51 research outputs found

    Approximability and proof complexity

    Full text link
    This work is concerned with the proof-complexity of certifying that optimization problems do \emph{not} have good solutions. Specifically we consider bounded-degree "Sum of Squares" (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Parrilo shows that this proof system is automatizable using semidefinite programming (SDP), meaning that any nn-variable degree-dd proof can be found in time nO(d)n^{O(d)}. Furthermore, the SDP is dual to the well-known Lasserre SDP hierarchy, meaning that the "d/2d/2-round Lasserre value" of an optimization problem is equal to the best bound provable using a degree-dd SOS proof. These ideas were exploited in a recent paper by Barak et al.\ (STOC 2012) which shows that the known "hard instances" for the Unique-Games problem are in fact solved close to optimally by a constant level of the Lasserre SDP hierarchy. We continue the study of the power of SOS proofs in the context of difficult optimization problems. In particular, we show that the Balanced-Separator integrality gap instances proposed by Devanur et al.\ can have their optimal value certified by a degree-4 SOS proof. The key ingredient is an SOS proof of the KKL Theorem. We also investigate the extent to which the Khot--Vishnoi Max-Cut integrality gap instances can have their optimum value certified by an SOS proof. We show they can be certified to within a factor .952 (>.878> .878) using a constant-degree proof. These investigations also raise an interesting mathematical question: is there a constant-degree SOS proof of the Central Limit Theorem?Comment: 34 page

    Tight Sum-of-Squares lower bounds for binary polynomial optimization problems

    Get PDF
    We give two results concerning the power of the Sum-of-Squares(SoS)/Lasserre hierarchy. For binary polynomial optimization problems of degree 2d2d and an odd number of variables nn, we prove that n+2d−12\frac{n+2d-1}{2} levels of the SoS/Lasserre hierarchy are necessary to provide the exact optimal value. This matches the recent upper bound result by Sakaue, Takeda, Kim and Ito. Additionally, we study a conjecture by Laurent, who considered the linear representation of a set with no integral points. She showed that the Sherali-Adams hierarchy requires nn levels to detect the empty integer hull, and conjectured that the SoS/Lasserre rank for the same problem is n−1n-1. We disprove this conjecture and derive lower and upper bounds for the rank

    Limitations of Algebraic Approaches to Graph Isomorphism Testing

    Full text link
    We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Gr\"obner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if the graphs are isomorphic, and then to (try to) decide satisfiability of the system using, for example, the Gr\"obner basis algorithm. In some cases this can be done in polynomial time, in particular, if the equations admit a bounded degree refutation in an algebraic proof systems such as Nullstellensatz or polynomial calculus. We prove linear lower bounds on the polynomial calculus degree over all fields of characteristic different from 2 and also linear lower bounds for the degree of Positivstellensatz calculus derivations. We compare this approach to recently studied linear and semidefinite programming approaches to isomorphism testing, which are known to be related to the combinatorial Weisfeiler-Lehman algorithm. We exactly characterise the power of the Weisfeiler-Lehman algorithm in terms of an algebraic proof system that lies between degree-k Nullstellensatz and degree-k polynomial calculus

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Full text link
    We exhibit families of 44-CNF formulas over nn variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) dd but require SOS proofs of size nΩ(d)n^{\Omega(d)} for values of d=d(n)d = d(n) from constant all the way up to nδn^{\delta} for some universal constantδ\delta. This shows that the nO(d)n^{O(d)} running time obtained by using the Lasserre semidefinite programming relaxations to find degree-dd SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP\mathsf{NP}-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj\'i\v{c}ek '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, M\"uller, and Oliva '13] and [Atserias, Lauria, and Nordstr\"om '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively
    • …
    corecore