Full text link
    This paper presents novel methods to approximate the nonlinear AC optimal power flow (OPF) into tractable linear/quadratic programming (LP/QP) based OPF problems that can be used for power system planning and operation. We derive a linear power flow approximation and consider a convex reformulation of the power losses in the form of absolute value functions. We show four ways how to incorporate this approximation into LP/QP based OPF problems. In a comprehensive case study the usefulness of our OPF methods is analyzed and compared with an existing OPF relaxation and approximation method. As a result, the errors on voltage magnitudes and angles are reasonable, while obtaining near-optimal results for typical scenarios. We find that our methods reduce significantly the computational complexity compared to the nonlinear AC-OPF making them a good choice for planning purposes

    Principal Flow Patterns across renewable electricity networks

    Full text link
    Using Principal Component Analysis (PCA), the nodal injection and line flow patterns in a network model of a future highly renewable European electricity system are investigated. It is shown that the number of principal components needed to describe 95%\% of the nodal power injection variance first increases with the spatial resolution of the system representation. The number of relevant components then saturates at around 76 components for network sizes larger than 512 nodes, which can be related to the correlation length of wind patterns over Europe. Remarkably, the application of PCA to the transmission line power flow statistics shows that irrespective of the spatial scale of the system representation a very low number of only 8 principal flow patterns is sufficient to capture 95%\% of the corresponding spatio-temporal variance. This result can be theoretically explained by a particular alignment of some principal injection patterns with topological patterns inherent to the network structure of the European transmission system

    Optimal Power Flow in Direct Current Networks

    Get PDF
    The optimal power flow (OPF) problem determines power generations/demands that minimize a certain objective such as generation cost or power loss. It is non-convex and NP-hard in general. In this paper, we study the OPF problem in direct current (DC) networks. A second-order cone programming (SOCP) relaxation is considered for solving the OPF problem. We prove that the SOCP relaxation is exact if either 1) voltage upper bounds do not bind; or 2) voltage upper bounds are uniform and power injection lower bounds are negative. Based on 1), a modified OPF problem is proposed, whose corresponding SOCP is guaranteed to be exact. We also prove that SOCP has at most one optimal solution if it is exact. Finally, we discuss how to improve numerical stability and how to include line constraints

    Evaluating Resilience of Electricity Distribution Networks via A Modification of Generalized Benders Decomposition Method

    Full text link
    This paper presents a computational approach to evaluate the resilience of electricity Distribution Networks (DNs) to cyber-physical failures. In our model, we consider an attacker who targets multiple DN components to maximize the loss of the DN operator. We consider two types of operator response: (i) Coordinated emergency response; (ii) Uncoordinated autonomous disconnects, which may lead to cascading failures. To evaluate resilience under response (i), we solve a Bilevel Mixed-Integer Second-Order Cone Program which is computationally challenging due to mixed-integer variables in the inner problem and non-convex constraints. Our solution approach is based on the Generalized Benders Decomposition method, which achieves a reasonable tradeoff between computational time and solution accuracy. Our approach involves modifying the Benders cut based on structural insights on power flow over radial DNs. We evaluate DN resilience under response (ii) by sequentially computing autonomous component disconnects due to operating bound violations resulting from the initial attack and the potential cascading failures. Our approach helps estimate the gain in resilience under response (i), relative to (ii)

    Robust scheduling of Electric Vehicle Charging in LV Distribution Networks under Uncertainty

    Get PDF
    corecore