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Robust Scheduling of Electric Vehicle Charging in
LV Distribution Networks under Uncertainty

Wei Sun, Member, IEEE, Fabian Neumann, and Gareth P. Harrison, Senior Member, IEEE

Abstract—Rapid increase in the number of electric vehicles
will likely deteriorate voltage profiles and overload distribution
networks. Controlling the charging schedule of electric vehicles in
a coordinated manner provides a potential solution to mitigate the
issues and could defer reinforcement of network infrastructure.
This work presents a method for robust, cost-minimising, day-
ahead scheduling of overnight charging of electric vehicles in
low voltage networks in a stochastic environment with minimal
real-time adaptation. To reduce the computational complexity,
a linear power flow approximation is utilised. The stochastic
environment captures multiple uncertainties arising from the
mobility behaviour including stochastic daily trip distances,
arrival and departure times. Knowledge about the probability
distributions of these parameters is used to hedge risks regarding
the cost of charging, network overloading, voltage violation and
charging reliability. The results on a test network provide an
insight into the impact of uncertainty and the effectiveness of
addressing aspects of risk during optimisation. In particular,
planning with more conservative estimates of initial battery
charge levels increases the reliability and technical feasibility of
optimised schedules.

Index Terms—Electric vehicles, charging, uncertainty, distri-
bution networks, optimisation.

I. INTRODUCTION

THE electrification of personal mobility is critical to
reduce carbon emissions as well as air pollution in urban

areas and is actively supported by governments worldwide.
The additional load from increasing levels of uncontrolled
residential electric vehicle (EV) charging will have negative
impacts across the power system. At whole system level it
will necessitate more power plants to supply the power and
additional reserve to handle variability. At distribution level,
effects include excessive voltage drops, phase imbalances and
overloading of network components, especially when many
EVs charge simultaneously. Unfortunately, EV charging is
likely to cluster when commuters arrive home at the end of
the workday and plug-in their EVs. Thus, immediate charging,
especially in the evening at times of highest residential load,
increases the detrimental impact.

While investment in major network reinforcement and new
power plants is an intuitive measure to incorporate additional
EV loads, it may be more economically efficient to encourage
EV users to charge at off-peak times. Existing distribution
networks can accommodate substantial penetration levels of
EVs if charging is coordinated. Exploiting the demand-side
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flexibility of EVs through scheduling of charging will mitigate
negative effects and can promote renewable integration [1].

For users of EVs to engage in and accept coordinated
charging, attractive monetary benefits and recharging reliabil-
ity are essential. Time of use tariffs can provide an incentive
to dynamically adjust loads. Well-designed dynamic tariffs
based on temporally and geographically resolved day-ahead
or intra-day spot markets mirror the general network state.
For the small volume of individual EVs to gain access to
electricity markets, an intermediary may be necessary to whom
individual users delegate remote charging control. This so-
called aggregator minimises charging costs by harnessing
the load flexibility of the EVs while observing downstream
network, equipment and demand constraints.

Aggregator ResidenceMarket Electric Vehicle

Electric Load

Local Generation Arrival and
Departure 

Times

Battery
State of Charge 

upon Arrival

Wholesale
Electricity

Prices

Regulation 
Market Clearing 
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Observation of limits of 
network components

Optimisation

contract

DSO

Constraints

Cost minimising
scheduling

Fig. 1: Overview of sources of uncertainty in EV scheduling

While day-ahead schedules facilitate finding cost-efficient
solutions, forecasts of individual consumers’ behaviour are
prone to substantial deviations. As outlined in Fig. 1, beyond
uncertainty of arrival and departure times there is uncer-
tainty around battery state-of-charge (SOC) on arrival, non-EV
residential loads, local renewable generation, and wholesale
market prices. In light of this, charging coordination must
incorporate possible forecast errors into the optimisation [2].
In recent years, a number of papers have presented diverse
approaches to tackle uncertainties, primarily addressing spot
market prices, variable renewable generation, and individual
EV-user behaviour [3], [4].

Further, the literature offers a broad range of methods using
stochastic, robust optimisation and receding horizon control
approaches. Robust optimisation is predominantly applied to
hedge against uncertain spot market prices: [5] develop a
scheduling approach based on a bi-level robust optimisation to
minimise worst-case price prediction errors. Using a mixed-
integer quadratic programming model, [4] show the benefit
of aggregators participating in regulation services by reducing
the uncertainty of network operation costs. Stochastic optimi-



IEEE TRANSACTIONS IA DRAFT 2019 2

sation problems have been solved by information gap decision
theory [6], [7], Lyapunov optimisation [8], Markov decision
processes [9], [10], Monte Carlo methods [11] and dynamic
stochastic optimisation [12]. Receding horizon optimisation is
also employed to use prior knowledge and updated forecasts to
adapt optimised schedules; this includes sequential quadratic
programming [13], alternating direction method of multipliers
[14] and model predictive control [15].

Three frequently neglected issues motivate this work. First,
among the papers addressing various domains of uncertainty,
few focus on the technical constraints of low voltage (LV)
distribution networks which are sensitive to EV loads [5],
[13]. Second, stochastic and robust optimisation problems
add substantial complexity to solution methods; a question
arises as to whether simpler, deterministic, optimisation with
conservative parameter estimates would facilitate the adoption
of coordinated charging schedules while achieving equal levels
of robustness. Third, the common focus on isolated aspects of
uncertainty and narrow model scope limit comprehensive and
realistic understanding of the charging problem under multiple
sources of uncertainty; the costs and benefits of robustness
have therefore been only partially evaluated.

The main contribution of this work is to develop a robust
cost-minimising day-ahead scheduling approach for charging
EVs while simultaneously maintaining EV owner satisfaction
and local network constraints in a stochastic environment. It is
envisaged that schedules are optimised by an aggregator who
participates in a wholesale electricity market, and schedules
day-ahead for coordination purposes. Another contribution is
to derive suitable models for inherent uncertainties associated
with the optimal scheduling of EVs. Knowledge about the
probability distributions of the availability of EVs for charging
and their battery state of charge is used to hedge risks
regarding the cost of charging, network overloading, voltage
violation and charging reliability. Stochastic input parameters
for the scheduling problem can employ more conservative
estimates rather than their expectation values. This increases
the chances of feasibility of the charging schedule despite
parameter deviations and makes the results robust up to a
chosen level. Therefore, the contribution of this work is
twofold: stochastic models of EV uncertainties complement
the development of an optimal scheduling approach with
mitigation options for different levels of robustness.

The remainder of this paper is structured as follows. Sec-
tions II to V, respectively, describe the approach for stochastic
analysis, the EV charging algorithm, the uncertainty mitigation
techniques and the integrated simulation framework. This is
followed by a case study and conclusions.

II. STOCHASTIC MODELS FOR EV DEMAND AND
AVAILABILITY

Appropriate behavioural models of daily travel patterns are
essential for modelling EV loads and the design of efficient
charging coordination. Here, continuous distributions are fitted
to empirical data on users’ average characteristics and typical
deviations from this. The overall process is depicted in Fig. 2
and described below.

A. Data Source and Extraction

Data sets on the mobility behaviour of EV owners are
sparse. Instead, empirical driving profiles of internal com-
bustion vehicles are employed and no systematic change in
behaviour by switching transport fuels is assumed. To model
the behaviour of customers, this study uses mobility data
obtained from the UK National Travel Survey [16]. This
extensive annual survey contains disaggregated data on means,
demographics and behaviour of personal travel based on
diaries dating back to 2002. From this the average µ and
standard deviation σ of daily mileage, arrival and departure
times of individual households, was determined.

The arrival and departure times, respectively, refer to arrival
at home after the last trip of the day and departure from
home just before the first journey of the next day. For each
household, the average and standard deviation of these arrival
and departure times among the logged days are determined
and compiled as two sets of (µ,σ)-tuples characterising the
required information about a household’s EV availability.
Daily trip mileage in the data set is the sum of all individual
trips for each household during the logged day. This gives the
range of modelled EVs as specified by battery capacity. Daily
mileage values are recorded as a set of (µ,σ)-tuples describing
a car’s typical driving distance.

B. Statistical Analysis of Empirical Data

Histograms of the acquired (µ,σ)-tuples are depicted in
Fig. 3, emphasising the heterogeneity of both average and
variance of parameters among households. In an average
household, the first trip by car occurs at 10:30 am, the last
trip ends at 16:45 pm with travel totalling 22 miles (35 km).
Average deviation in departure/arrival times are 2 and 2.5
hours and 15 miles (24 km) in driving distance.

Fig. 3 includes continuous distributions fitted to the em-
pirical data. The distribution for each parameter is chosen
based on the Akaike information criterion resulting in four
types of distributions describing the six random variables of
the mobility behaviour model, the parameters of which are
shown in Fig. 3. Average departure time and daily mileage
are described by Gamma distributions which have been applied
in other work, e.g. [17]. The standard deviations of departure
times and mileage, respectively, follow half normal distribution
and exponential characteristics.

C. Modelling User Behaviour

Many studies use distributions of daily mileage, arrival and
departure times for stochastic scenario generation [18]–[20],
following random assignment of these parameters to house-
holds. Typically these patterns are regarded as immutable.

1) Scenario Generation: The parameters that define the
mobility behaviour of EV owners are generated through
random sampling from their respective distribution functions
and iteratively assigned to households in the test network.
Normal distributions N (µ, σ) are assumed for the troika of
(µ, σ)-tuples defining the stochastic variables daily mileage
δ̃mil, arrival time τ̃arr and departure time τ̃dep, e.g. δ̃mil ∼
N (µmil, σmil), δ̂mil = E[δ̃mil] = µmil. Simulation under
uncertainty will treat expected values δ̂mil, τ̂arr, and τ̂dep
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Fig. 2: Illustration of travel pattern model derivation and application

Average departure time

0 500 1000
Time [minutes after midnight]

0

50

100

F
re

qu
en

cy

Histogram of empirical driving profiles Best continuous distribution fit

Standard deviation of departure time

0 200 400 600 800
Standard deviation [minutes from mean]

0

50

100

150

200

F
re

qu
en

cy

Average arrival time

0 500 1000
Time [minutes after midnight]

0

50

100

F
re

qu
en

cy

Standard deviation of arrival time

0 200 400 600 800
Standard deviation [minutes from mean]

0

50

100

150

200

F
re

qu
en

cy

Average daily mileage

0 20 40 60 80 100
Distance [mi]

0

10

20

30

F
re

qu
en

cy

Standard deviation of daily mileage

0 20 40 60 80 100
Standard deviation [mi from mean]

0

20

40

60

F
re

qu
en

cy

Gamma
a = 2.61
b = 8.28

Logistic
 = 1009.13

s = 73.07

Gamma
a = 26.59
b = 23.49

HalfNorm
 = 159.39

Logistic
 = 151.36

s = 49.63

Exponential
 = 14.92

Fig. 3: Marginal distribution fits of (µ,σ)-tuples of daily
mileage, arrival and departure times

as day-ahead forecasts and use randomly chosen values δ̃mil,
τ̃arr, and τ̃dep to emulate the deviation in outturn from the
forecast parameters.

2) EV Charging Demand: Assuming a full battery at the
beginning of the day (SOC=Bmax) and that the user only
charges at home overnight, the probability of battery SOC
upon arrival B̃arr also follows a normal distribution [21]
determined by mileage:

B̃arr = Bmax − ζ · δ̃mil and B̂arr = Bmax − ζ · δ̂mil. (1)

where ζ is the EV energy consumption in kWh/km.
3) EV Availability: The ’availability’ α̃EV ∈ BT of an

EV describes whether the vehicle is physically plugged into
the charger when arriving at home until the car is unplugged
prior to departure; during this time control and communication

infrastructure enables the charge rate to be controlled remotely
by the aggregator over the optimisation horizon T . It is a
binary parameter and α̃EVk,t equals 1 when the EV at household
k at time t is able to be charged, otherwise it is zero. The
availability is calculated from arrival and departure times (τ̃arr,
τ̃dep), and their conversion to the discrete time slots t ∈ T as
in (2), where τinit is the time of the day in minutes after
midnight when the optimisation routine starts and ∆t denotes
the temporal resolution. Note that if τ̃arr > τ̃dep the EV
did not return that night and is not available. The expected
availability α̂EV is defined analogously.

The probability Pt(αEV = 1) that a vehicle is available
in time slot t is calculated using the cumulative distribution
function (CDF) of the standard normal distribution Φ as given
in (3) (the first and second terms refer to the probability of
an EV’s arrival or departure). Examples of availability prob-
ability curves are shown in Fig. 4 for individual EVs and an
aggregate. EV availability is most likely in the early morning
and reduces towards noon. The obtained probability curves
are also used for the mitigation of availability uncertainty in
Section IV-A.

III. EV CHARGING OPTIMISATION UNDER UNCERTAINTY

The objective is to find the optimal schedule of charging
rates for each EV (PEV ∈ RK×T ) which minimises the total
costs of charging the pool of EVs k ∈ K in discrete time slots
∆t based on a purchasing power at time-dependent price πt. It
is a customer-focused objective providing an incentive for EV
users to devolve charging control which enables the aggregator
to exploit the available network capacity, and avoiding or
postponing network reinforcement.

min
{PEV }

C =

T∑
t=1

K∑
k=1

πt ·∆t · PEVk,t (4)

The optimisation is deterministic and employs forecasts of
EV behaviour based on statistical estimates from its stochastic
models. The presence of network power flow equations makes
the problem nonlinear but a linear power flow approximation
is applied to simplify the optimisation.
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α̃EVt =

{
1 if

⌊
max

(
0, τ̃arr − τinit

∆t·60

)⌋
≤ t <

⌊
min

(
T, T +

τ̃dep− τinit

∆t·60

)⌋
0 else

∀t ∈ T (2)

Pt
(
αEV = 1

)
= min

{
Φ

(
(t ·∆t · 60 + τinit)− µarr

σarr

)
, Φ

(
(t ·∆t · 60 + τinit − T ·∆t · 60)− µdep

σdep

) }
∀t ∈ T (3)
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Fig. 4: Availability probabilities for individual EVs (top) and
an aggregate of 55 EVs (bottom). Time series begin at 1pm.

The optimisation is subject to a number of constraints,
split into those concerning (i) EV technical limitations, (ii)
satisfaction of users’ requirements and (iii) network-related
constraints.

The charging rate is constrained by the limits of the charging
mode. As the EV battery is not allowed to discharge in the
charging period, the constraint is:

0 ≤ PEVk,t ≤ PEVmax, (5)

where for standard single-phase connections, PEVmax = 3.7 kW.
An EV may only be scheduled to charge when it is expected

to be at home and plugged in:(
1− α̂EVk,t

)
· PEVk,t = 0 (6)

where α̂EVk,t ∈ B is the parameter denoting the presumed
availability of the EV.

The main user satisfaction constraint is charging EVs to
provide an adequate driving range. Starting from the EV’s
expected battery SOC on arrival B̂arrk ∈ [0, Bmax], the
charged energy over all slots t ∈ T of the optimisation horizon
must accumulate to a full battery SOC, Bmax:

B̂arrk +

T∑
t=1

η · PEVk,t ·∆t = Bmax (7)

where η is the charging efficiency.
Network constraints include voltage and power flow limits.

The phase voltage V busk,t at each household k must be main-
tained within statutory limits:

Vmin ≤ V busk,t ≤ Vmax (8)

The current I line`,t through any cable ` ∈ L may not exceed
its rating Imax` :

I line`,t ≤ Imax` (9)

The apparent power Strt flowing through the transformer
must not surpass the rating Strmax:

Strt ≤ Strmax (10)

A. Linear Power Flow Approximation

The values of V busk,t , I line`,t and Strt can be calculated through
the well-known power flow equations. Nonlinear power flow
equations ensure the most accurate calculation of 3-phase
network conditions, but this rapidly complicates the scheduling
problem with fine resolutions and large pools of EVs. The
linear power flow approximation based on the network sensi-
tivity matrix is adopted here to reduce computational expense
and enable use of fast linear programming (LP). Although the
sensitivities may not exactly match the continuously varying
loads in the network, the approximation is shown to suffice
for EV scheduling and, if anything, tends to overestimate the
impact of additional EV loads at peak times [13], [22], [23].

The network voltage and line loading sensitivities to
changes in load elsewhere can be determined without prior
knowledge about EV charging behaviour. They can be cal-
culated by a series of unbalanced three-phase power flow
calculations, starting from static load at each household, e.g.
average household demand. Iteratively, each household load is
increased by 1 kW, with changes in all network voltages and
line loading recorded. This produces sensitivity matrices for
voltage ω ∈ RK×K and line current λ ∈ RL×3×K . Element
ωi,j denotes the voltage sensitivity, in V/kW, of household i to
changes in power at household j. Equivalently, element λ`,r,j
denotes the current sensitivity, in A/kW, of phase r of line `
to changes in power at household j.

Using the voltage sensitivity matrix ω, the voltage constraint
equations can be defined as:

Vmin ≤ V busk,t,init

(
D̂k,t

)
+

K∑
j=1

ωj,k · PEVi,t ≤ Vmax (11)

where V busk,t,init

(
D̂k,t

)
is the voltage at each household and

time due to the predicted residential demand D̂k,t without EV
loads. Similarly, the line loading constraints are formulated
applying the line loading sensitivity matrix λ to each phase:

I line`,r,t,init

(
D̂k,t

)
+

K∑
j=1

λj,r,` · PEVi,t ≤ Imax` (12)

where I line`,r,t,init

(
D̂k,t

)
is the current of the respective

line, phase and time slot due to the predicted residential
demand D̂k,t without EV loads. As V busk,t,init

(
D̂k,t

)
and

I line`,r,t,init

(
D̂k,t

)
are not altered by the decision variables, they
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are pre-determined using a nonlinear power flow solver before
the optimisation cycle.

Employing the linear power flow approximation using net-
work sensitivities, the EV scheduling problem can be quickly
solved as an LP. Here, Gurobi is used as a solver and embed-
ded in the simulation framework. Subject to the limitations
induced by possible prediction errors and the linear approx-
imation, the solver will produce the optimal coordination of
EV charging processes regarding both when and which EVs
should charge.

IV. APPROACHES TO UNCERTAINTY MITIGATION

As EV charging coordination is embedded in a highly
stochastic environment, most decisions may have to be taken
before the outturn of uncertain parameters is observed. Opti-
misation based solely on expected values is not considered
robust but can be used to examine sensitivities to forecast
deviations in parameters. Consequently, this section introduces
uncertainty mitigation options which are then evaluated in
Section VI-D. Note that the presented concepts rely on the
assumption that probabilities for input parameters can be
defined similarly to the modelled distribution functions.

A. Availability Uncertainty

The impact of uncertainty in the arrival and departure times
of EVs can be reduced by adapting the assumptions regarding
when the day-ahead scheduling should assume a vehicle to
be available for charging. As outlined in Section II-C, the
availability probability is calculated from the CDFs of the
arrival and departure time distributions as illustrated in Fig. 5.
By default an EV is considered available if the availability
probability is equal to or exceeds the expectation value, i.e.
0.5, a 50% chance. However, by defining a threshold να for the
availability probability above which the day-ahead scheduling
should assume a vehicle to be available for charging, the
likelihood of an EV being scheduled for charging can be
altered. Choosing a higher threshold requires a greater degree
of certainty that an EV will available for it to be scheduled.
This raises the robustness to forecast deviations in terms of
increasing the likelihood of meeting customer demand for a
full battery by charging across a smaller number of periods.
The downside is that it narrows the predicted availability
period and reduces the flexibility for the charging optimisation
as well as potentially raising costs through missing cheap slots
where the car actually arrives earlier or departs later than
predicted. The adapted availability is given by:

α̂′EVt =

{
1 if P

(
αEVt = 1

)
≥ να

0 else
(13)

B. Battery Charge Level Uncertainty

Uncertainty mitigation concerning the battery SOC upon
arrival in day-ahead scheduling is also based on deviating from
the expected value as a forecast value B̂arr. Using a value that
is higher in (say) 70% of cases rather than 50% reduces the risk
of not fully charging a battery if the SOC is less than predicted.
However, it raises the chance of excessive scheduling if the

SOC is higher than expected for robustness, thereby blocking
otherwise spare network capacity that could have been used to
charge. The issue is depicted in Fig. 6. Assuming a threshold
SOC exceeding νB = 0.7 in all cases instead of its expected
value will increase the likelihood of charging being curtailed
due to a full battery being achieved prematurely. The effect
of prioritising customer satisfaction over reduced capacity and
price exploitation is examined in Section VI-D.

V. INTEGRATED SIMULATION FRAMEWORK

As outlined previously, in related work, consideration of
uncertainties about EV scenarios is more prevalent than recog-
nition of individual uncertainties in mobility patterns. Here, the
simulation framework seeks to unite both aspects to properly
evaluate the proposed scheduling approach: the optimisation is
wrapped in a Monte Carlo (MC) sampling procedure to cope
with scenario uncertainty regarding allocation of consumer
types and general market conditions.

The simulation routine study is structured as shown in
Fig. 7. After retrieving general static parameters such as opti-
misation horizon, resolution of discrete time steps, and starting
time index, different EV scenarios are generated in each
iteration through Monte Carlo sampling of the characteristic
mobility behaviour distributions introduced in Section II-C.
Each scenario refers to the allocation of e.g. certain EV user
characteristics in the network, but not to the realisation of
uncertainties defined by the user type. As information about
voltages and line loading in the distribution network are
approximated by linear power flow, corresponding network
sensitivities are determined beforehand and are considered
valid for all scenarios.

Assessment of a scheduling approach for a specific scenario
follows 3 stages: 1. Optimisation: the optimisation sched-
ules and coordinates EV charging according to the selected
formulation and uncertainty mitigation options based on the
forecasted parameters; 2. Simulation: the simulation uses ran-
dom deviations from these forecasts in accordance with their
uncertainty models and determines outturn performance mea-
sures such as charging costs, fulfilment of customer demands,
and observation of network constraints relative to the original
optimised schedule. Simple heuristic rules are assumed to
adjust the scheduling plan during realisation of uncertainty:
(i) an EV that is scheduled to charge but not available, will
not be charged, and (ii) an EV that has a higher SOC upon
arrival than predicted stops charging once the battery is full
regardless of any charging scheduled for later. (3) Benchmark:
comparing these results to an optimal schedule that could have
been achieved with the same algorithm had all parameters
been known with perfect information. By comparison with the
simulation results, the robustness of the optimisation algorithm
to uncertainty can be assessed.

Optimisation algorithms and reference cases are evaluated
relative to each other by running the same framework with the
same parameters. Because performance analysis of algorithms
in a single scenario is inexpensive, the optimisation routine
is coupled with a MC simulation as applied in [24], [25].
Arbitrary circumstances may favour one algorithm and bias
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Fig. 5: Approaches for the mitigation of availability uncertainty
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the evaluation. To guard against this a series of scenarios
are generated stochastically forming the basis of comparative
performance assessment. Due to a multitude of different user
scenarios which the scheduling approach is exposed to, a
more accurate evaluation through distributions of performance
measures can be attained. Note that here the MC simulation
wraps the optimisation cycle and is not a component within
the optimisation routine as used e.g. in [26]. The optimisation
algorithms are deterministic and stochastic input parameters
are entered either with their true expectation values or adapted
through more conservative estimates.

The simulation framework has been implemented in Python
interfaced with OpenDSS to enable fast time-series three-phase
unbalanced power flow studies [27].

VI. CASE STUDY

A. Case Description

The IEEE European Low Voltage Test Feeder [28] is used to
illustrate the framework, as shown in Fig. 8. This 400 V radial
network connects to the MV system through an 0.8 MVA-rated
11/0.4 kV transformer. The network operates to UK voltage
standards of +10%/− 6% at LV and ±6% at MV.

The test network comprises 55 numbered households con-
nected to single phases. The loads are evenly spread across

the phases. Typical winter weekdays are considered to cap-
ture maximum demand in the UK. Individual high-resolution
synthetic residential electricity demand profiles were created
using the CREST demand model [29]. The aggregate synthetic
demand profile compares well with the normalised ELEXON
standard load profile for unrestricted domestic customers [30].

It is assumed that an aggregator participates in the wholesale
market on behalf of its customers. Regional dynamic tariffs are
modelled through reference price data indices from the EPEX
SPOT UK exchange market. Prices range over 10 to 40 p/kWh
with a significant portion below 22 p/kWh; notably, prices are
low late at night and peak during early evening. The aggregator
is assumed to be a price-taker.

For simplicity, the model assumes EV specifications from
commonly used reference EVs [31] with a consumption rate
of ζ = 0.17 kWh/km, charging efficiency η = 0.93, maximum
charging rate of 3.7 kW and a battery capacity Bmax = 30
kWh for all modelled EVs. Every household has one EV
and exclusively charges overnight at home. The charging
schedule horizon is 24 hours initiating daily at 1 pm. Charging
optimisation is performed at discrete 15 minute time steps
assuming constant charging rate within each time slot.
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B. Evaluation Criteria and Reference Case

The performance of proposed EV scheduling approaches
and mitigation options under uncertainty are evaluated against
three factors: (i) economic - relative cost saving of coordinated
charging compared to uncontrolled charging; (ii) reliability -
satisfaction of demand, i.e. a full battery at the end of the
charging period; and (iii) safety - network constraint violations
in both severity and frequency.

Several cases are considered. The first is uncontrolled
charging as the reference case which refers to the situation
where no form of coordinated control is applied, and EVs
simply start charging on arrival at the maximum charging rate
until their battery is full. This minimises the time to recharge

the battery but disregards economic incentives to defer EV
loads. It is a benchmark that is commonly used to evaluate
EV scheduling approaches [18], [32]. The second and third
cases are optimisation using perfect foresight and under uncer-
tainty, respectively. Following this, the uncertainty mitigation
approaches are tested with different threshold parameter values
for να (chance of vehicle availability) and νB (battery state of
charge level probability) which were introduced in Section IV.

C. Analysis of Case Study Results

This section illustrates the approach under a single example
scenario of household behaviour and a single realisation or
outturn for simulation.

Fig. 9 compares uncontrolled charging with optimisation
results with perfect information, under uncertainty and with
uncertainty mitigation. Uncontrolled charging sees EV charg-
ing centred upon periods of high residential demand, thereby
causing occasional overloads and voltage violations during si-
multaneous residential and EV load peaks, particularly around
6:15 pm. The cheaper electricity prices during late night are
not exploited. In terms of reliability, uncontrolled charging
with its advantage of operating in real-time (and without day
ahead uncertainty) can almost guarantee a full battery. In terms
of network safety, however, uncontrolled EV charging causes
voltage violations and excess loading of around 31%.

Day-ahead coordinated charging schedule with perfect fore-
cast of the realised scenario produces the lowest cost schedule
to charge all EVs to full SOC given the availability periods.
The realised value of uncertainty parameters, such as EV
availability shown in the top-middle in Fig. 9, are directly used
in optimisation. There are no instances of line overloading or
voltage violation. Because prices may be the same in multiple
time slots, different optimal schedules are possible but would
ultimately result in the same charging costs for a given case.

Day-ahead coordinated charging schedule under uncertainty
(’Opt. Schedule (no mitigation)’ in Fig. 9) performs less well
than the perfect forecast case. Expected values are used for
the uncertainty parameters of EV availability and SOC upon
arrival in optimisation. For adjusting the optimised schedule
in response to forecast deviations, a simple adjustment rule on
the day is assumed. It skips scheduled slots where contrary to
the prediction the EV is not available and terminates once the
battery is fully charged. In this case, there are few voltage or
overloading issues, and the aggregate battery SOC of 95% is
reasonably high and covers most daily trip lengths. However,
the minimum battery SOC (across the fleet), which is the more
critical performance measure influencing customer acceptance,
is only 54%. It is evident that uncertainty degrades the ability
to schedule optimally.

Considering risk mitigation, day-ahead charging schedule
under uncertainty (’Opt. Schedule (with mitigation)’ in Fig. 9)
shows clear improvement of demand satisfaction, especially
regarding the minimal final battery SOC. Rather than expected
values of the uncertainty distributions, more conservative
estimates are used: to schedule charging the probability of
EV availability needs to be higher than 70% and the predicted
SOC must not be lower in 70%. The adoption of this joint
mitigation parameter set increases the scheduled energy for
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all EVs. The adjusted scheduling shifts the aggregate charge
curve to earlier time slots (top-left in Fig. 9) and some of
the cheapest slots are not exploited. The average line loading
only slightly increases while voltages deteriorate marginally
in this scenario. The next subsection provides an in-depth
analysis of the influence of the mitigation options around
different conservative estimates of uncertainty parameters and
over multiple scenarios of uncertainty realisation.

D. Sensitivity Analysis of Uncertainty Mitigation Approaches
Across All Scenarios

This section presents the performance of charging algo-
rithms and uncertainty mitigation approaches across multiple
scenarios. Uncertainty is represented using 20 scenarios, each
representing a typical weekday with different characteristic
user behaviour allocated to the households and the variabil-
ity in performance captured across different situations. To
facilitate concise comparison, box-plots are used to indicate
distributions (illustrated by quartiles and whiskers) and means
(denoted by circles) of the evaluation criteria. Both severity
and frequency of network issues are shown. Severity of
network constraint violation is quantified by the maximum
line loading (relative to line capacity) and the minimum bus
voltages (in per unit). Frequency of constraint violations is
measured as a ratio of the number of overloading conditions
or voltage violations to the total number of corresponding
constraints. To aid illustration, the same category of evaluation
is represented in the same colours across the figures, e.g.
comparing EV demand satisfaction across Fig. 11 and Fig. 12.
For evaluations within a figure, different optimisation cases
can be distinguished by the shades of colour following the
same order in each sub-figure.

The network evaluation among all scenarios for cases with
and without EVs under uncontrolled scheduling is given in

Fig. 10 and serves as reference for the following sensitivity
analysis. As shown in Fig. 10, without EVs the test network
has no active constraints. However, the presence of EV loads
causes both voltage and overloading issues in all scenarios.
The maximum line overloading across the scenarios averages
30.8% above rating with the minimum voltage 0.02 p.u. below
its lower limit of 0.94 p.u. As for violation frequency, about
11.5% of lines experience overloading and 1.5% of total buses
have voltage drop beyond limits.
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Overloading [ratio] Voltage violations [ratio]0
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Uncontrolled Charging

Fig. 10: Network impact of uncontrolled charging across all
scenarios

The threshold parameters να and νB vary the degree of
conservatism and determine the extent of security margins
applied while optimising. The base case for comparison (’LP’
in the following figures) was chosen to be the optimisation
under uncertainty with expected values.

1) Vehicle Availability Uncertainty Mitigation: Fig. 11
shows the impact of changing the availability probability
threshold να from the original value of 50% to 60%, 70% and
80% on four measures across all scenarios. There is virtually
no impact on charging costs or on average battery SOC but
minimum battery SOC rises slightly from 54% to 54.8%. A
reason for the limited effect is that low electricity prices,
and therefore optimised charging, occurs at times of highest
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vehicle availability. In terms of network impact, maximum line
loading decreases at moderate levels of να but then increases
when the value reaches 0.8, while voltages progressively fall.
This effect is due to limiting charging into fewer time slots at
a high level of conservatism.
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Fig. 11: Sensitivity to να across all scenarios

2) Battery SOC Uncertainty Mitigation: Fig. 12 shows the
effect of raising the threshold νB of the battery SOC from
50% through to 80% across all scenarios. Increasing security
margins increases the reliability of EV demand satisfaction,
with the minimum SOC level increasing rapidly. A threshold
battery SOC that is not lower in 80% for all cases leads to
average SOC levels of more than 98% on average compared
to 95% for the threshold of 0.5; more importantly minimum
charge levels are raised to 74% rather than 54%. This comes
at a cost, with charging costs increasing by 10%. As EVs
charging is stopped once full charge is reached according to
the assumed real-time adjustment rule, some schedule slots
will remain unused and the schedule may not fully coincide
with the most economic periods.

A more intelligent control strategy might alleviate this
unnecessary cost of day-ahead over-procurement by omitting
the most expensive redundant charging slots from the schedule
once arrival time and battery SOC is known. Nonetheless, with
either type of control, charging will be more expensive as
there is a trade-off between granting an EV flexibility and
blocking cheap time slots for others. Therefore, the increased
satisfaction levels of EVs participating in controlled charging
is offset by a suboptimal allocation of finally realised charging
patterns.

The flexibility achieved through this form of uncertainty
mitigation risks violation of network constraints as EV charg-
ing must at least partially be allocated in slots where inhab-
itants are active and residential electricity demand has more
substantial uncertainties.

VII. DISCUSSION

The paper describes a robust cost-minimising day-ahead
scheduling approach for EV charging in LV network in a
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Fig. 12: Sensitivity to νB across all scenarios

stochastic environment. Models of EV uncertainties comple-
ment the development of an optimal scheduling approach with
mitigation options for different levels of robustness. The im-
plementation of the proposed coordination algorithm requires
communication and control infrastructure. When an EV owner
contracts with an aggregator, hardware and/or software would
be installed at home to enable remote control and there are
real-life trials and deployments with this hardware capability
[33], [34].

In the problem formulation, minimum charging cost is se-
lected as the objective function, with available grid capacities
being exploited up to their critical limits. This setting aligns
with the economic interest of customers and the EV aggre-
gator. This choice sees economic performance as the primary
incentive for customers to hand over charging control to an EV
aggregator. In principle, the optimisation framework is flexible
and can be tailored to use grid reliability (such as minimum
voltage and thermal violation) as the objective function within
charging cost limits, when the grid reliability outweighs the
cost. The optimisation problem minimises overall cost but
does not guarantee the lowest cost of each individual vehicle.
Individual cost could stand in conflict with overall benefit.
However, a redistribution scheme could be used to even out
the gain of individual EV users; there is a growing awareness
of ‘fairness’ in smart energy systems [35] and a wide body of
work on network charging and specifically on fairness in EV
charging, e.g. [36], [37] that could be applied.

In day-ahead scheduling, more conservative assumptions
reduce the risk of insufficient charge at greater operational cost
but ultimately achieving that reduced risk depends on decision
making in real time. Improving on the conservative schedules
in real-time could be achieved by initialising or increasing the
charging rate at time slots where an EV is actually available
but was expected not to be. However, increasing unscheduled
charging rates may cause network violations in the form
of line overloading and voltage issues; mitigating this risk
requires real-time power flow calculations or at least an online
approximation to manage constraints. While it is feasible to
solve such complex real-time network management issues, we
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do not seek to address it directly in this study although the
split day-ahead/realisation approach seeks to approximate it.

The scheduling of EVs (and other flexible resources in the
LV grid) would benefit from accounting for additional sources
of uncertainty, such as market price, renewable generation out-
put and no-EV demand forecast. While the scope is restricted
in the case study to EV availability and battery SOC for the
sake of clarity, the approach can be readily extended to embed
more uncertainty factors. The key is to build an appropriate
statistical model of such additional uncertainty factors, for
instance based on historical data. Modelling these additional
uncertainties benefits from them being well-established areas.

There are several promising aspects to extend this work.
The paper focuses on day-ahead scheduling with minimal
real-time adaptation. Rolling horizon optimisation can be
integrated to increase cost savings and robustness towards
uncertainties due to more precise and updated predictions. The
uncertainty around electricity prices and residential demand is
also important to investigate although statistical modelling of
the uncertainties and mitigation is more challenging.

VIII. CONCLUSION

A deterministic robust cost-minimising optimisation for
day-ahead EV charging scheduling in residential LV networks
has been presented for a stochastic environment. From exten-
sive survey data, a mobility model based on a few continuous
distributions was built. Knowledge about the probability dis-
tributions of these parameters is used to hedge risks regarding
the costs of charging, network overloading, voltage violations,
and ensuring desired levels of battery charge levels.

Significant economic and technical improvements are
demonstrated compared to uncontrolled charging. Tackling
the negative effects of uncertainty through adopting more
conservative day-ahead assumptions was considered. More
conservative assumptions about EV availability had a limited
effect since cost-optimised charging predominantly occurs in
periods of comparably certain EV availability. The trade-
off between cost and reliability became most evident when
addressing battery charge level uncertainty. With increasing
security margins, the reliability of EV demand satisfaction
rises, particularly the minimum battery charge, while costs
increase moderately since vehicles are scheduled to provide
more energy than they are expected to require. Overall, valu-
able insight into uncertainty mitigation of mobility behaviour
in EV scheduling was provided.
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