85 research outputs found

    Search and Retrieval in Massive Data Collections

    Get PDF
    The main goal of this research is to produce a novel and efficient searching application by means of best match and proximity searching with particular application to very large numeric and textual data stores. In today’s world a huge amount of information is produced. Almost every part of our society is touched by systems that collect, store and analyse data. As an example I mention the case of scientific instrumentation: new sensors capture massive amounts of information (e.g. new telescopes acquiring data from different regions of the spectrum). Description of biological and chemical interactions also produce complex and large amounts of data. It is in this context that a big challenge for current analysis algorithms is presented. Many of the traditional methods for data analysis do not scale well in massive data sets nor in very high dimensional spaces. In this work I introduce a novel (ultrametric) distance called Baire based on the longest common prefix and show how it can be used to produce clusters through grouping data in ’bins’ taking linear or O(n) computational time. Furthermore, it follows that this distance can be strictly fitted to a hierarchy tree. This is a property that proves very useful for classifying, storing, accessing and retrieving information. I go further to apply this methodology on data from different scientific areas such as astronomy and chemistry to create groups or clusters. Additionally I apply this method to document sets for clustering and retrieval. In particular, I look into the new area of enterprise search to propose a new method to support scalable search and clustering

    The Encyclopedia of Neutrosophic Researchers, 5th Volume

    Get PDF
    Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements. There are about 7,000 neutrosophic researchers, within 89 countries around the globe, that have produced about 4,000 publications and tenths of PhD and MSc theses, within more than two decades. This is the fifth volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation, with an introduction contains a short history of neutrosophics, together with links to the main papers and books

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki

    Inductive Pattern Formation

    Get PDF
    With the extended computational limits of algorithmic recursion, scientific investigation is transitioning away from computationally decidable problems and beginning to address computationally undecidable complexity. The analysis of deductive inference in structure-property models are yielding to the synthesis of inductive inference in process-structure simulations. Process-structure modeling has examined external order parameters of inductive pattern formation, but investigation of the internal order parameters of self-organization have been hampered by the lack of a mathematical formalism with the ability to quantitatively define a specific configuration of points. This investigation addressed this issue of quantitative synthesis. Local space was developed by the Poincare inflation of a set of points to construct neighborhood intersections, defining topological distance and introducing situated Boolean topology as a local replacement for point-set topology. Parallel development of the local semi-metric topological space, the local semi-metric probability space, and the local metric space of a set of points provides a triangulation of connectivity measures to define the quantitative architectural identity of a configuration and structure independent axes of a structural configuration space. The recursive sequence of intersections constructs a probabilistic discrete spacetime model of interacting fields to define the internal order parameters of self-organization, with order parameters external to the configuration modeled by adjusting the morphological parameters of individual neighborhoods and the interplay of excitatory and inhibitory point sets. The evolutionary trajectory of a configuration maps the development of specific hierarchical structure that is emergent from a specific set of initial conditions, with nested boundaries signaling the nonlinear properties of local causative configurations. This exploration of architectural configuration space concluded with initial process-structure-property models of deductive and inductive inference spaces. In the computationally undecidable problem of human niche construction, an adaptive-inductive pattern formation model with predictive control organized the bipartite recursion between an information structure and its physical expression as hierarchical ensembles of artificial neural network-like structures. The union of architectural identity and bipartite recursion generates a predictive structural model of an evolutionary design process, offering an alternative to the limitations of cognitive descriptive modeling. The low computational complexity of these models enable them to be embedded in physical constructions to create the artificial life forms of a real-time autonomously adaptive human habitat

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    2019-2020, University of Memphis bulletin

    Get PDF
    University of Memphis bulletin containing the graduate catalog for 2019-2020.https://digitalcommons.memphis.edu/speccoll-ua-pub-bulletins/1439/thumbnail.jp

    2018-2019, University of Memphis bulletin

    Get PDF
    University of Memphis bulletin containing the graduate catalog for 2018-2019.https://digitalcommons.memphis.edu/speccoll-ua-pub-bulletins/1438/thumbnail.jp

    Random projection ensemble classification

    Get PDF
    We introduce a very general method for high-dimensional classification, based on careful combination of the results of applying an arbitrary base classifier to random projections of the feature vectors into a lower-dimensional space. In one special case that we study in detail, the random projections are divided into disjoint groups, and within each group we select the projection yielding the smallest estimate of the test error. Our random projection ensemble classifier then aggregates the results of applying the base classifier on the selected projections, with a data-driven voting threshold to determine the final assignment. Our theoretical results elucidate the effect on performance of increasing the number of projections. Moreover, under a boundary condition implied by the sufficient dimension reduction assumption, we show that the test excess risk of the random projection ensemble classifier can be controlled by terms that do not depend on the original data dimension and a term that becomes negligible as the number of projections increases. The classifier is also compared empirically with several other popular high-dimensional classifiers via an extensive simulation study, which reveals its excellent finite-sample performance.Both authors are supported by an Engineering and Physical Sciences Research Council Fellowship EP/J017213/1; the second author is also supported by a Philip Leverhulme prize
    • …
    corecore