12,676 research outputs found

    An Explicit Fourth-Order Hybrid-Variable Method for Euler Equations with A Residual-Consistent Viscosity

    Full text link
    In this paper we present a formally fourth-order accurate hybrid-variable method for the Euler equations in the context of method of lines. The hybrid-variable (HV) method seeks numerical approximations to both cell-averages and nodal solutions and evolves them in time simultaneously; and it is proved in previous work that these methods are inherent superconvergent. Taking advantage of the superconvergence, the method is built on a third-order discrete differential operator, which approximates the first spatial derivative at each grid point, only using the information in the two neighboring cells. Stability and accuracy analyses are conducted in the one-dimensional case for the linear advection equation; whereas extension to nonlinear systems including the Euler equations is achieved using characteristic decomposition and the incorporation of a residual-consistent viscosity to capture strong discontinuities. Extensive numerical tests are presented to assess the numerical performance of the method for both 1D and 2D problems.Comment: 26 page

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area
    corecore