
Search and Retrieval in Massive

Data Collections

Pedro Omar Contreras Albornoz
Licenciado, M.Phil.

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Royal Holloway, University of London

May 2010

Declaration

I declare that this dissertation was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and that this

work has not been submitted for any other degree or professional qualification

except as specified.

Pedro O. Contreras Albornoz

May 2010

Supervisor and Examiners

Supervisor: Prof. Fionn Murtagh

Internal Examiner: Prof. Boris Mirkin

External Examiner: Prof. Xiaohui Liu

2

Abstract

THE main goal of this research is to produce a novel and efficient searching

application by means of best match and proximity searching with particular

application to very large numeric and textual data stores.

In today’s world a huge amount of information is produced. Almost every

part of our society is touched by systems that collect, store and analyse data. As

an example I mention the case of scientific instrumentation: new sensors capture

massive amounts of information (e.g. new telescopes acquiring data from different

regions of the spectrum).

Description of biological and chemical interactions also produce complex and

large amounts of data. It is in this context that a big challenge for current analysis

algorithms is presented. Many of the traditional methods for data analysis do not

scale well in massive data sets nor in very high dimensional spaces.

In this work I introduce a novel (ultrametric) distance called Baire based on the

longest common prefix and show how it can be used to produce clusters through

grouping data in ’bins’ taking linear or O(n) computational time. Furthermore,

it follows that this distance can be strictly fitted to a hierarchy tree. This is a

property that proves very useful for classifying, storing, accessing and retrieving

information.

I go further to apply this methodology on data from different scientific areas

such as astronomy and chemistry to create groups or clusters. Additionally I

apply this method to document sets for clustering and retrieval. In particular, I

look into the new area of enterprise search to propose a new method to support

scalable search and clustering.

3

This thesis is dedicated to my family

and my home city Talca.

4

Acknowledgements

First and furthermost I would like thank my supervisor Prof. Fionn Murtagh whose help
has been invaluable to provide me with support, good advice and funding. He has always
been readily available to guide me and to make me aware of many things that I did not
know. I have always been very impressed by his untiring efforts in his work, and the way
he applies his knowledge to the most diverse areas in research.

I would like to acknowledge the following people:
• Mapping zspec and zphot in chapter 3 was carried out with data provided by Prof.

Giussepe Longo’s research group, with collaboration from Dr Raffaele D’Abrusco.
Dipartimento di Fisica (Sezione di Astrofisica) – Università degli Studi di Napoli
Federico II, Naples, Italy.

• The chemical dataset, used in chapter 4, was provided by Dr Geoff Downs, Digital
Chemistry Ltd. Java code for translating encoded chemical compounds to plain text
was implemented by Dimitrios Zervas, Royal Holloway, University of London.

• Work carried out in chapter 5 was done in collaboration with Dr Marcel Ramirez.
Laboratório Biologia Molecular de Parasitas e Vetores. Instituto Oswaldo Cruz,
FIOCRUZ, Rio de Janeiro, Brazil, who hosted and funded part of my three week
stay at FIOCRUZ.

• Semantic preservation work in chapter 7 was carried out in conjunction with Dr
Javier Pereira from University Diego Portales, Santiago, Chile.

I would like to thank Julian Dean from ThinkingSAFE Ltd. with whom I had many
meetings and very helpful conversations regarding new technologies and what are the
problems faced in the data backup industry. From these discussions have followed the
central theme of this work in developing a new matching and search algorithm for use in
the enterprise setting.

I would like to thank Vera Hazelwood, who was the Smith Institute liaison agent
between Royal Holloway and ThinkingSAFE Ltd.

Egham, United Kingdom Pedro O. Contreras Albornoz
May 2010

5

Preface

The main goal of this project is to identify new mathematical approaches to best

match and proximity searching with particular application to very large data

stores.

In this dissertation I develop a new, linear time hierarchical clustering algo-

rithm and I validate it in a wide range of cases.

This thesis was made possible thanks to the support of the Engineering and

Physical Sciences Research Council (EPSRC) through an Industrial CASE award

in conjunction with ThinkingSAFE Ltd. The award was available through the

Knowledge Transfer Network for Industrial Mathematics with the participation of

The Smith Institute for Industrial Mathematics and System Engineering.

6

Contents

Declaration 2

Abstract 3

Dedication 4

Acknowledgements 5

Preface 6

1 Introduction 16
1.1 About this thesis . 16
1.2 Main contributions . 17
1.3 Publications by the author related to this thesis 18

2 Background and Related Work 22
2.1 Introduction . 22
2.2 Massive datasets and data growth . 23
2.3 The curse of dimensionality . 24
2.4 Dimensionality reduction by random projection 26
2.5 Clustering . 29

2.5.1 Similarity measures . 29
2.5.2 Clustering algorithms . 31
2.5.3 Hierarchical clustering algorithms 33
2.5.4 Agglomerative hierarchical clustering algorithms 37
2.5.5 Partition clustering algorithms 40

2.6 Other clustering techniques . 42
2.6.1 Grid-based clustering algorithms 42
2.6.2 Density-based clustering algorithms 44

7

2.7 Evaluating cluster quality . 45

2.8 Baire distance or longest common prefix 48

2.8.1 Metric and ultrametric spaces 48

2.8.2 Ultrametric Baire space and distance 49

2.9 A note on working with very small decimal numbers 50

2.10 Summary . 52

I Applications to Science 54

3 Application to Astronomy: SDSS Redshift Calibration 57

3.1 Introduction . 57

3.2 Astronomical data and information 58

3.3 Doppler effect and redshift . 60

3.4 The Sloan Digital Sky Survey . 61

3.5 Applying Baire ultrametric to astronomy data (SDSS) 61

3.5.1 Clustering SDSS data based on a Baire distance 63

3.5.2 Baire and k-means cluster comparison 68

3.5.3 Baire and k-means clustering time comparison 70

3.6 Spectrometric and photometric digit distribution 73

3.7 Summary . 76

4 Application to Chemistry: Clustering Chemical Compounds 77

4.1 Introduction . 77

4.2 Problem description and data characterisation 78

4.2.1 Notation used and data normalisation 79

4.2.2 Data distribution and properties 80

4.3 Ultrametric from longest common prefixes 81

4.3.1 From boolean data to normalised, real-valued data 81

4.3.2 Ultrametrisation through Baire space embedding 83

4.3.3 Comparison with k-means clustering algorithm 85

4.4 Discussion on random projection and hashing 86

4.4.1 Random projection and digit distribution 87

4.4.2 Computational time complexity 90

4.5 Summary . 90

8

5 Application to Biology: Protein Clustering 91
5.1 Introduction . 91
5.2 Giardia lamblia . 92
5.3 DNA and proteins encoding . 93

5.3.1 Hypothetical proteins . 94
5.4 Genome databases and file formats 95
5.5 Data characterisation . 96
5.6 Clustering on strings . 99

5.6.1 Suffix array for searching and matching 99
5.6.2 A note on DNA and protein embedding in ultrametric spaces 101
5.6.3 Results from the longest common substring 103
5.6.4 Results using the single-linkage clustering algorithm 107

5.7 Summary . 111

II Application to Information Retrieval 112

6 Supporting Massive Best Match Search and Retrieval 115
6.1 Introduction . 115
6.2 Structuring and searching text in a massive dataset 115

6.2.1 On searching . 117
6.2.2 On indexing . 118
6.2.3 On retrieval . 122

6.3 Supporting massive best match search and retrieval 122
6.4 Building a search engine . 123

6.4.1 Vector space model . 123
6.4.2 Document querying . 124
6.4.3 Term weighting . 125
6.4.4 Compressed inverted list indexes 128

6.5 Enterprise search . 129
6.5.1 Anatomy of a search engine . 131
6.5.2 Preprocessing . 131
6.5.3 Parsing . 132
6.5.4 Indexing . 132
6.5.5 Storing . 133
6.5.6 Querying . 133
6.5.7 System administration . 134

9

6.5.8 Evaluating enterprise search engines 137
6.5.9 Enterprise search providers . 137
6.5.10 Commercial solutions . 138
6.5.11 Open source solutions . 139

6.6 Summary . 140

7 Information Retrieval and the Baire Distance 141
7.1 Introduction . 141
7.2 Document clustering . 142
7.3 Clustering and semantics preservation 143

7.3.1 Experiment design . 145
7.3.2 On clustering experiments for semantic preservation 146
7.3.3 Clustering process . 147
7.3.4 Results . 149

7.4 On experiments and demonstrator: searching e-mails 153
7.5 Summary . 155

8 Conclusions 157
8.1 Final remarks and possible extensions 158

A Baire Algorithm Implementation in Java 160

B Enterprise Search Providers 163

C Additional Resources Available from This Thesis 167

Bibliography 168

10

List of Figures

2.1 Random projection as a hashing function. 28

2.2 Traditional taxonomy of clustering techniques. Two main subgroups
are presented, hierarchical and partitional cluster algorithms. 32

2.3 Construction of a dendrogram by the single linkage method. 34

2.4 Diagram of the cluster validity indices [69] p. 300. 47

3.1 Electromagnetic spectrum in different wavelengths [66]. 58

3.2 Distribution in the sky of the SDSS data release 5 [2]. 62

3.3 Left: right ascension (RA) vs. declination (DEC); Right: zspec vs.
zphot. SDSS data selection used for redshift analysis. 64

3.4 Heat plot and histogram for zspec vs. zphot. Histogram at the top
shows the zspec frequencies, histogram at the bottom shows zphot

frequencies. 64

3.5 Prefix-wise clustering frequencies depicting only the 3rd decimal
digit coincidences (left panel), and only two decimal digit coinci-
dences (right panel). 66

3.6 Prefix-wise clustering frequencies depicting only the 1st decimal
digit coincidences (left panel), and only first digit coincidences (right
panel). 66

3.7 Frequency distribution for Table 3.2. The abscissa shows the digit
positions, where 1 is the first digit, 2 the first decimal digit, 3 the
second decimal digit and so on. 68

3.8 K-means clustering for k = 60 after 38 iterations. Note that non-
contiguous groups may be coloured the same. 72

3.9 K-means average processing time in seconds for k = 60. Averages
are obtained for 9 examples with 50 executions each. 73

11

3.10 Digit distribution for zspec and zphot; Top: Spectrometric digit dis-
tribution; Bottom: Photometric digit distribution. Note that digit
distribution for zspec has three peaks, but zphot only one. 75

4.1 An example of a molecule encoding as a structure-key fingerprint
using a fragment dictionary. A defined fragment is assigned to a
single bit position on the string [23]. 79

4.2 Histogram of column sums, denoted xJ in the text. 80

4.3 Log-log plot of number of chemicals per attribute, based on the
whole data set of 1.2 million chemicals. 82

4.4 Histogram of numbers of attribute presences for the set of chemicals. 82

4.5 Histogram of cluster sizes. 85

4.6 Digit distributions from eight different random projections, where:
the x axis shows the digit decimal position; the y axis shows the
numeric digits from 0 to 9; and the z axis shows the normalised
frequency of digit occurrences in percentage. 89

5.1 Giardia lamblia, the binucleate structure of the cell and its appendages
are clearly visible. Retrieved from the National Institute of Infec-
tious Diseases of Tokyo, Japan. http://www.nih.go.jp/niid/para/
atlas/japanese/lambl.html. 92

5.2 The genetic code and the twenty standard amino acid translations,
which are listed with their three-letters and one-letter abbreviations. 95

5.3 Giardia lamblia protein frequency distribution in percentages. 98

5.4 Giardia lamblia hypothetical proteins lengths arranged in descend-
ing order. 98

5.5 Suffix tree representation for string “mississippi”. 100

5.6 Longest common substring images: Top panel shows the unsorted
distances from 0 to 10 for the Giardia 2,542 hypothetical proteins;
Bottom panel shows the sorted distances from 0 to 10 agglomerated
towards the diagonal. 104

6.1 Architecture overview. In general a document source is selected and
parsed, the local collector stores resulting key words. In turn these
are compressed and encrypted, then sent to a central repository for
storage. 116

12

http://www.nih.go.jp/niid/para/atlas/japanese/lambl.html
http://www.nih.go.jp/niid/para/atlas/japanese/lambl.html

6.2 Indexing process overview. Each collector process stores parsed
documents (key words) that are sent to an indexing process, which
is in charge of merging collectors into a database ready to be queried.117

6.3 Collector overview. First a data source is defined, in this case a
directory is specified. All files within are read and tokens identi-
fied. At this point a stop-list, stemming, entity detection and part of
speech software can be used to help with the parsing. Afterwards
tokens are stored, and frequencies relative to a document identified.
Finally, this information is sent to the central indexer to be merged
and stored in a DB. 119

6.4 Typical querying retrieval systems [18]. In phase one a query is writ-
ten into the search engine, then in phase two this query is translated
into tokens, which in phase three are converted to the vector space
for search. 125

6.5 Search engine processes (first part). Three main processes are de-
scribed here: preprocessing, parsing and indexing. 135

6.6 Search engine processes (second part). Three processes are de-
scribed here: storing, querying and system administration. 136

7.1 How many clusters? Determining the numbers of clusters can be
a difficult question and many times it will be determined by the
algorithm’s initialisation parameters [164]. 142

7.2 Experiment process design, where five steps are described. 145
7.3 Top panel: Jaccard values. Where: R, average mean similarity

among items within clusters. R∗, is average maximum similarity
among items within clusters. R∗, is average minimum similarity
among items within clusters. Bottom panel: Number of clusters for
k-means algorithm (bottom left panel) and Baire method (bottom
right). 151

7.4 E-mail enterprise TREC search application. 155

13

List of Tables

2.1 Some clustering algorithms and their computational complexities [181,
182]. 26

2.2 Specifications of seven hierarchical clustering methods [122]. 39

2.3 Some external criteria indices to measure the degree of similarity
between clusters. where m1 = (a + b) and m2 = (b + c); R, J, FM,
and Γ ∈ [0, 1]. 47

3.1 Data format for right ascension, declination, zSpec and zPhot. 63

3.2 Data points based on the longest common prefix for different levels
of precision. This includes the integer part of a data point (first
digit) and the decimal digits of a data point (first to sixth digit). . . . 67

3.3 Cluster comparison based on dB = 2. Columns show the k-means
clusters, and the rows show the Baire clusters. The cells present the
number of data points for a given cluster. 69

3.4 Subset of cluster comparison based on dB = 3; columns show the
k-means clusters (k = 60); rows show Baire nodes. 70

3.5 Cluster comparison based on dB = 3. Column: k-means clusters;
Rows: Baire clusters. The array has been row and column permuted
in order to highlight the good correspondence. 71

3.6 Time average for k-means algorithm over 50 executions for each total
iteration count. 73

4.1 Results for the three different data sets, each consisting of 7500
chemicals, are shown in immediate succession. The number of sig-
nificant decimal digits is 4 (more precise, and hence more different
clusters found), 3, 2, and 1 (lowest precision in terms of significant
digits). 84

14

4.2 Results of k-means for three different datasets samples related to
7500 chemical structures with 1052 descriptors.“Sig. dig”: number
of significant digits used. “No. clusters”: number of the clusters
in the dataset of 7500 chemicals structures. “Largest cluster”; cardi-
nality. “No. discrep.”: number of discrepancies found in k-means
cluster outcome. 86

5.1 Statistics for hypothetical and non-hypothetical proteins. 97
5.2 Amino Acid frequency of occurrences for hypothetical and non-

hypothetical proteins, where A.A.: amino acid; Freq.: amino acid
frequency; Freq. %: normalised amino acid frequency. 97

5.3 List of suffixes in the string “mississippi”: Left hand side shows the
degeneration of the string into substrings; Right hand side shows
the suffix strings sorted lexicographically. 100

6.1 Formulas for local term weights lij [18]. 126
6.2 Formulas for global term weights [18, 51, 152] gi. 126
6.3 Formulas for document normalisation [152] dj. 127

7.1 Average semantic similarity for 2, 3, 4, 5, 6, 8 and 12 decimal digits
of precision. Where: R, average mean similarity among items within
clusters. R∗, average maximum similarity among items within clus-
ters. R∗, average minimum similarity among items within clusters. . 150

7.2 Metrics standard deviation. Where: R, average mean similarity
among items within clusters. R∗, average maximum similarity among
items within clusters. R∗, average minimum similarity among items
within clusters. 150

7.3 W3C TREC Enterprise Corpus data source description. Here we are
interested in the e-mail set. 154

15

Chapter 1

Introduction

1.1 About this thesis

THE main goal of this research is to produce a novel and efficient algorithm

that can be used for hierarchical classification, matching, search and cluster-

ing. In particular we study the application of the proposed distance to very large

data stores. Following this we look into application to diverse scientific areas, as

well as information retrieval.

We start by giving the background and introduction to the problem which we

aim to solve in Chapter 2. Furthermore, we look into the need for new algo-

rithms to deal with the large amount of data available, and how the increasing

dimensionality in data is a problem that needs addressing. Particular attention is

given to clustering techniques, stressing hierarchical methods. Finally the Baire

(ultra)metric distance is introduced and explained.

The use of the Baire (ultra)metric technique is explored in different scientific

areas such as astronomy and chemistry for clustering.

In the information retrieval context matching of text is addressed. In particular

the area of large data stores with semantically organised text is examined.

This thesis is structured in two main parts as follows:

In Part I the Baire distance is used in the scientific context. Specifically, we look

into applications in astronomy, chemistry and biology. In Chapter 3 astronomical

data from the Sloan Digital Sky Survey is used to study spectrometric and photo-

16

metric redshifts. A cluster-wise mapping of one signal into the other is developed

based on the Baire distance. Additionally, signals are clustered individually to

produce digit distribution maps for comparison. In Chapter 4 the Baire distance

is applied to clustering of chemical compounds. In this case a random projection

is applied in order to reduce data dimensionality prior to clustering.

In Chapter 5 we look into genomic data using a modified Baire distance for

clustering, namely the longest common substring. In this chapter our aim is to

analyse Giardia hypothetical proteins in order to obtain clusters that can be used

as targets for drug discovery.

In Part II we look into the information retrieval area. Particular attention is

given to text matching, clustering and retrieval, all of this based on the Baire dis-

tance. In Chapter 6 we begin explaining how search engines work, their structure

and how this is related to enterprise search, not only highlighting similarities with

web search, but also stressing differences. Chapter 7 deals with the Baire distance

applied in the context of information retrieval. In particular we look into the text

retrieval setting.

In Chapter 8 overall conclusions are drawn. In addition we provide some

discussion regarding possible extensions of our work.

1.2 Main contributions

Massive datasets are everywhere in today’s world, and they are growing con-

tinually. This entails a number of issues and challenges to current technologies

employed to capture, transmit, store and analyse this data. In this work we are

particularly concerned with exploratory data analysis, namely clustering.

In this dissertation a novel (ultra)metric distance is proposed for clustering.

We validate the clustering algorithm, as well as the context within which they are

implemented, by comparing them with long established cluster algorithms such

as k-means. Moreover, we use real life examples and applications to different

scientific areas, as well as information retrieval to exemplify its use.

17

The proposed method presents a number of advantages when compared with

more traditional techniques. When working with numeric data, distances can

be interpreted directly and classification carried out. Furthermore, the resulting

distances can be strictly fitted to a hierarchical tree. This is very important for

classification, storing and fast search.

1.3 Publications by the author related to this thesis

Refereed journal, book compilation and conference proceedings articles

F. Murtagh and P. Contreras, “Hierarchical Clustering for Finding Symmetries

and Other Patterns in Massive, High Dimensional Datasets”, invited chapter in D.

Holmes, editor, Data Mining: Foundations and Intelligent Paradigms, Springer,

2011, submitted.

P. Contreras and F. Murtagh, “A Very Fast, Linear Time p-Adic and Hierarchical

Clustering Algorithm Using the Baire Metric”, 2010, in preparation.

F. Murtagh and P. Contreras. “Methods of Hierarchical Clustering”, in W. Pedrycz,

Ed., Data Mining and Knowledge Discovery, Wiley Interdisciplinary Reviews (WIRES),

submitted (invited), 2010 (for publication in 2011).

J. Pereira, F. Schmidt, P. Contreras, F. Murtagh, and H. Astudillo. “Clustering and

Semantics Preservation in Cultural Heritage Information Spaces”, RIAO’2010, 9th

International Conference on Adaptivity, Personalization and Fusion of Heteroge-

neous Information. 28–30 April, 2010. Paris, France.

P. Contreras and F. Murtagh. “Fast Hierarchical Clustering From the Baire Dis-

tance”, Classification as a Tool for Research. Proceedings of the 11th IFCS Biennial

Conference and 33rd Annual Conference of the Gesellschaft für Klassifikation e.V.,

pp 235–243 March 13–18, 2009. Dresden, Germany.

18

S. Bormuri, V. Urovi, P. Contreras, and K. Stathis. “A Virtual E-retailing Environ-

ment in GOLEM”, 4th International Conference on Intelligent Environments (IE

08), 21–22 July 2008. Seattle, USA.

F. Murtagh, G. Downs, and P. Contreras. “Hierarchical Clustering of Massive,

High Dimensional Data Sets by Exploiting Ultrametric Embedding”, SIAM Journal

on Scientific Computing. Vol. 30, No. 2, pp. 707–730. February 2008.

D. Rosenberg, M. Lievonen, P. Contreras, F. Murtagh, G. Kuehn, and R. Doerner.

“Application Design of Learning Grid in Computer-Mediated Communication”.

The Learning Grid Handbook, Concepts, Technologies and Applications, pp. 107–

123. IOS Press. March 2008.

Presentations

P. Contreras and F. Murtagh. British Classification Society Meeting and AGM.

“Fast Hierarchical Clustering Algorithm”. Royal Holloway, University of London.

20 November 2009. Egham, UK.

P. Contreras and F. Murtagh. “Fast Hierarchical Clustering From the Baire Dis-

tance”. Doctoral Consortium on Computer Science and Informatics. British Com-

puter Society. 28 May 2009. London, UK.

P. Contreras, F. Murtagh, and J. Dean. “Fast Clustering Algorithm for Application

in Science”. Alan Tayler’s Day, organised by Smith Institute for Industrial Mathe-

matics and System Engineering. St. Catherine’s College. 24 October 2008. Oxford,

UK.

P. Contreras and F. Murtagh. “Fast Clusterwise m-Adic Regression: Application

to Redshift Calibration”. 5th Astronomical Data Analysis Conference. 7–9 May

2008. Heraklion, Greece.

P. Contreras and F. Murtagh. “Evaluation of Hierarchies Based on the Longest

Common Prefix or Baire Metric”. The North American Classification Society An-

19

nual Meeting (CSNA). University of Illinois. 9 June 2007. Urbana-Champaign,

USA.

Posters

P. Contreras and F. Murtagh. “Fast Hierarchical Clustering Algorithm for Redshift

Calibration”. 6th Astronomical Data Analysis Conference, 3–7 May 2010. Monas-

tir, Tunisia.

P. Contreras, F. Murtagh, and J. Dean. “Fast Clustering Algorithm for Application

in Science”. Tayler’s Day, organised by Smith Institute for Industrial Mathematics

and System Engineering, 30 November 2009. Oxford, UK.

I. Evans-Osses, A. Santos e Silva, J. Toscano, P. Contreras, and M. Ramirez. “A

Combined in Silico and in Vitro Strategy to Analyze Hypothetical Proteins in Gi-

ardia Intestinalis”. XXIV Annual Meeting of the Brazilian Society for Protozool-

ogy/XXXV Meeting on Basic Research in Chagas Disease. 27–29 October 2008.

Águas de Lindóia. Brasil.

P. Contreras, F. Murtagh, and J. Dean. “Data Matching and Classification”. Alan

Tayler’s Day, organised by Smith Institute for Industrial Mathematics and System

Engineering. 26 November 2007. Oxford, UK.

Seminars and lectures

P. Contreras. “m-Adic Regression: Application to Redshift Calibration”. Postgrad-

uate Colloquium. Royal Holloway, University of London. 4 June 2008. Egham, UK.

http://www.cs.rhul.ac.uk/Internal/For-Students/Postgrads/Colloquium/2008/

Talks/pedro.pdf

The following presentations can be found in: http://www.cs.rhul.ac.uk/~pedro/

lectures.html

Guest lectures, M.Sc. Business Information Systems. Royal Holloway, University

20

http://www.cs.rhul.ac.uk/Internal/For-Students/Postgrads/Colloquium/2008/Talks/pedro.pdf
http://www.cs.rhul.ac.uk/Internal/For-Students/Postgrads/Colloquium/2008/Talks/pedro.pdf
http://www.cs.rhul.ac.uk/~pedro/lectures.html
http://www.cs.rhul.ac.uk/~pedro/lectures.html

of London: “Data Mining”. 20 February 2008; “Information Retrieval”. 27 Febru-

ary 2008. Egham, UK.

Computer Science Departmental seminar. Royal Holloway, University of London.

“Understanding How Search Engines Work, an Information Retrieval Perspec-

tive”. 26 February 2008. Egham, UK.

CS253 Group Projects guest lectures. Department of Computer Science. Royal

Holloway, University of London. “Organisational Aspects of Software Develop-

ment”; “Working with Databases and Java”. January 2008, January 2009, . Egham,

UK.

21

Chapter 2

Background and Related Work

2.1 Introduction

IN this work we are concerned with clustering, in particular with fast cluster-

ing for massive and high dimensional datasets. This presents a number of

problems for traditional clustering methods. Currently there are many clustering

algorithms that do not scale well with high volumes of data, and they are further

troubled when this data has many features (i.e. dimensions) to consider. This is a

very active area of research. Many methodologies have been proposed to address

this problem. Normally we will find that the more precise a clustering algorithm

is in finding groups, the more calculations are involved. This increases the com-

putational complexity, which is one of the algorithmic issues that we would like to

avoid. In general it can be said that we are willing to sacrifice precision for speed.

Therefore, the Baire distance proposed in this work can be seen as a fast way to

obtain clusters, but not always the optimal way.

In this chapter we introduce the background for this dissertation. We begin by

describing how the massive increase in data emphasises the need for new meth-

ods that can cope well with the explosion in volume and dimensionality of the

available data. The curse of dimensionality is explained together with some tech-

niques that help in reducing dimensionality by means of mapping the data space

to a lower dimension. Particular attention is given by us to the random projection

method.

We follow by presenting some of the most important clustering algorithms,

22

focusing on hierarchical, grid-based and density-based clustering methods. Then

the ultrametric Baire distance is explained, which is used to build a hierarchy and

in turn for clustering and matching. This is the basis for most of the work carried

out throughout this dissertation.

This process is possible because arising directly out of the Baire distance is an

ultrametric tree, which also can be seen as a tree that hierarchically clusters data.

This presents a number of advantages when storing and retrieving data. When

the data source is in numerical form this ultrametric tree can be used as an index

structure making matching and search, thus retrieval, much easier. In the case of

textual information the longest common prefix can be used to find the best match,

making easier the retrieval process since here again the information can be stored

in an ultrametric tree.

Finally a note about possible problems arising with working with very small

decimal numbers is presented, followed by the conclusions.

2.2 Massive datasets and data growth

A massive dataset can be a difficult concept to define, not only because it means

different things to different people but also due to the changing landscape of the

technology used to store, retrieve and analyse data. In general we can say that it is

the combination of size, complexity and cost when using current technology (e.g.,

conventional statistical methods) that makes a dataset massive [96].

There are many areas that collect and analyse vast amounts of data, such as

(but not limited to): particle physics, astronomy, geology, climatology, medicine,

chemistry, genomics, banking, telecommunications, public and private enterprise.

This work will look into more detail in some of these areas. Before that let us see

how data is growing and with that the need for new techniques and methods that

can scale well to tackle this challenge.

With the introduction of new technology and machinery that works in the

digital world the inevitable outcome is the capture of data. From digital cameras to

satellites, telescopes and sensor networks, the amount of data available is immense

23

and growing continuously. In fact IDC [70, 71] calculated that the digital universe

by 2007 was of 281 exabytes (281 billion gigabytes) and by 2011 will be 10 times

bigger than in 1996. Also, in 2007 for the first time the amount of data created,

captured, or replicated exceeded available storage, a trend that will be increased

by almost 50% by 2011. Further estimations show that 95% of the digital universe

is unstructured data, and as a result extra effort is needed to process and locate

information.

Challenges presented by this growth in data and information are many, from

the economical and environmental cost to the techniques needed to access, store,

visualise and analyse data. It is in the area of data analysis and specifically in

exploratory data analysis where we will concentrate our efforts throughout this

work.

With the increase in data complexity, scalability becomes a very significant

problem when using traditional data analysis methods. It is important to highlight

that not only data volume is a factor in complexity (as we have discussed in this

section) but also data dimensionality, which we will discuss in section 2.3.

Note that when talking about data we refer to data in its raw form, in other

words data that does not have any processing, and this is as opposed to informa-

tion. Therefore we refer to information when data has been processed, organised

and structured in such a way that it can help in the decision process. In this work

we mention information space a number of times, if the data has been at least par-

tially processed or structured. In that case we indistinguishably refer to either the

data space or the information space.

2.3 The curse of dimensionality

High dimensionality is a major contributor to data complexity. Data observation

with thousands of features (or more) are now common. In many situations the

old assumption that the number of observations is bigger than the number of

dimensions no longer holds (i.e. N > d). Many clustering techniques in the past

assumed N > d, which works well in low dimensional spaces. For example some

24

of the techniques presented in table 2.1 can deal with a large volume of data, but

not necessarily with high dimensionality.

The term “curse of dimensionality” was coined by Richard Bellman [15]. It

refers to the exponential growth of volume as a function of dimensionality. This

is easily understood if we take a Cartesian grid of spacing 1/10 on the unit cube

in 5 dimensions; we then have 105 grid cells. The number of grid cells increases to

1010 if the cube is in 10 dimensions, and to 1020 if in 20 dimensions ([182] p. 238).

Thus, the “curse of dimensionality” refers to any problem in data analysis with a

large number of variables.

Most clustering techniques are affected by the curse of dimensionality. At the

heart of every clustering algorithm lies a distance or similarity used to compare

the data points (elements) to compute the clusters. It is this process that suffers

the “curse” of high dimensionality data.

We can see in Table 2.1 a number of well known clustering algorithms with

their execution times and storage space computer complexities, where K: cen-

troids; d: number of features; and N: input size. Some of these have been specifi-

cally developed for large datasets, especially in the context of data mining. Thus,

some algorithms scale linearly with the input size. However, their performance

suffers with the increase of the input dimensionality. It can be argued that some

of the algorithms like DENCLUE and fuzzy clustering have shown some success

dealing with both high dimensionality and large datasets, although they are still

far from being completely effective.

25

Algorithm Complexity
k-means O(NKd) (time) O(N + K) (space)

H. C.1 O(N2) (time and space)

CLARA2 O(K(40 + K)2 + K(N − K)) (time)

PAM O(K(N − K)2)

BIRCH O(N) (time)

DBSCAN O(N log N) (time)

CURE O(N2
sample log Nsample (time) O(Nsample) (space)

WaveCluster O(N) (time)

DENCLUE O(N log N) (time)

Fuzzy Clust. O(N) (time)

STING3 O(K)

CLIQUE O(Nd2)

OptiGrid Between O(Nd) and O(Nd log N)

ORCLUS4 O(K3
0 + K0ND + K2

0d3) (time) O(K0d2) (space)

1. Hierarchical clustering includes single-linkage, complete-linkage, average-linkage, etc.
2. Based on a heuristic for drawing a sample from the entire dataset [95].
3. Here K is number of cells at the bottom layer.
4. Here K0 is the number of initial seeds.

Table 2.1: Some clustering algorithms and their computational complexities [181, 182].

2.4 Dimensionality reduction by random projection

It is a well known fact that traditional clustering methods do not scale well in very

high dimensional spaces. A standard and widely used approach when dealing

with high dimensionality is to apply a dimensionality reduction technique. This

consists of finding a mapping F relating the input data from the space Rd to a

lower-dimension feature space Rk. We can denote this as follows:

F(x) : Rd → Rk (2.1)

A statistically optimal way of reducing dimensionality is to project the data

onto a lower dimensional orthogonal subspace. Principal Component Analysis

(PCA) is a very popular choice to do this. It uses a linear transformation to form a

26

simplified dataset retaining the characteristics of the original data. PCA does this

by means of choosing the attributes that best preserve the variance of the data.

This is a good solution when the data allows these calculations, but PCA as well

as other dimensionality reduction techniques remain expensive computationally

speaking.

Random projection [20,39,44,57,63,104,105,169] is the finding of a low dimen-

sional embedding of a point set, such that the distortion of any pair of points is

bounded by a function of the lower dimensionality.

The theoretical support for random projection can be found in the Johnson-

Lindenstrauss Lemma [92]. It states that a set of points in a high dimensional

Euclidean space can be projected into a low dimensional Euclidean space such

that the distance between any two points changes by a fraction of 1 + ε, where

ε ∈ (0, 1).

Lemma 2.1. For any 0 < ε < 1 and any integer n, let k be a positive integer such that

k ≥ 4(ε2/2− ε3/3)−1 ln n. (2.2)

Then for any set V of any points in Rd, there is a map f : Rd → Rk such that for all u,

v ∈ V,

(1− ε) ‖ u− v ‖2 ≤ ‖ f (u)− f (v) ‖2 ≤ (1 + ε) ‖ u− v ‖2.

Furthermore, this map can be found in randomised polynomial time.

This proof was further simplified by Frankl and Maehara [64], and Dasgupta

and Gupta [40], also see Achlioptas [1] and Vempala [169].

We have mentioned that the optimal way to reduce dimensionality is to or-

thogonalise R, but unfortunately this is computationally expensive. Vectors hav-

ing random directions might be sufficiently close to orthogonal. Additionally this

helps solving the problem of data sparsity in high dimensional spaces, as we will

see in chapter 4.

27

Thus, in random projection the original d-dimensional data is projected to a k-

dimensional subspace (k << d), using a random k× d matrix R. Mathematically

this can be described as follows:

XRP
k×N = Rk×d Xd×N (2.3)

where Xd×N is the original set with d-dimensionality and N observations.

Computationally speaking random projection is simple. Forming the random

matrix R and projecting the d× N data matrix X into the k dimensions is of order

O(dkN). If X is sparse with c nonzero entries per column, the complexity is of

order O(ckN).

In fact random projection can be seen as a class of hashing function. Hashing is

much faster than alternative methods because it avoids the pair-wise comparisons

required for partitioning and classification. This process is depicted in a Euclidean

two dimensional space in Figure 2.1, where a random vector is drawn and data

points projected onto it. If two points (p, q) are close, they will have a very small

‖p− q‖ (Euclidean metric) value; and they will hash to the same value with high

probability; if they are distant, they should collide with small probability.

x axis

y
 a

xi
s

random vector

Figure 2.1: Random projection as a hashing function.

28

2.5 Clustering

Clustering is a data analysis technique that segments data into groups (subsets)

called clusters, in which members of the same cluster are similar to each other. The

proximity measurement (similarity) is a critical step in order to identify groups,

and we will be back to it later in section 2.5.1.

When clustering we will have a number of unlabelled observations that need

to be classified. We do not know anything beforehand regarding the grouping of

the data. For this reason clustering is also called unsupervised classification, as

opposed to supervised classification where we have a set of labels and the task is

to assign the data observations to these labels (i.e. discriminant analysis).

Clustering is used for data exploration in pattern analysis, grouping, decision-

making, and machine learning. Application areas include data mining, document

retrieval, image segmentation, pattern classification and many others.

The literature in clustering is huge with a very active research community

across many disciplines. For surveys in clustering see Cormack [34], Murtagh [120,

121], Gordon [76], Jain et al. [89], Xu and Wunsch [181], and Berkhin [16]. For

books on clustering see Hartigan [84], Lorr [108], Murtagh [122], Jain and Dubes [90],

Kaufman [95], Erevitt [54], Mirkin [114, 115], Xu and Wunsch [182], and Gan et

al. [69].

2.5.1 Similarity measures

To group data we need a way to measure the elements and their distances relative

to each other in order to decide which elements belong to a group. This is also

called similarity, although on many occasions a dissimilarity measurement is also

used. Note that not any arbitrary measurement is of use to us here, and in fact

normally this measurement will be a metric distance, see section 2.8.1.

When working in a vector space a traditional way to measure distances is the

Minkowski distances, which are defined as follows:

29

Lp(xa, xb) = (
n

∑
i=1
|xi,a − xi,b|p)1/p; ∀ p ≥ 1, p ∈ Z, (2.4)

where Z is the set of integers.

The Manhattan, Euclidean and Chebyshev distance (also called maximum dis-

tance) are special cases of the Minkowski distance when p = 1, p = 2 and p→ ∞.

Thus we have the following:

• Manhattan distance:

L1(xa, xb) =
n

∑
i=1
|xi,a − xi,b| (2.5)

• Euclidean distance:

L2(xa, xb) =

√
n

∑
i=1
|xi,a − xi,b|2 (2.6)

• Chebyshev distance:

L∞(xa, xb) = maxn
i=1|xi,a − xi,b| (2.7)

Additionally we can mention the cosine similarity, which gives the angle be-

tween two vectors. This is widely used in text retrieval to match vector queries

to the dataset. The smaller the angle between a query vector to the document set

vectors, the closer is a query to a document. The cosine similarity is defined as

follows:

s(xa, xb) = cos(θ) =
xa · xb

‖xa‖‖xb‖
(2.8)

where xa · xb is the dot product and ‖ · ‖ the norm. Thus, this equation can be

rewritten as follows:

s(xa, xb) = cos(θ) =
∑n

i=1 xi,a xi,b√
∑n

i=1 x2
i,a ∑n

i=1 x2
i,b

(2.9)

Other relevant distances are the following:

– Hellinger distance is defined between vectors having only positive or zero

30

elements. Let X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} be two vectors,

then the Hellinger distance is defined as:

dhell(X ,Y) =
√

n

∑
i=1

(
√

xi −
√

yi)
2 (2.10)

This is used to measure the similarity of two discrete or continuous proba-

bility distributions.

– Variational distance between two probability distributions P = {p1, p2, ..., pn}
and Q = {q1, q2, ..., qn} is defined as:

dvar(P ,Q) =
n

∑
i=1
|pi − qi| (2.11)

where | · | is absolute value.

– Mahalanobis distance is defined as:

dmaha(xa, xb) =
√
(xa − xb)TS−1(xa − xb) (2.12)

where S is any n× n positive definite matrix and (xa − xb)
T is the transpose

of (xa − xb). The role of the matrix S is to distort the space as desired. S is

the covariance matrix of the dataset.

– Hamming distance is defined as the number of bits which differ between

two binary strings: For example the binary strings 10011011 and 10001101

have a Hamming distance of 3 bits as three is the number of dissimilar bits.

Anderberg gives a good review on measurement and metrics in [5], where

their interrelationships are also discussed. Deza and Deza have produced a com-

prehensive list of distances in their Encyclopaedia of Distances [45]. Also see [69]

chapter 6.

2.5.2 Clustering algorithms

Many clustering techniques and algorithms have been proposed in different ap-

plication scenarios [90, 91]. Thus, it is difficult to have a strict classification of all

31

of them. Algorithms in this area have been characterised by the probability model

used, if any, or by the optimisation process used to find clusters. Other classifica-

tions are based in the type of features handled (e.g., numerical, categorical, rank

data, string, graphs, etc.), or by the type of input used (e.g., pattern or similarity

matrix).

One of the most popular ways to classify clustering algorithms is hierarchical

versus partitional as depicted in Figure 2.2.

Within the context of this dissertation, hierarchical clustering algorithms are of

special importance, since the proposed Baire distance for clustering is a hierarchi-

cal method. Thus, in section 2.5.3 we look into these techniques. Another method

of importance for us is the k-means algorithm, which has been largely studied

and many variations proposed. Our interest lies in the fact that we compare our

methodology against the results produced by k-means.

Clustering

Hierarchical Partitional

Single Link

Complete Link

Square Error

Graph
Theoretic

Mixture
Resolving

Mode Seeking

K-means

Expectation
Maximisation

Ward's (min.
var. or sq. err.)

Figure 2.2: Traditional taxonomy of clustering techniques. Two main subgroups are presented,
hierarchical and partitional cluster algorithms.

32

2.5.3 Hierarchical clustering algorithms

Introduction to hierarchical clustering using the single linkage agglomerative
criterion

The single linkage hierarchical clustering approach outputs a set of clusters (to

use graph theoretic terminology, a set of maximal connected subgraphs) at each

level – or for each threshold value which produces a new partition. The following

algorithm, in its general structure, is relevant for a wide range of hierarchical

clustering methods which vary only in the update formula used in step 2. These

methods may, for example, define a criterion of compactness in step 2 to be used

instead of the connectivity criterion used here. The single linkage method with

which we begin is one of the oldest methods, its origins being traced to Polish

researchers in the 1950s [78]. An example is shown in Figure 2.3. Note that

the dissimilarity coefficient is assumed to be symmetric, and so the clustering

algorithm is implemented on half the dissimilarity matrix.

Single linkage hierarchical clustering

Input An n(n− 1)/2 set of dissimilarities.

Step 1 Determine the smallest dissimilarity, dik.

Step 2 Agglomerate objects i and k: i.e. replace them with a new object, i ∪ k;

update dissimilarities such that, for all objects j 6= i, k:

di∪k,j = min {dij, dkj}.

Delete dissimilarities dij and dkj, for all j, as these are no longer used.

Step 3 While at least two objects remain, return to step 1.

33

1 2 3 4 5
1 0 4 9 5 8
2 4 0 6 3 6
3 9 6 0 6 3
4 5 3 6 0 5
5 8 6 3 5 0

Agglomerate 2 and 4
at dissimilarity 3

1 2U4 3 5
1 0 4 9 8

2U4 4 0 6 5
3 9 6 0 3
5 8 5 3 0

Agglomerate 3 and 5
at dissimilarity 3

1 2U4 3U5
1 0 4 8

2U4 4 0 5
3U5 8 5 0

Agglomerate 1 and 2U4
at dissimilarity 4

1U2U4 3U5
1U2U4 0 5
3U5 5 0

Agglomerate 1U2U4 and
3U5 at dissimilarity 5

Resulting dendrogram

. . . 4 . . . 5

. . . 3 . . . 4

. . . 2 . . . 3

. . . 1 . . . 3

. . . 0 . . . 0

Rank or
levels

Criterion values
(linkage weights)

Figure 1: Construction of a dendrogram by the single linkage method.

1

Figure 2.3: Construction of a dendrogram by the single linkage method.

34

Equal dissimilarities may be treated in an arbitrary order. There are precisely

n− 1 agglomerations in step 2 (allowing for arbitrary choices in step 1 if there are

identical dissimilarities). It may be convenient to index the clusters found in step

2 by n + 1, n + 2, . . . , 2n− 1, or an alternative practice is to index cluster i ∪ k by

the lower of the indices of i and k.

The title single linkage arises since, in step 2, the interconnecting dissimilarity

between two clusters (i ∪ k and j) or components is defined as the least intercon-

necting dissimilarity between a member of one and a member of the other. Other

hierarchical clustering methods are characterised by other functions of the inter-

connecting linkage dissimilarities.

Compared to other hierarchical clustering techniques, the single linkage method

can give rise to a notable disadvantage for summarising interrelationships. This

is known as chaining. An example is to consider four subject-areas, which it will

be supposed are characterised by certain attributes: computer science, statistics,

probability, and measure theory. It is conceivable that “computer science” is con-

nected to “statistics” at some threshold value, “statistics” to “probability”, and

“probability” to “measure theory”, thereby giving rise to the fact that “computer

science” and “measure theory” find themselves, undesirably, in the same cluster.

This is due to the intermediaries “statistics” and “probability”.

As early as the 1970s, it was held that about 75% of all published work on

clustering employed hierarchical algorithms [21]. Interpretation of the information

contained in a dendrogram is often of one or more of the following kinds:

– set inclusion relationships,

– partition of the object-sets, and

– significant clusters.

Much early work on hierarchical clustering was in the field of biological taxon-

omy, from the 1950s and more so from the 1960s onwards. The central reference

in this area, the first edition of which dates from the early 1960s, is [161]. One ma-

jor interpretation of hierarchies has been the evolution relationships between the

organisms under study. It is hoped, in this context, that a dendrogram provides a

sufficiently accurate model of underlying evolutionary progression.

35

The most common interpretation made of hierarchical clustering is to derive

a partition: a line is drawn horizontally through the hierarchy, to yield a set of

classes. These clusters are precisely the connected components in the case of the

single linkage method. A line drawn just above rank 3 (or criterion value 4) on

the dendrogram in Fig. 2.3 yields classes {1, 2, 4} and {3, 5}. Generally the choice

of where “to draw the line” is arrived at on the basis of large changes in the

criterion value. However the changes in criterion value increase (usually) towards

the final set of agglomerations, which renders the choice of best partition on this

basis difficult. Since every line drawn through the dendrogram defines a partition,

it may be expedient to choose a partition with convenient features (number of

classes, number of objects per class).

A further type of interpretation is to dispense with the requirement that the

classes chosen constitute a partition, and instead detect maximal (i.e. disjoint) clus-

ters of interest at varying levels of the hierarchy. Such an approach is used by [146]

in a clustering of colours based on semantic attributes. Lerman [101] developed an

approach for finding significant clusters at varying levels of a hierarchy, which has

been widely applied. See also Murtagh [128] which, based on a wavelet transform

on a dendrogram, is used to find the important, i.e. best approximating, clusters.

In summary, a dendrogram provides a resume of many of the proximity and

classificatory relationships in a body of data. It is a convenient representation

which answers such questions as: “How many groups are in this data?”, “What

are the salient interrelationships present?”. But it should be stressed that differing

answers can feasibly be provided by a dendrogram for most of these questions,

depending on the application.

36

2.5.4 Agglomerative hierarchical clustering algorithms

In the previous section, a general agglomerative algorithm was discussed. A wide

range of these algorithms have been proposed at one time or another. Hierarchi-

cal agglomerative algorithms may be conveniently broken down into two groups

of methods. The first group is that of linkage methods – the single, complete,

weighted and unweighted average linkage methods. These are methods for which

a graph representation can be used. [161] may be consulted for many other graph

representations of the stages in the construction of hierarchical clustering.

The second group of hierarchical clustering methods are methods which allow

the cluster centres to be specified (as an average or a weighted average of the

member vectors of the cluster). These methods include the centroid, median and

minimum variance methods.

The latter may be specified either in terms of dissimilarities, alone, or alterna-

tively in terms of cluster centre coordinates and dissimilarities. A very convenient

formulation, in dissimilarity terms, which embraces all the hierarchical methods

mentioned so far, is the Lance-Williams dissimilarity update formula. If points (ob-

jects) i and j are agglomerated into cluster i ∪ j, then we must simply specify the

new dissimilarity between the cluster and all other points (objects or clusters). The

formula is:

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ | d(i, k)− d(j, k) | (2.13)

where αi, αj, β, and γ define the agglomerative criterion. Values of these are listed

in the second column of Table 2.2.

In the case of the single link method, using αi = αj =
1
2 , β = 0, and γ = − 1

2

gives us:

d(i ∪ j, k) =
1
2

d(i, k) +
1
2

d(j, k)− 1
2
| d(i, k)− d(j, k) | (2.14)

which, it may be verified by taking a few simple examples of three points, i, j, and

k, can be rewritten as:

d(i ∪ j, k) = min {d(i, k), d(j, k)} (2.15)

37

This was exactly the update formula used in the agglomerative algorithm given

in section 2.5.3. Using other update formulas, as given in column 2 of Table 2.2,

allows the other agglomerative methods to be implemented in a very similar way

to the implementation of the single link method.

In the case of the methods which use cluster centres, we have the centre co-

ordinates (in column 3 of Table2.2) and dissimilarities as defined between cluster

centres (column 4 of Table 2.2). The Euclidean distance must be used for equiva-

lence between the two approaches. In the case of the median method, for instance,

we have the following (cf. Table 2.2).

Let a and b be two points (i.e. m-dimensional vectors: these are objects or clus-

ter centres) which have been agglomerated, and let c be another point. From the

Lance-Williams dissimilarity update formula, using squared Euclidean distances,

we have:

d2(a ∪ b, c) = d2(a,c)
2 + d2(b,c)

2 − d2(a,b)
4

= ‖a−c‖2

2 + ‖b−c‖2

2 − ‖a−b‖2

4 .
(2.16)

The new cluster centre is (a + b)/2, so that its distance to point c is

‖c− a + b
2
‖2. (2.17)

That these two expressions lead to an identical outcome is readily verified. The

correspondence between these two perspectives on the one agglomerative criterion

is similarly proved for the centroid and minimum variance methods.

The single linkage algorithm discussed in section 2.5.3, duly modified for the

use of the Lance-Williams dissimilarity update formula, is applicable for all ag-

glomerative strategies. The update formula listed in Table 2.2 is used in step 2 of

the algorithm.

For cluster centre methods, and with suitable alterations for graph methods,

the following algorithm is an alternative to the general dissimilarity based algo-

rithm. The latter may be described as a “stored dissimilarities approach” [5].

38

Hierarchical Coordinates
clustering Lance and Williams of centre of Dissimilarity
methods (and dissimilarity cluster, which between cluster
aliases) update formula agglomerates centres gi and gj

clusters i and j
αi = 0.5

Single link β = 0
(nearest γ = −0.5
neighbour) (More simply:

min{dik, djk})
αi = 0.5

Complete link β = 0
(diameter) γ = 0.5

(More simply:
max{dik, djk})

Group average αi =
|i|
|i|+|j|

(average link, β = 0
UPGMA) γ = 0
McQuitty’s αi = 0.5
method β = 0
(WPGMA) γ = 0

Median method αi = 0.5 g =
gi+gj

2 ‖gi − gj‖2

(Gower’s, β = −0.25
WPGMC) γ = 0

Centroid αi =
|i|
|i|+|j| g =

|i|gi+|j|gj
|i|+|j| ‖gi − gj‖2

(UPGMC) β = − |i||j|
(|i|+|j|)2

γ = 0

Ward’s method αi =
|i|+|k|
|i|+|j|+|k| g =

|i|gi+|j|gj
|i|+|j|

|i||j|
|i|+|j|‖gi − gj‖2

(minimum var- β = − |k|
|i|+|j|+|k|

iance, error γ = 0
sum of squares)

Notes: | i | is the number of objects in cluster i; gi is a vector in m-space (m is the set of attributes), –
either an initial point or a cluster centre; ‖.‖ is the norm in the Euclidean metric; the names UPGMA,
etc. are due to [161]; finally, the Lance and Williams recurrence formula is:

di∪j,k = αidik + αjdjk + βdij + γ | dik − djk | .

Table 2.2: Specifications of seven hierarchical clustering methods [122].

39

Stored data approach

Step 1 Examine all interpoint dissimilarities, and form cluster from two closest

points.

Step 2 Replace two points clustered by representative point (centre of gravity)

or by cluster fragment.

Step 3 Return to step 1, treating clusters as well as remaining objects, until all

objects are in one cluster.

In steps 1 and 2, “point” refers either to objects or clusters, both of which are

defined as vectors in the case of cluster centre methods. This algorithm is justified

by storage considerations, since we have O(n) storage required for n initial objects

and O(n) storage for the n − 1 (at most) clusters. In the case of linkage meth-

ods, the term “fragment” in step 2 refers (in the terminology of graph theory) to

a connected component in the case of the single link method and to a clique or

complete subgraph in the case of the complete link method. The overall complex-

ity of the above algorithm is O(n3): the repeated calculation of dissimilarities in

step 1, coupled with O(n) iterations through steps 1, 2 and 3. Note however that

this does not take into consideration the extra processing required in a linkage

method, where “closest” in step 1 is defined with respect to graph fragments.

While the stored data algorithm is instructive, it does not lend itself to efficient

implementations. The reciprocal nearest neighbour and mutual nearest neighbour

algorithms have to be used in practice for implementing agglomerative hierarchi-

cal clustering algorithms: see e.g. [120, 122]

2.5.5 Partition clustering algorithms

In Figure 2.2 we see that there are many partitional clustering algorithms. Our

interest lies in the k-means method because we use it on a number of occasions

as a basis to compare the result obtained with the Baire methodology. Now we

briefly explain how the k-means algorithm works.

40

K-means

K-means is a major clustering algorithm technique presented in various forms,

first introduced by MacQueen in 1967 [110] and further developed by Hartigan

and Wong [83, 84]. This algorithm groups data by minimising the sum of the

squares of distances between the data points and the cluster centroid. Suppose

we have the dataset X = {x1, x2, x3, .., xn} consisting of n observations of a d-

dimensional variable X, where x1 represents the first observation. The goal of this

algorithm is to partition the set X into a number of K > 1 of non-overlapping

clusters, where at the moment we assume the value of K is given. The algorithm

has two main iterative steps; first is to update clusters according to the minimum

distance rule, second is to update centroids as the centres of gravity of the clusters.

This algorithm can be expressed mathematically as follows: the jth cluster is

represented by a “cluster prototype” µj in Rd. The algorithm finds zi and µj that

minimise the function Jk−means.

Jk−means =
n

∑
i=1
‖xi − µzi‖2 (2.18)

Equation 2.18 can be rewritten as:

Jk−means =
n

∑
i=1

k

∑
j=1

I(zi = j)‖xi − µzi‖2 (2.19)

where I(zi = j) is the indicator function that takes different values, one if zi = j

is true; and zero otherwise. To optimise equation 2.19 we assume that all µj are

specified. Then the values of zi that minimise the equation are given by:

zi = arg minj‖xi − µj‖2 (2.20)

Fixing zi, the optimal µj can be found by differentiating Jk−means with respect

to µj and setting the derivatives to zero. Then we have the following:

µj =
∑k

j=1 I(zi = j)xj

∑k
j=1 I(zi = j)

=
∑n

i=1, zi = i xj

No. o f i with zi = j
(2.21)

41

With an initial guess on uj (which can be random), the k-means algorithm

iterates between Equations 2.20 and 2.21, which decreases the k-means objective

function until the local minimum is reached. Then the resulting zi and µj are the

clustering solutions [100].

Some problems with k-means are related to the detection of clusters that are

not spherical. It also requires a good initialisation mechanism to avoid a poor local

minimum. Finally, k-means requires an initial number of clusters, that in many

occasions is unknown.

2.6 Other clustering techniques

Many modern clustering techniques focus on large scale data, in [182] p. 215 these

are classified as follows:

• Random sampling

• Data condensation

• Density-based approaches

• Grid-based approaches

• Divide and conquer

• Incremental learning

From the point of view of this work density and grid based approaches are of

interest because they either look for data densities or split the data space into cells

when looking for groups. This can be related in some of their characteristics to

the Baire distance introduced later in this chapter and used throughout this work.

Thus, in this section we now have a brief look at these two approaches, density

and grid based.

2.6.1 Grid-based clustering algorithms

The main idea here is to use a grid like structure to split the information space,

separating the dense grid regions from the less dense ones to form groups.

42

In general, a typical approach within this category will consist of the following

steps [77]:

1. Creating a grid structure, i.e. partitioning the data space into a finite num-

ber of non-overlapping cells.

2. Calculating the cell density for each cell.

3. Sorting of the cells according to their densities.

4. Identifying cluster centres.

5. Traversal of neighbour cells.

Some of the most important algorithms within this category are the following:

– STING: STatistical INformation Grid-based clustering was proposed by Wang

et al. in [173] divides the spatial area into rectangular cells represented by

a hierarchical structure. The root is at hierarchical level 1, its children at

level 2, and so on. This algorithm has a computational complexity of O(K),

where K is the number of cells in the bottom layer. This implies that scaling

this method to higher dimensional spaces is difficult [86]. For example, if

in high dimensional data space each cell has four children, then the number

of cells in the second level will be 2d, where d is the dimensionality of the

database.

– OptiGrid: Optimal Grid-Clustering was introduced by Hinneburg and Keim

[86] as an efficient algorithm to cluster high-dimensional databases with

noise. It uses data partitioning based on divisive recursion by multidimen-

sional grids, focusing on separation of clusters by hyperplanes. A cutting

plane is chosen which goes through the point of minimal density, therefore

splitting two dense half-spaces. This process is applied recursively with

each subset of data. This algorithm is hierarchical, with time complexity of

O(N · d) [69] pp. 210–212.

– GRIDCLUS: proposed by Schikute in [154] is a hierarchical algorithm for

clustering very large datasets. It uses a multidimensional data grid to or-

ganise the space surrounding the data values rather than organise the data

themselves. Thereafter patterns are organised into blocks, which in turn

are clustered by a topological neighbour search algorithm. Five main steps

43

are involved in the GRIDCLUS method: (a) insertion of points into the grid

structure, (b) calculation of density indices, (c) sorting the blocks with re-

spect to their density indices, (d) identification of cluster centres, and (e)

traversal of neighbour blocks.

– WaveCluster: this clustering technique proposed in [157] defines a uniform

two dimensional grid on the data and represents the data points in each cell

by the number of points. Thus the data points become a set of grey-scale

points, which is treated as an image. Then the problem of looking for clus-

ters is transformed into an image segmentation problem, where wavelets are

used to take advantage of their multi-scaling and noise reduction properties.

The basic algorithm is as follows: (a) create a data grid and assign each data

object to a cell in the grid, (b) apply the wavelet transform to the data, (c)

use the average sub-image to find connected clusters (i.e. connected pixels),

and (d) map the resulting clusters back to the points in the original space.

Note that the wavelet transform also has been used for clustering by other

authors, see [131, 132].

Additional information about grid-based clustering can be found in the following

works [28, 69, 141, 182].

2.6.2 Density-based clustering algorithms

Density-based clusters are defined as a dense region of points, which are separated

by low-density regions. Therefore clusters can have an arbitrary shape and the

points in the cluster may be arbitrarily distributed. An important advantage of

this methodology is that only one scan of the dataset is needed and it can handle

noise effectively. Furthermore the number of clusters to initialise the algorithm is

not required.

Some of the most important algorithms in this category include the following:

– DBSCAN: Density-Based Spatial Clustering of Applications with Noise was

proposed by Ester et al. [55] to discover arbitrarily shaped clusters. Since

it finds clusters based on density it does not need to know the number of

44

clusters at initialisation time. This algorithm has been widely used and

counts with many variations (e.g., GDBSCAN [153], PDBSCAN [184], and

DBCluC [186]).

– BRIDGE: proposed by Dash et al. [42] uses a hybrid approach integrating

k-means to partition the dataset into k clusters, and then density-based al-

gorithm DBSCAN is applied to each partition to find dense clusters.

– DBCLASD: Distribution-Based Clustering of LArge Spatial Databases [183]

assumes that data points within a cluster are uniformly distributed. The

produced cluster is defined in terms of the nearest neighbour distance.

– DENCLUE: DENsity based CLUstering aims to cluster large multimedia

data. It can find arbitrarily shaped clusters and at the same time deals with

noise in the data. This algorithm has two steps, first a pre-cluster map is

generated, the data is divided in hypercubes where only the populated are

considered. The second step takes the highly populated cubes and cubes

that are connected to a highly populated cube to produce the clusters. For a

detailed presentation of these steps see [87].

– CUBN: it has three steps. First an erosion operation is carried out to find

border points. Second, the nearest neighbour method is used to cluster the

border points. Finally, the nearest neighbour is used to cluster the inner

points. This algorithm is capable of finding nonspherical shapes and wide

variations in size. Its computational complexity is O(n) with n being the

size of the dataset. For a detailed presentation of this algorithm see [172].

2.7 Evaluating cluster quality

We have seen a number of methods that allow for creating clusters. A natural

question that arises is how to evaluate the clusters produced. Several validity cri-

teria have been developed in the literature. They are mainly classified as external,

internal or relative criteria [90]. In the external approach, groups assembled by a

clustering algorithm are compared to a previously accepted partition on the test-

ing dataset. In the internal approach, clustering validity is evaluated using data

45

and features contained in the dataset. The relative approach searches for the best

clustering result from an algorithm and compares it with a series of predefined

clustering schemes. In all cases, validity indexes are constructed to evaluate prox-

imity among objects in a cluster or proximity among resulting clusters. For further

information see Jain and Dubes [90] where chapter four is dedicated to cluster va-

lidity, [69] chapter 17, and [182] chapter 10. For relevant papers in this area see

[22, 41, 81, 82]. Another interesting study is [3] where 22 indices are compared,

and when adjusted for chance agreement it can be shown that many indices are

similar. Also see [170] for additional information regarding correction for chance

agreement.

Figure 2.4 depicts a taxonomy of the cluster validity indices. These can be

separated into statistical and non-statistical. The statistical indices include the

external and internal criteria and the non-statistical the relative criteria.

Table 2.3 [69, 90] shows some of the equations for cluster validation indices.

Let P be a pre-specified partition of dataset X with n data points, and let C be

a clustering partition from a clustering algorithm independent of P. Then by

comparing C and P we obtain the evaluation of C by external criteria. Considering

a pair of points xi and xj of X, there are four cases how xi and xj can be placed

in C and P. We consider the following. Case a: is the number of pairs of data

points which are in the same clusters of C and P; Case b: is the number of pairs

of data points which are in the same clusters of C, but different clusters P; Case c:

is the number of pairs of data points which are in different clusters of C, but the

same clusters P; and case d, is where the number of pairs of data points which

are in different clusters of C, and different clusters of P. Finally, let M be the total

number of pairs of data points in the dataset, then M = a + b + c + d = n(n−1)
2 .

In particular we are interested in the external criteria because we use a modi-

fied version of the Jaccard index later in this work, see section number 7.3.3.

46

Cluster validity
index

Statistical testing Non-statistical testing

External criteria Internal criteria Relative criteria

Fuzzy clustering
index

Hard clustering
index

Hubert's Γ statistics

Normalised Γ statistics
Dunn family of indices

DB index

SD index

S_Dbw index

Cophenetic corr.
coefficient

Rand statistics

Jaccard coefficient

Folkes and Mallows index

Hubert's Γ statistics

Normalised Γ statistics Hubert's Γ statistics

Normalised Γ statistics

Figure 2.4: Diagram of the cluster validity indices [69] p. 300.

Index name Formula

Rand statistics R = a+d
M

Jaccard coefficient J = a
a+b+c

Folkes and Mallows index FM =
√

a
a+b ·

a
a+c

Hubert’s Γ statistics Γ = Ma−m1m2√
m1m2(M−m1)(M−m2)

Table 2.3: Some external criteria indices to measure the degree of similarity between clusters.
where m1 = (a + b) and m2 = (b + c); R, J, FM, and Γ ∈ [0, 1].

47

2.8 Baire distance or longest common prefix

2.8.1 Metric and ultrametric spaces

Our purpose consists of mapping data into an ultrametric space, searching for an

ultrametric embedding, or ultrametrisation [168]. Actually, inherent ultrametricity

leads to an identical result with most commonly used agglomerative criteria [122].

Furthermore, data coding can help greatly finding how inherently ultrametric data

is [123].

A metric space (X, d) consists of a set X on which is defined a distance function

d which assigns to each pair of points of X a distance between them, and satisfies

the following four axioms for any triplet of points x, y, z:

1. ∀x, y ∈ X, d(x, y) ≥ 0 (positiveness);

2. ∀x, y ∈ X, d(x, y) = 0 iff x = y (reflexivity);

3. ∀x, y ∈ X, d(x, y) = d(y, x) (symmetry);

4. ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

When talking about an ultrametric space we need to consider the “strong trian-

gular inequality” or ultrametric inequality defined as:

d(x, z) ≤ max {d(x, y), d(y, z)},

this in addition to the positivity, reflexivity and symmetry properties for any triple

of point x, y, z ∈ X.

Furthermore, ultrametric space implies respect for a range of stringent proper-

ties. For example, the triangle formed by any triplet is necessarily isosceles, with

the two large sides equal; or is equilateral. Every point of a circle in an ultrametric

space is a centre of the circle. Two circles of the same radius, that are not disjoint,

are overlapping [101]. Additionally, an ultrametric is a distance that is defined

strictly on a tree, which is a property that is very useful in classification.

48

2.8.2 Ultrametric Baire space and distance

A Baire space consists of countably infinite sequences with a metric defined in

terms of the longest common prefix: the longer the common prefix, the closer a

pair of sequences. What is of interest to us here is this longest common prefix

metric, which we call the Baire distance [33, 116, 130].

The longest common prefixes at issue here are those of precision of any value.

For example, let us consider two such values, xi and yj, which, when the context

easily allows it, we will call x and y. We take x and y to be bounded by 0 and

1. Each are of some precision, and we take the integer |K| to be the maximum

precision.

Thus we consider ordered sets xk and yk for k ∈ K. In line with our notation,

we can write xk and yk for these numbers, with the set K now ordered. So, k = 1 is

the first decimal place of precision; k = 2 is the second decimal place; . . . ; k = |K|
is the |K| th decimal place. The cardinality of the set K is the precision with which

a number, xk , is measured.

Consider as examples x3 = 0.478; and y3 = 0.472. Start from the first decimal

position. For k = 1, we find x1 = y1 = 4. For k = 2, x2 = y2 = 7. But for k = 3,

x3 6= y3.

We now introduce the following distance (case of vectors x and y, with 1 at-

tribute, hence unidimensional):

dB(xK, yK) =

 1 if x1 6= y1

inf 2−n xn = yn, 1 ≤ n ≤ |K|
(2.22)

We call this dB value Baire distance, which can be shown to be an ultrametric [123–

125, 127, 130] distance.

Note that the base 2 is given for convenience. When dealing with binary data

2 is the chosen base. When working with real numbers the base can be redefined

to 10 if needed.

The longest common prefix can be implemented following the Java pseudo-

code presented in Algorithm 1.

49

Algorithm 1 Computes the longest common prefix for two strings.
1: x ← String A
2: y← String B
3: N = Math.min(x.length(), y.length())
4: for i = 0; i < N; i++ do
5: if (x.chart(i) != y.charAt(i)) then
6: return x.substring(0, i)
7: end if
8: return x.substring(0, N)
9: end for

This works when the first character of the two strings are different, when one

or both strings lengths is 0, and when one is a prefix of the other. A Java implemen-

tation of this algorithm and other related Java methods are shown in Appendix A.

Note that the distance defined by means of the longest common prefix between

two strings will also give us a way to assess how close these two strings are. In

particular when working with numbers it can be seen that the Baire distance is

embedded in a 10-way tree (in the case of decimal numbers) which presents many

advantages when classifying data. Namely data can be organised, stored and

accessed very efficiently in a tree.

2.9 A note on working with very small decimal numbers

Arising out of section 2.8.2 we may want to normalise our data and then proceed

to the analysis of very small decimal numbers. In doing so we must be careful for

reasons which we will now describe.

Let us take the case of the Java programming language. This language supports

two primitive floating point types: float and double, which are implementations of

the IEEE 754 standard. This standard represents floating point numbers as base

2 decimal numbers in scientific notation. The problem arises since floating point

arithmetic is not exact.

For example, some numbers can be represented exactly as a binary. This is the

case for 0.5 that equals 2−1 and 0.75 that equals 2−1 + 2−2.

50

Other numbers can not be represented exactly in base 2, such as 0.1. In this

case we have that 0.1 equals 2−4 + 2−5 + 2−8 + ..., which is a never ending series.

Therefore the value 0.1 is not exactly representable in IEEE 754 floating point

arithmetic.

Let us see the rounding problem presented in Listing 2.1. That simple calcula-

tion should be 2.9, but in fact the result is 2.900000000000001.

1
2 double s = 0 ;
3
4 for (i n t i = 0 ; i < 2 9 ; i ++) {
5 s += 0 . 1 ;
6 }
7
8 System . out . p r i n t l n (s) ;

Listing 2.1: Java floating point rounding problem – addition [75].

Another example can be seen in Listing 2.2, the result from the multiplication

in line “2” is 29 ∗ 0.01 = 0.29. When casting from floating point to integer errors

can be very serious. For example in line “6” the result should be 29 but in fact we

get 28.

1
2 double d = 2 9 . 0 ∗ 0 . 0 1 ;
3
4 System . out . p r i n t l n (d) ;
5
6 System . out . p r i n t l n ((i n t) (d ∗ 100)) ;

Listing 2.2: Java floating point rounding problem [75].

This kind of error seems trivial, but the consequences are far-reaching. Overon

in [139] provides a nice description of floating point arithmetic, where he also

presents errors that had serious outcomes. In particular it can be mentioned that

in 1991 during the Gulf War a Patriot defence system failed because of time con-

version that involved floating point arithmetic.

Perhaps even more dramatic was the self-destruction of the European rocket

Ariane 5 on the morning of June 4, 1996, which was produced by an error in the

floating point calculations. In this case the two inertial reference systems ceased to

51

work because of an operand error when converting a 64-bits floating point number

to a 16-bit signed integer [158].

In this Thesis a number of times we work with very small numbers, in partic-

ular when normalising data and in the random projection processes. These oper-

ations involve multiplying matrices of small numbers. In the Java programming

language case the BigDecimal class is used to avoid the foregoing problems.

It is important to highlight that not only the Java programming language suf-

fers from the floating point arithmetic problem. In fact this standard is in use by

most programming languages. For additional information see [93, 118, 144].

2.10 Summary

There is a huge amount of data in today’s world and increasing, in fact currently,

we are in a situation where there is not enough storage to collect all the data

produced. Not only increase in data volume is a problem but also the increase in

features of this data. Thus, the big challenge to the data analysis community is to

introduce new algorithms that deal with these problems with ease.

This work is about a new distance that can be used to produce a hierarchy

and in turn for matching, searching and clustering. Thus in this chapter we have

looked at various clustering techniques with particular attention given to hierar-

chical methods. Additionally, we presented some techniques that are based on

density, that look for low-density regions to separate groups; also, grid-based

algorithms were described, which split the data space into a finite number of non-

overlapping cells to identify the more dense regions of the data for later forming

of groups.

In this chapter we have introduced the Baire distance, or longest common pre-

fix distance. This distance is an ultrametric that can be seen as a hierarchical clas-

sification method that only needs one pass over the data to produce groups. This

is very advantageous computationally speaking, consequently very well suited for

clustering large datasets.

52

Often the clustering process takes place after reducing the number of features

in the original data, in other words, after mapping the dataset to a lower dimen-

sionality. This has many advantages, for the most part related with volume of data

to process. Here we have shown why this process is necessary, not only mention-

ing how Principal Component Analysis works, but also introducing the random

projection method.

53

Part I

Applications to Science

54

Introduction to Part I

IN Chapter 2 we have introduced the Baire (ultra)metric algorithm for hierar-

chical clustering.

In this part we deal with the application of the Baire (ultra)metric to science

data. First in Chapter 3 we look into mapping photometric redshift to spectromet-

ric redshift. We use the Baire distance to obtain clusters that are compared against

the clusters obtained with the k-means clustering algorithm.

In Chapter 4 we cluster chemical compounds databases on multidimensional

vectors. In this case we first use the random projection technique to reduce the

data dimensionality. Comparisons are made against clusters obtained with the

k-means algorithm.

In Chapter 5 we look into genomic data using a modified Baire distance for

clustering, namely the longest common substring. In this chapter our aim is to

analyse Giardia hypothetical proteins in order to obtain clusters that can be used

as targets for drug discovery. Thus we start by explaining the Giardia parasite,

then the embedding of the genomic information into the 20 most common amino

acids is described. This is followed by an explanation about hypothetical proteins

and their characterisation in Giardia’s genome. We follow by introducing suf-

fix trees and their use in genomic string analysis. The final section is dedicated

to explaining the clusters obtained using the longest common substring and the

single-linkage clustering algorithm.

56

Chapter 3

Application to Astronomy: SDSS
Redshift Calibration

3.1 Introduction

IN this chapter we applied the Baire distance to spectrometric and photomet-

ric redshifts from the Sloan Digital Sky Survey. We look specifically into four

parameters: right ascension (RA), declination (DEC), spectrometric redshift (zspec)

and photometric redshift (zphot). RA and DEC give the position of an astronomi-

cal object in the sky. Spectrometric and photometric parameters are two different

values obtained from measuring the redshifts. On the one hand we have the spec-

trometric technique that uses the spectrum of electromagnetic radiation (including

visible light) which radiates from stars and other celestial objects. On the other

hand we have the photometric technique that uses a faster and economical way of

measuring redshifts.

We follow by introducing a cluster-wise mapping from zspec → zphot. Finally,

clusters of the individual signals are built and presented.

57

3.2 Astronomical data and information

Astronomy has a long history in observing, registering, and analysing large quan-

tities of data. Driven by technical advances in sensors, telescopes, satellites, and

computer technology the rate at which data is acquired is increasing tremendously.

For a better understanding of the challenges presented by the massive amount

of data that astronomers need to manage, it is important to understand the sources

of this data. Different kinds of “telescopes” are needed to gather the information

emitted by celestial bodies, information that is collected through observation on

the electromagnetic spectrum as shown in Figure 3.1.

W
av
el
en
gt
h

100 km

10 km

1 km

100 m

10 m

1 m

1 cm

1 mm

10 cm

100 μm

10 μm

1 μm

100 nm

10 nm

1 nm

10-1 nm

10-2 nm

10-3 nm

10-4 nm

10-5 nm

10-6 nm

Infrared
radiation

Visible light

Ultraviolet
radiation

700 nm

400 nm

X rays

Microwaves

Radio waves

Gamma
rays

Figure 3.1: Electromagnetic spectrum in different wavelengths [66].

The following list includes a brief description of the kind of instrument used

to collect this astronomical data in different wavelengths [112].

58

– Radio waves: this is the longest wavelength, detectable by large radio dishes

like the Very Large Array [171] in New Mexico, the Arecibo radio tele-

scope [7] in Puerto Rico, and the Parkes Observatory in Australia, just to

name a few. The radio sky is dominated mainly by gas clouds.

– Submillimeter radiation: instruments that study submillimeter radiation

are either satellites or located on the earth’s driest and highest places, like the

submillimeter array in Mauna Kea, Hawaii. In this band complex molecules

in dark clouds are studied.

– Far infrared light: can only be seen from space observatories like the Spitzer

Space Telescope [163]. Sources of infrared light are embedded in dense

regions of gas and dust.

– Visible and near infrared light: this is from where “traditional” astron-

omy obtains its data. The instruments used to obtain information for this

wavelength are the traditional astronomical observatories (e.g. Palomar Ob-

servatory [140]) and the Hubble Space Telescope.

– Ultraviolet light: this light is too blue for humans to see. The atmosphere

blocks most ultraviolet radiation, therefore observations must take place

mainly in space with instruments such as the NASA GALEX [68] satellite.

– X–Rays: this is the light beyond ultraviolet in the spectrum. Space tele-

scopes like NASA’s Chandra X–Ray [27] Observatory and the European

Space Agency’s XMM–Newton [180], can detect black holes and the X–ray

galaxy chemical composition in this wavelength.

– Gamma rays: are studied with ground-based telescopes, satellites, and bal-

loons. Gamma bursts, which result from some of the most violent explo-

sions in the universe, can be observed through instruments like the recently

launched Swift gamma–ray burst satellite [165].

Many digital surveys and archives already exist, and integration of these data

sources is well advanced under the umbrella of the International Virtual Ob-

servatory Alliance (IVOA) [88]. Brunner et al. [24] discuss massive datasets in

astronomy and some of the installations to acquire astronomical data, also see

Reshetnikov [147]. A comprehensive list of observatories and telescopes can be

59

found at [9, 11], which is classified into ground-based [10] and space-borne tele-

scopes [12]. Additionally, a list of astronomical survey projects is available at [8].

3.3 Doppler effect and redshift

Light from moving objects will appear to have different wavelengths depending

on the relative motion of the source and the observer. On the one hand we have

that if an object is moving towards an observer, the light waves will be compressed

from the observer viewpoint, then the light will be shifted to a shorter wavelength

or it will appear to be blue shifted. On the other hand if the object is moving away

from the observer, the light wavelength will be expanding, thus red shifted. This

is also called Doppler effect (or Doppler shift) named after the Austrian physicist

Christian Doppler, who first described this phenomenon in 1845.

A very important piece of information obtained in cosmology from the Doppler

shift is to know if an object is moving towards or away from us, and the speed at

which this is happening.

Spectrometric measurement of redshift: under certain conditions all atoms

can be made to emit light, doing so at particular wavelengths, which can be

measured accurately. Chemical compounds are a combination of different atoms

working together. Thus, when measuring the precise wavelength at which a par-

ticular chemical radiates we are effectively obtaining a signature of this chemical.

These emissions are seen as lines (emission or absorption) in the electromagnetic

spectrum. For example, hydrogen is the simplest chemical element with atomic

number 1, and also is the most abundant chemical in the universe. Hydrogen

has emission lines at 6562.8 Å, 4861.3 Å, 4340 Å, 4102.8 Å, 4102.8 Å, 3888.7 Å,

3834.7 Å and 3798.6 Å (where Å is an Angstrom equal to 10−10m). If the spectrum

of a celestial body has emission lines in these wavelengths we can conclude that

hydrogen is present there.

Photometric measurement of redshift: sometimes obtaining spectrometric

measurements can be very difficult due to the large number of objects to observe

or because the signal is too weak for the current spectrometric techniques. A

60

redshift estimate can be obtained using large/medium band photometry instru-

mentation instead of spectrometric. This technique is based on the identification

of strong spectral features. This is much faster than spectrometric measurement

but also of lesser quality and precision [58].

Hence the context of our clustering work is to see how well the more eas-

ily obtained photometric redshifts can be used as estimates for the spectrometric

redshifts that are obtained with greater cost. We limit our work here to the fast

finding of clusters of associated photometric and spectrometric redshifts. In doing

so, we find some interesting new ways of finding good quality mappings from

photometric to spectrometric redshifts with high confidence.

3.4 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) [155] is systematically mapping the sky pro-

ducing a detailed image of it and determining the positions and absolute bright-

nesses of more than 100 million celestial objects. It is also measuring the distance

to a million of the nearest galaxies and to a hundred thousand quasars. The ac-

quired data has been openly given to the scientific community.

Figure 3.2 depicts the SDSS data release 5 for imaging and spectral data. For

every object a large number of attributes and measurements are acquired, see [2]

for a description of the data available in this catalogue.

In particular we use the data made available to us by Prof. Giuseppe Longo’s

group [107], and used intensively by Raffaele D’Abrusco [36–38].

3.5 Applying Baire ultrametric to astronomy data (SDSS)

The aim here is to build a mapping from zspec → zphot to help calibrating the

redshifts, based on the zspec observed values. Traditionally we could map f :

zphot −→ zspec based on trained data. The mapping f could be linear (e.g. linear

regression) or non-linear (e.g. multilayer perceptron) as used by D’Abrusco [38].

These techniques are global. Here our interest is to develop a locally adaptive

61

Figure 3.2: Distribution in the sky of the SDSS data release 5 [2].

approach based on numerical precision. That is the great benefit of the Baire

distance.

We look specifically into four parameters: right ascension (RA), declination

(DEC), spectrometric (zspec) and photometric (zphot) redshift. Table 3.1 shows a

small subset of the data used for experimentation and analysis. The IDL soft-

ware was used to read the data which was in Flexible Image Transport System

format [60] (FITS), which is traditionally used in astronomy.

As already noted the spectrometric technique uses the spectrum of electro-

magnetic radiation (including visible light) which radiates from stars and other

62

celestial objects. The photometric technique uses a faster and economical way of

measuring the redshifts.

RA DEC Spec Phot
145.4339 0.56416792 0.14611299 0.15175095
145.42139 0.53370196 0.145909 0.17476539
145.6607 0.63385916 0.46691701 0.41157582
145.64568 0.50961215 0.15610801 0.18679948

Table 3.1: Data format for right ascension, declination, zSpec and zPhot.

3.5.1 Clustering SDSS data based on a Baire distance

In order to perform the clustering process based on the Baire distance presented in

equation 2.22 and described in section 2.8.2, we compare every zSpec and zPhot data

point, searching for common prefixes based on algorithm 1 (see section 2.8.2).

Thereafter, the data points that have digit coincidences are grouped together to

form clusters.

Data characterisation is presented in Figure 3.3. The left panel shows the zspec

and zphot sky coordinates of the data currently used by us to cluster redshifts. This

section of the sky presents approximately 0.5 million object coordinate points with

the current data. As can be observed, various sections of the sky are represented

in the data. We find this useful since preliminary data exploration has shown

that correlation between zspec and zphot is consistent in different parts of the sky.

For example, when taking correspondences between zspec and zphot as shown in

Figures 3.5 and 3.6, and plotting them in RA and DEC space (i.e. astronomical

coordinate space) we have the same shape as presented in Figure 3.3.

This leads us to conclude that digit coincidences of the redshift measures are

distributed approximately uniformly in the sky and are not concentrated spatially.

The same occurs for all the other clusters. We will concentrate on the very near

astronomical objects, represented by redshifts between 0 and 0.6. When we plot

zspec vs. zphot we obtain a highly correlated signal as shown in Figure 3.3, right

panel. The number of observations that we therefore analyse is 443,014.

63

Figure 3.3: Left: right ascension (RA) vs. declination (DEC); Right: zspec vs. zphot. SDSS data
selection used for redshift analysis.

Figure 3.4: Heat plot and histogram for zspec vs. zphot. Histogram at the top shows the zspec
frequencies, histogram at the bottom shows zphot frequencies.

64

Looking into Figure 3.4 it can be seen clearly that most data points fall in the

range between 0 and 0.2. Here the histogram on the top shows the zphot data points

distribution, and the histogram on the right the zspec data points distribution. The

heat plot also highlights the area where data points are concentrated, where the

yellow colour (white region in monochrome print) shows the major density.

Consequently, now we know that most cluster data values will fall within this

range (0 and 0.2) if common prefixes of digits in the redshift values, each value

taken as a string, are found.

Figures 3.5 and 3.6 show graphically how zspec and zphot correspondences look

at different levels of decimal precision. On one hand we find that values of zspec

and zphot that have equal precision up to the 3rd decimal digit are highly corre-

lated. On the other hand when zspec and zphot have only the first digit in com-

mon, correlation is weak. For example, let’s consider the following situations for

plots 3.5 and 3.6:

• Figure 3.5 left: let us take the values of zspec = 0.437 and zphot = 0.437. We

have that they share the first digit, the first decimal digit, the second decimal

digit, and the third decimal digit. Thus, we have a highly correlated signal

of the data points that share only up to the third decimal digit.

• Figure 3.5 right: let us take the values of zspec = 0.437 and zphot = 0.439. We

have that they share the first digit, the first decimal digit, and the second

decimal digit. Therefore, the plot shows data points that share only up to

the second decimal digit.

• Figure 3.6 left: let us take the values of zspec = 0.437 and zphot = 0.474. We

have that they share the first digit, and the first decimal digit. Thus, the plot

shows data points that share only up to the first decimal digit.

• Figure 3.6 right: let us take the values of zspec = 0.437 and zphot = 0.571. We

have that they share only the integer part of the value, and that alone. Fur-

thermore, this implies redshifts that do not match in succession of decimal

digits. For example, if we take the values 0.437 and 0.577, the fact that the

third digit is 7 in each case is not of use.

65

Figure 3.5: Prefix-wise clustering frequencies depicting only the 3rd decimal digit coincidences
(left panel), and only two decimal digit coincidences (right panel).

Figure 3.6: Prefix-wise clustering frequencies depicting only the 1st decimal digit coincidences
(left panel), and only first digit coincidences (right panel).

66

Table 3.2 shows the clusters found for all different levels of precision. In other

words this table allows us to define empirically the confidence levels for mapping

of zphot and zspec. For example, we can expect that 82.8% of values for zspec and zphot

have at least two common prefix digits. This percentage of confidence is derived as

follows: the data points that share six, five, four, three, two, and one decimal digit

(i.e., 4 + 90 + 912 + 8, 982 + 85, 999 + 270, 920 = 366, 907 data points. Therefore

82.8% of the data). Additionally we observe that around a fifth of the observations

share at least 3 digits in common. Namely, 4+ 90+ 912+ 8, 982+ 85, 999 = 95, 987

data points, that equals 21.7% of the data.

Digit No. %
1 76,187 17.19

Decimal digit No. %
1 270,920 61.14
2 85,999 19.40
3 8,982 2.07
4 912 0.20
5 90 0.02
6 4 —

443,094 100

Table 3.2: Data points based on the longest common prefix for different levels of precision. This
includes the integer part of a data point (first digit) and the decimal digits of a data point (first to
sixth digit).

67

Figure 3.7: Frequency distribution for Table 3.2. The abscissa shows the digit positions, where 1
is the first digit, 2 the first decimal digit, 3 the second decimal digit and so on.

In the following section we take this notion of clusters even further and com-

pare it to results obtained with the k-means clustering algorithm.

3.5.2 Baire and k-means cluster comparison

In order to establish how “good” the Baire clusters are we can compare them

with clusters resulting from the k-means algorithm. Let us recall that our data

values are in the interval [0, 0.6[(i.e. including zero values but excluding 0.6).

Additionally, we have seen that the Baire distance is an ultrametric that is strictly

defined in a tree. Thus, when building the Baire based clusters we will have a root

node “0” that includes all the observations (every single data point analysed starts

with 0). For the Baire distance equal to two we have six nodes (or clusters) with

indices “00, 01, 02, 03, 04, 05”. For the Baire distance of three we have 60 clusters

with indices “000, 001, 002, 003, 004,...,059” (i.e. ten children for each node 00,..,05).

We carried out a number of comparisons for the Baire distance of two and

three. For example, by design we have that for dB = 2 there are six clusters.

Thus we took our data set and applied k-means with six centroids based on an

68

implementation from the Hartigan and Wong [83] algorithm. The results can be

seen in Table 3.3, where the columns are the k-means clusters and the rows are

the Baire clusters. From the Baire perspective we see that the node 00 has 97084

data points contained within the first k-means cluster and 64950 observations in

the fifth. Looking at node 04, all members belong to the third cluster of k-means.

We can see that the Baire clusters are closely related to the clusters produced by

k-means at a given level of resolution.

— 1 5 4 6 2 3
00 97084 64950 0 0 0 0
01 0 28382 101433 14878 0 0
02 0 0 0 18184 4459 0
03 0 0 0 0 25309 1132
04 0 0 0 0 0 11116
05 0 0 0 0 0 21

Table 3.3: Cluster comparison based on dB = 2. Columns show the k-means clusters, and the
rows show the Baire clusters. The cells present the number of data points for a given cluster.

We can take this procedure further and compare the clusters for dB defined

from 3 digits of precision, and k-means with k = 60 centroids as observed in

Figure 3.8.

Looking at the results from the Baire perspective we find that 27 clusters are

overlapping, 9 clusters are empty, and 24 Baire clusters are completely within the

boundaries of the ones produced by k-means as presented in Table 3.5. This last

result is better seen in Table 3.4, which is the subset of Table 3.5 where complete

matches are shown. These tables have been row and column permuted in order to

clearly appreciate the correspondences.

It is seen that the match is consistent even if there are differences due to the

different clustering criteria at issue. We have presented results in such a way as to

show both consistency and difference.

69

3.5.3 Baire and k-means clustering time comparison

In order to compare the time performances of the Baire and k-means algorithms

we took dB = 3 as a basis for the test. Let us remember that for dB = 3 we have

potentially 60 clusters for the data in the range [0, 0.6[. Looking at the classification

from the hierarchical tree viewpoint we have: one cluster for first level (i.e., the

root node or first digit); six clusters for the second level (i.e., first decimal digit or

0, 1, 2, 3, 4, and 5); and ten clusters for the third level or second decimal digit.

To obtain the potential number of clusters we multiply the potential nodes for the

first, second and third levels of the tree. That is 1 · 6 · 10 = 60 clusters.

Therefore for the time comparison we have dB = 3 of 60 clusters, which is the

parameter given to k-means as initial number of centroids. The other parameter

needed is the number of iterations. For k-means we are interested in the average

time over many runs. Thus, we use average time over 50 executions for each

iteration of 1, 5, 10, 15, 20, 28, 30, 35, and 38.

— 21 1 6 38 25 58 32 20 15 13 14 37 17 2 51 4
015 3733 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
004 0 3495 0 0 0 0 0 0 0 0 0 0 0 0 0 0
018 0 0 2161 0 0 0 0 0 0 0 0 0 0 0 0 0
020 0 0 0 1370 0 0 0 0 0 0 0 0 0 0 0 0
001 0 0 0 0 968 0 0 0 0 0 0 0 0 0 0 0
000 0 0 0 0 515 0 0 0 0 0 0 0 0 0 0 0
022 0 0 0 0 0 896 0 0 0 0 0 0 0 0 0 0
034 0 0 0 0 0 0 764 0 0 0 0 0 0 0 0 0
036 0 0 0 0 0 0 0 652 0 0 0 0 0 0 0 0
037 0 0 0 0 0 0 0 508 0 0 0 0 0 0 0 0
026 0 0 0 0 0 0 0 0 555 0 0 0 0 0 0 0
027 0 0 0 0 0 0 0 0 464 0 0 0 0 0 0 0
032 0 0 0 0 0 0 0 0 0 484 0 0 0 0 0 0
030 0 0 0 0 0 0 0 0 0 0 430 0 0 0 0 0
045 0 0 0 0 0 0 0 0 0 0 0 398 0 0 0 0
044 0 0 0 0 0 0 0 0 0 0 0 295 0 0 0 0
039 0 0 0 0 0 0 0 0 0 0 0 0 278 0 0 0
024 0 0 0 0 0 0 0 0 0 0 0 0 0 260 0 0
041 0 0 0 0 0 0 0 0 0 0 0 0 0 0 231 0
042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 225 0
047 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 350
048 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57
049 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.4: Subset of cluster comparison based on dB = 3; columns show the k-means clusters
(k = 60); rows show Baire nodes.

70

—
21

1
6

38
25

58
32

20
15

13
14

37
4

17
2

51
30

16
28

44
59

46
23

48
33

60
40

35
50

42
26

31
27

56
01

5
37

33
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
4

0
34

95
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
01

8
0

0
21

61
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

02
0

0
0

0
13

70
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
00

1
0

0
0

0
96

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
0

51
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
02

2
0

0
0

0
0

89
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
4

0
0

0
0

0
0

76
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
03

6
0

0
0

0
0

0
0

65
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
7

0
0

0
0

0
0

0
50

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
02

6
0

0
0

0
0

0
0

0
55

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

02
7

0
0

0
0

0
0

0
0

46
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
03

2
0

0
0

0
0

0
0

0
0

48
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
0

0
0

0
0

0
0

0
0

0
0

43
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
04

5
0

0
0

0
0

0
0

0
0

0
0

39
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

04
4

0
0

0
0

0
0

0
0

0
0

0
29

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
04

7
0

0
0

0
0

0
0

0
0

0
0

0
35

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

04
8

0
0

0
0

0
0

0
0

0
0

0
0

57
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

04
9

0
0

0
0

0
0

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

05
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
9

0
0

0
0

0
0

0
0

0
0

0
0

0
27

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
02

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
26

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

04
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
23

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
04

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

22
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
2

0
0

0
24

7
0

0
0

0
0

0
0

0
0

0
0

0
18

70
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
3

0
52

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
23

20
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

00
5

0
11

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
20

23
92

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
00

6
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
38

9
60

24
0

0
0

0
0

0
0

0
0

0
0

0
0

0
00

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

14
17

82
5

59
89

0
0

0
0

0
0

0
0

0
0

0
0

00
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
55

9
70

01
0

0
0

0
0

0
0

0
0

0
0

00
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

79
04

59
50

42
0

0
0

0
0

0
0

0
0

01
0

0
0

0
0

0
0

16
13

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

71
0

31
48

0
0

0
0

0
0

0
01

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
21

3
54

37
0

0
0

0
0

0
01

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

17
84

23
9

32
44

0
0

0
0

01
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
43

92
86

1
0

0
0

01
4

51
7

0
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
30

99
92

7
0

0
01

6
69

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

25
9

21
53

01
7

0
0

11
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

23
02

01
9

0
0

64
4

11
87

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

02
1

0
0

0
24

5
0

78
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

02
3

0
0

0
0

0
29

4
28

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
5

0
0

0
0

0
0

60
3

23
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
3

0
0

0
0

0
0

12
9

0
0

46
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
8

0
0

0
0

0
0

0
72

0
0

0
0

0
31

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
02

5
0

0
0

0
0

0
0

0
20

0
0

0
0

0
33

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

02
8

0
0

0
0

0
0

0
0

20
4

0
27

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

03
1

0
0

0
0

0
0

0
0

0
46

2
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
02

9
0

0
0

0
0

0
0

0
0

0
47

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

04
3

0
0

0
0

0
0

0
0

0
0

0
16

1
0

0
0

76
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
04

6
0

0
0

0
0

0
0

0
0

0
0

15
0

21
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
04

0
0

0
0

0
0

0
0

0
0

0
0

0
0

88
0

12
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Ta
bl

e
3.

5:
C

lu
st

er
co

m
pa

ri
so

n
ba

se
d

on
d B

=
3.

C
ol

um
n:

k-
m

ea
ns

cl
us

te
rs

;
R

ow
s:

Ba
ir

e
cl

us
te

rs
.

Th
e

ar
ra

y
ha

s
be

en
ro

w
an

d
co

lu
m

n
pe

rm
ut

ed
in

or
de

r
to

hi
gh

lig
ht

th
e

go
od

co
rr

es
po

nd
en

ce
.

71

Figure 3.8: K-means clustering for k = 60 after 38 iterations. Note that non-contiguous groups
may be coloured the same.

The results can be observed in Figure 3.9. It is clear that the time in k-means

is linear with respect to the number of iterations (this is well understood in the

k-means literature). In this particular case the algorithm converges around the

iteration number 38. Note that these executions are based on different random

initialisations. The times for the k-means algorithm were obtained with the R sta-

tistical software. These times were faster than the times obtained by the algorithm

implemented with Java.

The Baire method only needs one pass over the data to produce the clusters.

Regarding the time needed, we tested a Java implementation of the Baire algo-

rithm. We ran 50 experiments over the SDSS data. It took on average 2.9 seconds.

Compare this to Table 3.6.

We recall that this happens because of the large number of iterations involved

in the case of k-means. Even in the case when just one iteration is considered for

k-means (note that the algorithm does not converge in that case) the time taken is

more than double when compared with the Baire (6.8 seconds vs. 2.9 seconds).

72

Figure 3.9: K-means average processing time in seconds for k = 60. Averages are obtained for 9
examples with 50 executions each.

3.6 Spectrometric and photometric digit distribution

We have seen that the Baire ultrametric produces a strict hierarchical classification.

In the case of zspec and zphot this can be seen as follows. Let us take any observed

measurement of either case of zspec = zphot. Let us say zspec = zphot = 0.1257. Here

we have that for K = 4, zspec = zphot. Hierarchically speaking we have that the

root node is 0, for the first level where there potentially exist 6 nodes (i.e. 0,1,...,5);

Iteration Average time
1 6.81
5 12.44
10 22.35
15 32.30
20 42.07
25 51.90
30 61.94
35 71.85
38 77.53

Table 3.6: Time average for k-means algorithm over 50 executions for each total iteration count.

73

for the second level potentially there are 60 nodes; and so on until K = 4, and

zspec = zphot, where potentially there are 6 · 10 · 10 · 10 = 6, 000 nodes.

Of course not all nodes will be populated, in fact we can expect that a large

number of these potential nodes will be empty if the number of observations n is

lower than the potential number of nodes for a certain precision K (i.e. n ≤ K10).

Note that this points to a big storage cost, but in practice the tree is very sparsely

populated and K small, see section 7.3.4.

A particular interpretation can be given in the case of an observed data point.

Following up the above example if we take zspec = zphot = 0.1257, a tree can

be produced to store all observed data that falls within this node. Doing this has

many advantages from the viewpoint of storing. Access and retrieval, for example,

is very fast and it is easy to retrieve all the observations that fall within a given

node and its children.

With this tree it is a trivial task to build bins for data distribution. Figure 3.10

depicts the frequency distribution for a given digit and precision. There are 100

data points that have been convolved with a Gaussian kernel to produce surface

planes in order to assemble three-dimensional plots.

This helps to build a cluster-wise mapping of the data. Following the Fig-

ure 3.10 top panel we observe that for the first decimal digit most data observa-

tions are concentrated in the digits 0, 1, 2, and 3. Then the rest of decimal precision

data is uniformly distributed, gradually going towards zero when the level of pre-

cision increases. There is the exception of two peaks, for precision equal to 8. This

turns out to be useful because when comparing the zspec and zphot digit distribu-

tion we don’t find the same peaks in zphot. This is very useful because now we

can discriminate which observations are more reliable in zphot through different

characteristics of the data associated with the peaks.

74

Figure 3.10: Digit distribution for zspec and zphot; Top: Spectrometric digit distribution; Bottom:
Photometric digit distribution. Note that digit distribution for zspec has three peaks, but zphot only
one.

75

3.7 Summary

In this work a novel distance called the Baire distance is presented. We show how

this distance can be used to generate clusters in a way that is computationally

inexpensive when compared with more traditional techniques. This approach

therefore is a good candidate for exploratory data analysis when data sets are

very big. In addition to the advantage of speed, this distance is an ultrametric

which can easily be seen as a hierarchy.

In the astronomy case clusters generated with the Baire distance can be use-

ful when calibrating redshifts. In general, applying the Baire method to cases

where digit precision is important can be of relevance, specifically to highlight

data “bins” and some of their properties.

Note that when two numbers share 3 prefix digits we have a dB = 3 which is

a Baire distance of 2−3 = 0.125. We did not need to define the actual (ultra)metric

values in this chapter. It was, in fact, more convenient to work on the hierarchy,

with its different levels.

In section 3.5.1 we showed how we could derive that 82.8% of values for zspec

and zphot have at least two common prefix digits. This is a powerful result in

practice when we recall that we can find very efficiently where these 82.8% of the

astronomical objects are.

Using the Baire distance we showed in section 3.6 that zspec and zphot signals can

be stored in a tree like structure. This is advantageous when measuring the digit

distribution for each signal. When comparing these distributions, it can easily be

seen where the differences arise.

76

Chapter 4

Application to Chemistry:
Clustering Chemical Compounds

4.1 Introduction

CHEMISTRY in many ways suffers from the same problems described in sec-

tion 2.2. In this area large databases containing millions of chemical com-

pounds are available. Furthermore, new clustering and data analysis techniques

are needed in order to identify meaningful relationships within this data.

In this chapter we describe some of the challenges presented when analysing

large databases in the chemistry area. A large number of chemical structure-key

fingerprints annotated in binary form are used for analysis.

First we describe and characterise the dataset available to us. Then the chem-

istry data space is embedded within a Baire ultrametric. To achieve this, the data

is normalised and then randomly projected to a unidimensional vector. Then the

projections are sorted, allowing the Baire distance to be calculated, and applied

to form clusters. Resulting clusters are compared to clusters obtained from using

the k-means algorithm which in turn uses the Baire clusters as centroids. The last

section is dedicated to a discussion on random projection and the computational

complexity of the method proposed here.

77

4.2 Problem description and data characterisation

One of the most common problems in mining large chemical libraries is classifying

the compounds into different classes. Different classes could represent different

levels of activity within compounds.

The application of clustering techniques to chemical databases started in the

early 1980s [49]. This coincided with the increase of chemical compound collec-

tions in huge databases and advances made by the information retrieval commu-

nity to analyse large datasets.

In the 1990s, the Ward minimum variance hierarchical clustering method be-

came the method of choice due to its hierarchical nature and the quality of the

clusters produced. Unfortunately the method reached its limits once the phar-

maceutical companies tried processing datasets of more than 500,000 compounds

due to: the O(n2) processing requirements of the reciprocal nearest neighbour

algorithm; the requirement to hold all chemical structures in memory to enable

random access; and the requirement that parallel implementation use a shared-

memory architecture.

Currently technology allows for coding chemical structures into different schemes

or representations that are easier to analyse with computer technology. However,

due to the molecules’ complicated structure, their computer representation is not

unique. For example, in chemoinformatics one of the most used molecular repre-

sentation is the topological (2D chemical structure), but also other methods such

as: adjacency matrix, connection graph, line notation, and molecular geometries

are available. See [23] for a description of these.

Substructure searching and matching in chemoinformatics is an NP-complete

problem [74]. Thus, querying large molecular databases is very time consuming.

For this reason and in order to filter out those molecules that do not contain the

substructures of interest the substructure screening method was developed. This is

based on a vector representation where mainly two methods are used: hash-key

fingerprints and structure-key fingerprints. The former is of interest to us here

(for a description of hash-key fingerprints see [23]).

78

Structure-key (also called dictionary-based) fingerprints use a dictionary of

defined substructures to produce a fixed length binary string. Basically, when

encoding a molecule if the substructural key is present it will be annotated as 1 in

the binary string or 0 in the case of absence. To carry out this encoding a number

of dictionaries are available such as the Elsevier MDL [52]. Figure 4.1 shows a

structure-key like binary representation of a typical chemical structure.

N O

O

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

N

NN

Encoding

Figure 4.1: An example of a molecule encoding as a structure-key fingerprint using a fragment
dictionary. A defined fragment is assigned to a single bit position on the string [23].

4.2.1 Notation used and data normalisation

We will use the notation x for the data matrix to be analysed, and xi denotes

any particular row. A chemical structure (or chemical) i is represented by a row,

and the set of chemical structures, or rows, is denoted I. We work with just over

1.2 million chemicals, i ∈ I. Similarly the column codes or attributes, 1052 in

number, are denoted by set J. Needless to say, our chemicals × codes view of

the data, used here for convenience of exposition, is fully compatible with a more

appropriate form of storage.

We will take the notation a little further (as in [126]) by writing xI J for the

given data, and a row of this matrix is denoted xi J (so we are indicating row

i and the column set, J). The sum of the columns gives the vector (marginal)

79

xJ . We normalise the data by dividing each matrix value by its column sum,

and the resulting normalised matrix is denoted x J
I J . Here we are saying: the

presence of a code j in chemical i must take into account whether that code is

rare, implying importance of the presence property; or common, implying a lower

value of presence. Given our notation, a tensor product allows us to reconstruct

our original data: x J
I J ◦ xJ = xI J (◦ denotes tensor product; see [126] for use of this

notation). Normalisation can be very important, to homogenise the effects of the

coding identifiers (set J) that are used: see Figure 4.2.

Figure 4.2: Histogram of column sums, denoted xJ in the text.

4.2.2 Data distribution and properties

We use a set of 1,219,553 chemical structures coded through 1052 presence/ab-

sence values, using the Digital Chemistry bci1052 dictionary of fragments [178].

Our experimental work is based on a matrix of binary-valued vectors: in some

instances it would be more efficient to work directly on the small set of code off-

80

sets rather than a 1052-vector. The binary-valued matrix is sparse: occupancy is

8.6347%.

A power law (see [117]) is a distribution (e.g. of frequency of occurrence) in the

general form x−α where constant α > 0; and an exponential law is of the form e−x.

For a power law, P(x > x0) ∼ cx−α, c, α > 0. A power law has heavier tails than an

exponential distribution. In practice 0 ≤ α ≤ 3. For such values, x has infinite (i.e.

arbitrarily large) variance; and if α ≤ 1 then the mean of x is infinite. The density

function of a power law is f (x) = αcx−α−1, and so ln f (x) = −α ln x + C, where

C is a constant offset. Hence a log-log plot shows a power law as linear. Power

laws have been of great importance for modelling networks and other complex

data sets.

Figure 4.3 shows a log-log plot based on the 1052 presence/absence attributes,

using all 1.2 million chemicals. In a very similar way to the power law properties

of large networks (or file sizes, etc.) we find an approximately linear regime,

ending (at the lower right) in a large fan-out region.

The slope of the linear region characterises the power law. For this data, we

find that the probability of having more than n chemicals per attribute to be ap-

proximately c/n1.23 for large n.

The histogram of attributes per chemical, on the other hand, does not show a

pronounced power law: see Figure 4.4. In fact, it it close to a Gaussian.

4.3 Ultrametric from longest common prefixes

4.3.1 From boolean data to normalised, real-valued data

In this section we use (i) a random projection of vectors into a 1-dimensional space

(so each chemical structure is mapped onto a scalar value, by design ≥ 0 and ≤ 1)

followed by (ii) implicit use of a prefix tree constructed on the digits of the set of

scalar values. First we will look at this procedure. Then we will return to discuss

its properties.

81

Figure 4.3: Log-log plot of number of chemicals per attribute, based on the whole data set of 1.2
million chemicals.

Figure 4.4: Histogram of numbers of attribute presences for the set of chemicals.

82

4.3.2 Ultrametrisation through Baire space embedding

To achieve a simple clustering hierarchy, we applied the following steps:

– Matrix normalisation by column sums.

– For precision k, k = 1, 2, ..., |K|. For attribute set, J. Determine random

projections of all chemical vectors into a 1-dimensional space.

– Sort projected values; determine identical values, to define cluster, grouping

chemicals that are projected into the same value.

Our objective is not the same as fitting a hierarchical structure, as is tradi-

tionally used in multivariate data analysis. A mainstream approach over at least

four decades of data analysis has been to fit a tree structure well to a data set,

with quality of fit presupposing a clustering (mostly agglomerative, but possibly

divisive). Instead we seek inherent ultrametricity in a data set, and so the more

ultrametricity we find in our data the better.

Table 4.1 shows results for three different data sets, each consisting of 7500

chemicals. The first column presents the significant digit and the second column

presents the number of clusters obtained, where the number of significant decimal

digits is 4 (more precise, and hence more different clusters found), 3, 2, and 1

(lowest precision in terms of significant digits).

Therefore for 7500 chemicals we found: approximately 140 clusters at preci-

sion (number of digits) 1; approximately 2,550 clusters at precision 2; and approx-

imately 6,400 clusters at precision 3.

We seek all i, i′ such that

1. for all j ∈ J,

2. xijK = xi′ jK

3. to fixed precision K

Recall that K is an ordered set. We impose a user specified upper limit on preci-

sion, |K|.
Now rather than |J| separate tests for equality of projected chemicals, a suf-

ficient condition is that ∑j wjxijK = ∑j wjxi′ jK for a set of weights wj. What helps

in making this sufficient condition for equality work well in practice is that many

83

of the xi JK values are 0: cf. the approximate 8% matrix occupancy rate that holds

here. We experimented with such possibilities as wj = j (i.e., {1, 2, . . . , |J|} and

wj = |J| + 1− j (i.e., {|J|, |J| − 1, . . . , 3, 2, 1}. A first principal component would

allow for the definition of the least squares optimal linear fit of the projections.

The best choice of wj values we found for uniformly distributed values in (0, 1):

for each j, wj ∼ U(0, 1).

Table 4.1 shows, in immediate succession, results for the same set of three data

sets used previously. The normalising column sums were calculated and applied

independently to each of the three data sets. Insofar as xJ is directly proportional,

whether calculated on 7500 chemical structures or 1.2 million, leads to a constant

of proportionality, only, between the two cases.

Sig. dig. c No. clusters
4 6591
4 6507
4 5735
3 6481
3 6402
3 5360
2 2519
2 2576
2 2135
1 138
1 148
1 167

Table 4.1: Results for the three different data sets, each consisting of 7500 chemicals, are shown in
immediate succession. The number of significant decimal digits is 4 (more precise, and hence more
different clusters found), 3, 2, and 1 (lowest precision in terms of significant digits).

A random projection was used. Finally, identical projected values were read

off, to determine clusters.

Let us look closer at one outcome here, the 4-digit precision set of 6591 clusters

found for the first of the three data sets used. We may ask whether these clusters

are “balanced” or if, in fact, one massive cluster accounts for most of the chem-

ical structures. Figure 4.5 shows a histogram, indicating clearly the “balance” in

cluster cardinalities.

84

For a smaller precision, however, such as 1-digit, we find that one very large

cluster dominates in terms of cardinality (cf. discussion of k-means results in sec-

tion 4.3.3 below).

Figure 4.5: Histogram of cluster sizes.

4.3.3 Comparison with k-means clustering algorithm

In Table 4.2 we show the results of k-means for the same three data sets each

relating to 7500 chemical structures, with 1052 descriptors.“Sig. dig.”: number

of significant digits used. “No. clusters”: number of clusters in the data set of

7500 chemical structures, associated with the number of significant digits used

in the Baire scheme. “Largest cluster”: cardinality. “No. discrep.”: number of

discrepancies found in k-means clustering outcome.

We look at k-means, using as input the cluster centres provided by the 1-

significant digit Baire approach. Relatively very few changes were found. We

note that the partitions in each case are dominated by a very large cluster, which

is a direct consequence of the data used. In cases that do not give rise to such “im-

85

balanced” cluster cardinalities, our Baire-related approach should perform even

better, in that it will give rise to more equal cardinality clusters.

As a conclusion we can say that these results show that Baire and k-means al-

gorithms can present a similar outcome when used for chemical compound clus-

tering.

Sig. dig. No. clusters Largest cluster No. discrep.
1 138 7037 3
1 148 7034 1
1 167 6923 9

Table 4.2: Results of k-means for three different datasets samples related to 7500 chemical struc-
tures with 1052 descriptors.“Sig. dig”: number of significant digits used. “No. clusters”: number
of the clusters in the dataset of 7500 chemicals structures. “Largest cluster”; cardinality. “No.
discrep.”: number of discrepancies found in k-means cluster outcome.

4.4 Discussion on random projection and hashing

Random projection is the finding of a low dimensional embedding of a point set –

dimension equals 1, or a line or axis, in this work – such that the distortion of any

pair of points is bounded by a function of the lower dimensionality [169]. While

random projection per se will not guarantee a bijection of best match in original

and in lower dimensional spaces, our use of projection here is effectively a hashing

method ([113] uses MD5 for nearest neighbour search), in order to deliberately

find hash collisions – thereby providing a sufficient condition for the mapped

vectors to be identical.

Collision of identically valued vectors is guaranteed, but what of collision of

non-identically valued vectors, which we want to avoid?

To prove such a result may require an assumption of what distribution our

original data follow. A general class is referred to as a stable distribution [6]: this

is a distribution such that a limited number of weighted sums of the variables is

also itself of the same distribution. Examples include both Gaussian and long-

tailed or power law distributions.

86

Interestingly, however, very high dimensional (or equivalently, very low sam-

ple size or low n) data sets, by virtue of high relative dimensionality alone, have

points mostly lying at the vertices of a regular simplex or polygon [123]. This

intriguing aspect is one reason, perhaps, why we have found random projection

to work well. Another reason is the following: if we work on normalised data,

then the values on any two attributes j will be small. Hence xj and x′j are small.

Now if the random weight for this attribute is wj, then the random projections are,

respectively, ∑j wjxj and ∑j wjx′j. But these terms are dominated by the random

weights. We can expect near equal xj and x′j terms, for all j, to be mapped onto

fairly close resultant scalar values.

How close are these values that are mapped? In the following section, we look

in more detail at how good this mapping is.

4.4.1 Random projection and digit distribution

A very important question is to know if distances are kept in the lower dimen-

sional space after applying random projection. If distances are maintained the

clusters obtained using a lower dimensional signal will be similar to the ones ob-

tained using the whole dataset. For the dataset that we are using, we can test

empirically if this holds.

Let us recall what we have discussed in section 4.4. Following equation 2.3 and

the notation introduced in section 4.2.1 we have the following:

xRP
I×k = x J

I×J × Rk
J′×k

where x is the original dataset with I observations and J-dimensions, if normalised

it becomes x J
I×J ; RJ′×k is a random matrix where J′ = J and k rows, if normalised

by column sums it becomes Rk
J′×k. Here we normalise R in order to obtain values

between 0 and 1 for xRP; and xRP is the resulting sub-space projection.

To test if the distances hold in the projected sub-space we have selected a

sample from the original data matrix with 20,000 observations and keeping the

1052 dimensions corresponding to the binary fingerprints of chemical descriptors.

87

Thus, we want to project the data matrix x onto a unidimensional vector.

Therefore, we obtain a random generated matrix R with one dimension and with

k = 20,000.

Algebraically we have the following:

xRP
20,000×1 = x20,000×1052 R1052×1 (4.1)

Note that the binary (presence/absence) data matrix x has been normalised

by column sums. The same process is applied to the randomly generated matrix

R. We normalise values in order to obtain a random projection matrix xRP with

values between 0 and 1.

If the random vectors are orthogonal, the random projected matrix xRP will

preserve the original distances exactly [94]. This is referred to as Parseval invari-

ance in the signal processing literature. Therefore, orthogonality in the random

matrix is the ideal case. However, orthogonalisation is very costly computation-

ally speaking. Hecht-Nielsen [85] noted that in a high dimensional space there

are many more quasi-orthogonal vectors than orthogonal ones. This means that

we can approximate orthogonality by simply choosing random directions in the

high-dimensional space [151].

For this chemical dataset we can test empirically if the behaviour observed by

Hecht-Nielsen holds. Thus, we carry out several random projections and calcu-

lated the digit distribution for each projection in order to verify the digit distribu-

tions. The idea behind this is the following: by counting the digit occurrences for

a given precision we are measuring the resulting projected distribution. If differ-

ent projections produce a similar mapping, we can conclude that the distances are

kept in the lower dimensionality.

Figure 4.6 depicts the digit distribution for 8 different random projected vectors

(we carry out 50 projections but for reasons of space we only include 8 here). It

can be observed that the digit distributions are almost identical and practically

indistinguishable from each other. Therefore, it can be concluded that for this

dataset the random projection method for dimensionality reduction preserves the

distances from the original data space.

88

Figure 4.6: Digit distributions from eight different random projections, where: the x axis shows
the digit decimal position; the y axis shows the numeric digits from 0 to 9; and the z axis shows the
normalised frequency of digit occurrences in percentage.

89

4.4.2 Computational time complexity

The computational time complexity is as follows. As usual, let the number of

chemicals be denoted n = |I|; the number of attributes is |J|; and the total number

of digits precision is |K|. Consider a particular number of digits precision, k0,

where 1 ≤ k0 ≤ |K|. Then the random projection takes n · k0 · |J| operations. A

sort follows, requiring O(n log n) operations. Then clusters are read off with O(n)

operations. Overall, the computational effort is bounded by c1 · |I| · |J| · |K|+ c2 ·
|I| · log |I|+ c3|I| (where c1, c2, c3 are constants), which is equal to O(|I| log |I|) or

O(n log n).

4.5 Summary

In this chapter we have shown that a Baire ultrametric embedding can be effec-

tively used to cluster chemical fingerprints. In this particular case the data space

is very sparsely populated, a characteristic that helps when reducing the dimen-

sionality through random projection.

Additionally we show that reducing dimensionality by means of random pro-

jection does not significantly change the results, even when different random vec-

tors are used. This is a direct consequence of the phenomenon noted by Hecht-

Nielsen, which states that in high dimensional spaces there many more quasi-

orthogonal vectors than orthogonal ones. The quasi-orthogonal vectors may be

close enough to orthogonal, thus close to the optimal solution for reducing di-

mensionality.

It follows that the resulting clusters are comparable to the ones obtained using

the k-means clustering algorithm.

The advantage in using the method proposed here is based on the number

of calculations needed and the lower computational complexity when compared

with other clustering algorithms.

90

Chapter 5

Application to Biology: Protein
Clustering

5.1 Introduction

G IARDIA intestinalis causes giardiasis, which is a notorious health problem

throughout the world. Giardia is a member of the diplomonads, often

described as an ancient protist group, whose primitive nature is suggested by

the lack of typical eukaryotic organelles. Recent completion of the Giardia lamblia

genome sequence gives a very good opportunity to have a better understanding of

this parasite. In particular we are targeting mitosomes, an organelle that resembles

a mithocondria, which provides a very good starting point to locate proteins that

could provide a target to develop new antigiardiasis drugs.

For mitosomes we seek markers analysing 2,542 hypothetical proteins obtained

from http://giardiadb.org/giardiadb. Within this setting our goal is to identify

a target group within these hypothetical proteins. Subsequently our work involves

that we pass the results on to the Laboratório Biologia Molecular de Parasitas e

Vetores, FIOCRUZ, Brazil, for biological analysis.

91

http://giardiadb.org/giardiadb

5.2 Giardia lamblia

Giardia lamblia 5.1 (also known as Lamblia intestinalis and Giardia duodenalis) is

a protozoan parasite of humans. It was first observed by Antony Van Leeuwen-

hoek (best known for his work on the improvement of the microscope) in 1681 [62].

It was Vliém Dušan Lambl who described the parasite in great detail in 1859, but

it was only by the mid–1980s that Koch’s postulates (these are four criteria to es-

tablish causal relationship between a causative microbe and a disease) to establish

the pathogenicity in humans were formally described [62].

Figure 5.1 shows the Giardia cyst, which is approximately 7–10 µm in length

and oval in shape. They are environmentally resistant, and the cyst remains vi-

able for several months in cool and moist conditions. The cyst is able to survive

standard concentrations of chlorine used in water purification systems [73].

Giardiasis prevalence in patients with diarrhoea is about 20% (range 5–43%) in

developing countries. In developed countries giardiasis is prevalent among hikers

and campers, people who swim in public pools and children who attend day care,

with percentages varying from 3% to 7% [176].

Giardiasis is spread via the fecal-oral route, frequently through the ingestion

of contaminated water or food. Symptoms vary from person to person, but the

infection generally produces diarrhoea for more than 10 days, abdominal pain,

flatulence, bloating, vomiting, and weight loss.

Figure 5.1: Giardia lamblia, the binucleate structure of the cell and its appendages are clearly
visible. Retrieved from the National Institute of Infectious Diseases of Tokyo, Japan. http: //
www. nih. go. jp/ niid/ para/ atlas/ japanese/ lambl. html .

92

http://www.nih.go.jp/niid/para/atlas/japanese/lambl.html
http://www.nih.go.jp/niid/para/atlas/japanese/lambl.html

The literature about Giardia is abundant, for additional references regarding

Giardia see [4,56,160], for the biology of giardiasis see [149], for a diagnosis review

see [61], and for treatments see [72, 185].

Giardia genetic code has been recently sequenced and published (2007). The

sequence is approximately 12 million base pairs and contains approximately 5,000

protein coding genes [119]. Regarding genomics the main information source is

GiardiaDB (http://giardiadb.org/giardiadb) which is the central point of refer-

ence for the community that studies this parasite.

In the next section we briefly introduce how the genes are encoded.

5.3 DNA and proteins encoding

In very simple terms the deoxyribonucleic acid (DNA) is a nucleic acid that con-

tains the genetic instructions used in the development and functioning of all

known living organisms. The main role of the DNA molecules is the long-term

storage of information. DNA is stored inside the cell, organised in complex struc-

tures called chromosomes. During the cell division process (e.g. mitosis or binary

fission process) chromosomes are duplicated to be ready for the new cells. This

complex process is called DNA replication.

Inside the nucleus, the DNA molecules are composed of four different bases

(Guanine, Cytosine, Adenine, Thymine), called nucleotides, and the order of these

bases encodes the information carried in DNA. These four base pairs follow certain

rules, called Watson–Crick base-pairing, and create two related strands. Watson

and Crick discovered that the Adenine (A) paired with Thymine (T) and Cytosine

(C) paired with Guanine (G) therefore create two complementary base sequences.

These strands are oriented and running in opposite directions, creating a double

helix [174].

In genes we can find sequences that carry the information necessary to encode

a protein. The creation of the proteins and their related functions starts from

sequences of DNA.

Figure 5.2 depicts the twenty standard amino acid translations and their three-

93

http://giardiadb.org/giardiadb

letters and one-letter abbreviations. Proteins are necessary to living organisms be-

cause they process chemical reactions (working like enzymes). They are molecules

made of amino acids arranged in a chain and folded into a spherical shape. This

chain of amino acids is defined by the sequence of a gene. The process to create

a protein from the DNA is called protein synthesis. Proteins can work together or

alone to achieve their goals or to help the cell works (e.g. cell signalling, immune

responses, cell adhesion, and the cell life cycle).

Literature in genomics and cell biology is very extensive. For additional infor-

mation regarding the DNA and cell biology see [106, 174]. For an introduction to

bioinformatics see [30,102,179,191]. For protein interaction network see [187], and

for microarray image analysis see [65].

5.3.1 Hypothetical proteins

We have seen in the previous section that proteins play a very important role

in the living organisms, and they govern the traffic in the numerous metabolic

pathways, which form the scaffold for numerous cellular structures. Many amino

acid sequences forming proteins are well known and understood. But there is a

very big number of proteins that have been annotated as unknown due to absence

of high homology with other proteins included in genomic databases, although

they exist and can be validated by the various biochemical, biophysical and genetic

techniques. Such proteins are called “hypothetical”.

The hypothetical proteins present a very good opportunity for the creation

of drugs. The hypothetical protein may be specific to the particular organism in

study. Therefore if the protein’s function is studied and described, let us say in the

case of a parasite, a drug can be produced in order to kill this organism without

affecting the host.

Thus, in the Giardia case the benefit of studying and describing the hypothet-

ical proteins is critical to produce a cure.

94

T

C

A

G

T
C
A
G

T
C
A
G

T
C
A
G

T
C
A
G

T C A G

TTT
TTC
TTA
TTG

Phe

Leu

CTT
CTC
CTA
CTG

Pro

ATT
ATC
ATA
ATG

} IIe

Met

GTT
GTC
GTA
GTG

Val

TCT
TCC
TCA
TCG

Ser

CCT
CCC
CCA
CCG

Pro

ACT
ACC
ACA
ACG

Thr

GCT
GCC
GCA
GCG

Ala

Second letter
Fi

rs
t L

et
te

r Third Letter

}

}

}
} }

}

}

}

TAT
TAC
TAA
TAG

CAT
CAC
CAA
CAG

AAT
AAC
AAA
AAG

GAT
GAC
GAA
GAG

}
} Tyr

Stop

}
} His

Gin

}
} Asn

Lys

}
} Asp

Glu

TGT
TGC
TGA
TGG

CGT
CGC
CGA
CGG

AGT
AGC
AGA
AGG

GGT
GGC
GGA
GGG

} Tyr
Stop

Arg

}
} Ser

Arg

Trp

}

Gly}
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C

Glutamic acid Glu E
Glutamine Gln Q
Glycine Gly G
Histidine His H
Isoleucine Ile I

Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P

Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V

Figure 5.2: The genetic code and the twenty standard amino acid translations, which are listed
with their three-letters and one-letter abbreviations.

5.4 Genome databases and file formats

There are many attempts to collect all known genes into a single database for

analysis, and also there have been many efforts to create automatic tools to extract

and analyse genes by means of specific queries.

Database structures can be classified mainly in four different types:

• Flat file databases

• Relational databases

• Object oriented databases

• Other databases

95

In particular we are interested in flat files because it is the format used by

GiardiaDB, thus the format in which we have our files for analysis. Within this

category the most common formats are FASTA, EMBL, GenBank, UniProt, and

XML. Specifically we work with files in the FASTA format [142, 145] (also called

Pearson format) that look like the following:

>gb|GL50803_10013 | organism=Giardia_lamblia_ATCC_50803

| product=Hypothetical protein | location=CH991782:800122-800784(+)

| length=220

MDDSGNDIGEQLRTKINSLRTQLATLKDSARSAIQDDDIARLALLQGKVTEISGALTSLK

AEFKALTLSDNLTRELDQLLVFLETGVNSLKSELRQADRGPVVTTVDVPTVVTREVLQTL

DTKKDNEILKLADNVKIIAEVNNRINEKLDEGAEVMEDVDTEIVAAQEKIDQAVGRMKLF

QSYMKKTKVPASVCILTFIFLIIVWSSKAFCSWGFTWQCP

Here the text is broken into more than one line for display purposes. The first

line starts with the symbol “>” and contains the protein’s name, description and

necessary encoding for localisation. The second part contains the amino acids.

There are many tools available to work with these formats. For convenience

we built a simple parser that stores the FASTA data structure in two vectors. The

first vector contains the protein header, and the second vector contains the amino

acid. In this way it is easier to walk through the proteins in order to do compar-

isons within our code. For example, one of our first tasks was to retrieve only

the hypothetical proteins from the Giardia genome sequence, with the sequences

stored in vectors, and this was very quickly done.

5.5 Data characterisation

In order to understand the data our first task was to analyse Giardia’s amino acid

frequencies of the hypothetical and non-hypothetical proteins. This information

is useful for the biologist because amino acids have different functions. For exam-

ple, a biochemical profile of hypothetical versus non-hypothetical proteins can be

96

identified.

Tables 5.2 and 5.1 show the statistics for Giardia hypothetical and non-hypothetical

proteins.

Hypothetical Non-Hypothetical
Proteins 2542 2347
Min. length 33 40
Max. length 1861 7449
Amino acids 1218227 1444928
Average 479.24 615.651
Std. dev. 701.62 545.01

Table 5.1: Statistics for hypothetical and non-hypothetical proteins.

Hypothetical Non-Hypothetical
A.A. Freq. Freq. % Freq. Freq. %

G 57140 0.046904 87831 0.060786
A 93956 0.077125 120180 0.083174
P 60202 0.049418 61155 0.042324
V 72717 0.059691 87301 0.060419
I 70406 0.057794 81711 0.05655
L 130912 0.107461 144289 0.099859
F 44796 0.036771 47121 0.032611
M 27337 0.02244 33855 0.02343
S 117050 0.096082 121292 0.083943
C 22733 0.018661 43785 0.030303
T 77863 0.063915 91388 0.063247
N 48703 0.039979 60486 0.041861
Q 50887 0.041771 54855 0.037964
H 30085 0.024696 33098 0.022906
Y 41444 0.03402 47598 0.032941
W 7589 0.00623 9989 0.006913
D 65479 0.053749 80522 0.055727
E 70762 0.058086 87122 0.060295
K 60753 0.04987 77553 0.053673
R 67413 0.055337 73797 0.051073

Table 5.2: Amino Acid frequency of occurrences for hypothetical and non-hypothetical proteins,
where A.A.: amino acid; Freq.: amino acid frequency; Freq. %: normalised amino acid frequency.

Figure 5.3 depicts the normalised frequencies of all amino acids found in Gia-

rdia. Figure 5.4 shows the Giardia lamblia hypothetical protein lengths arranged

in descending order.

97

Figure 5.3: Giardia lamblia protein frequency distribution in percentages.

Figure 5.4: Giardia lamblia hypothetical proteins lengths arranged in descending order.

98

5.6 Clustering on strings

Working with strings is critical for clustering not only in genomic but in many

other areas. In this section we introduce suffix arrays for storing strings, which

later on is used to create clusters based on the longest common substring.

5.6.1 Suffix array for searching and matching

A suffix tree, or trie (which is abbreviated from “Retrieval”), is a data structure for

storing strings in such a way that look-up is easy and fast. This data structure can

be used as a list of keywords or a dictionary in its simplest form. Furthermore,

by associating each string with an object it can be used as an alternative to a hash

map.

Suffix trees can be used to solve the exact string matching problem in linear

time, but the real advantage of using this data structure is its ability to solve more

complex problems than the exact match.

Suffix trees and their applications are very well documented. A very good

exposition about this topic is given by Gusfield [80]. In addition and as a starting

point the reader interested in algorithms on strings can refer to Crochemore et

al. [35], Charras and Lecroq [29], and Navarro and Raffinot [137]. For relevant

papers see Navarro [134], Navarro and Mäkinen [136].

Table 5.3 shows how the suffix tree for the string “mississippi” is built. The

first step is to allocate the string S in a data structure, a common selection is

an array. Then prefixes of the string S are subtracted one by one as shown in

Table 5.3 first column. This operation is repeated until the string S is empty. Now

what we effectively have is a decomposed string S of length m into m substrings.

In the case of the string “mississippi” of length 11 it has been decomposed into

T11 substrings. Also we can see in the second column of Table 5.3 that this array

can be lexicographically ordered for fast access and retrieval.

Figure 5.5 shows the tree representation for the string “mississippi”. Here a

suffix tree T is built for a string S[1...m]. The tree is rooted and directed with m

leaves, which are numbered from 1 to m. Each edge is labelled with a non-empty

99

Position Text Sorted pos. Text
T1 = mississippi T11 = i
T2 = ississippi T8 = ippi
T3 = ssissippi T5 = issippi
T4 = sissippi T2 = ississippi
T5 = issippi T1 = mississippi
T6 = ssippi T10 = pi
T7 = sippi T9 = ppi
T8 = ippi T7 = sippi
T9 = ppi T4 = sissippi
T10 = pi T6 = ssippi
T11 = i T3 = ssissippi
T12 = (empty)

Table 5.3: List of suffixes in the string “mississippi”: Left hand side shows the degeneration of the
string into substrings; Right hand side shows the suffix strings sorted lexicographically.

substring of S. The internal nodes of the tree (not including the root) have at least

two outgoing edges, and the labels of all outgoing edges are labelled with different

characters. By following the path from the root to the leaf i and concatenating the

edges labels, the suffix S[1...m] is obtained.

tree

mississippi

i
ssi

ppi

ssippi
ppi

s

si

i

ssippi

ppi

p
pi

i

ssippi

ppi

tree substring

m .. mississippi
i .. ississippi
issip,issipp,issippi

ip, ipp, ippi

s .. ssissippi

ssip, ssipp, ssippi

si .. sissippi

sip, sipp, sippi

p, pp, ppi

p, pi

Figure 5.5: Suffix tree representation for string “mississippi”.

When there is more than one string to be searched a generalised suffix tree (GST)

can be built. In this case each leaf node contains the string suffix and an index

or identifier to the string. For example, in the GST for “cagca” and “gagcga”, the

100

suffix “agcga” belongs to the string 2 and the suffix “agca” belongs to the string

1 [103].

Once the suffix tree has been constructed, finding all the occurrences of any

pattern P[1...n] in the string S takes time O(n + k), where k is the number of times

that the string S appears in the text.

Note that the “longest common substring” problem is different to the longest

“common subsequence” problem which is closely related to the “edit–distance”

problem: An instance of a subsequence can have gaps where it appears in string 1

and in string 2, but an instance of a substring cannot have gaps.

5.6.2 A note on DNA and protein embedding in ultrametric spaces

The Baire metric as defined in chapter 2 only considers the longest common prefix

distance. In the current setting this was applied to protein sequences, which did

not give any significant result. From the biological viewpoint it makes sense to

split a protein into amino and carboxy terminal. Thus, we also applied the Baire

(ultra)metric definition to find a hierarchical clustering when proteins are sepa-

rated into these regions, which however gave rise to poor results. We concluded

that the longest common prefix is not the right distance to apply within the spe-

cific context of the Giardia genome. Although slightly modifying this definition

we can obtain clusters not based on the longest common prefix, but on the longest

common substring. This is very closely related to the traditional way in which

genome alignments are carried out.

Therefore, a very reasonable question to ask is if proteins are ultrametric?

Clearly the Giardia genome is not when following the traditional genome se-

quence encoding. Encoding is very important when clustering in ultrametric

spaces. Murtagh in [129] explains how data recoding can affect ultrametric clus-

tering.

Khrennikov and Kozyrev [98] have proposed a p-adic number representation

and ultrametric topology to investigate the genetic code. In particular Khrennikov

and Kozyrev show that degeneracy of the genetic code can be described by local

101

constancy of some map defined in an ultrametric space.

In the same line Dragovich and Dragovich [50] show that a 5-adic number

representation is appropriate for DNA sequence embedding. It follows that this

5-adic distance is also suitable for representing genetic code degeneracy, which is

related to the p-adic distance between codoms. This is a result that is consistent

with the Khrennikov and Kozyrev findings.

An example comparing their two p-adic systems is as follows.

In the Khrennikov and Kozyrev work, for nucleotides A,T,G,C, in DNA, use

the binary encoding A = 00, G = 01, T = 10, C = 11. Therefore each nucleotide

has the code ∑i ci pi for p = 2. Hence for G we have: 0× 20 + 1× 21.

In the Dragovich and Dragovich work, the coding of nucleotides for RNA is:

C = 1, A = 2, U = 3, G = 4. These are encoded as digits in a p-adic system where

p = 5. An example for the mitochondrial code UCG is as follows: Digits 3,1,4

encode as: ∑i ci pi for p = 5, c = {3, 1, 4}. Hence we have the code for the UCG

target: 3× 50 + 1× 51 + 4× 52.

In both these p-adic number representations, we are dealing with genetic codes

that are expressed as p-adic numbers.

In a more recent work Khrennikov and Kozyrev [97] apply 2-adic numbers to

the structure of the PAM (Point Accepted Mutation) matrix, showing that a PAM

matrix A allows for expansion into the sum of two matrices A = A2 + A∞, where

the matrix A2 is 2-adically regular, and the matrix A∞ is sparse.

PAM matrices are used for sequence alignment in the same way that BLOSUM

(BLOcks of Amino Acid SUbstitution Matrix) matrices are used (PAM matrices

are built using a Markov Chain model). PAM and BLOSUM matrices are score

matrices based on the observed frequencies of amino acids occurrences. While

PAM matrices are based on global alignments of closely related proteins, BLOSUM

matrices are based on local alignments.

102

5.6.3 Results from the longest common substring

In order to cluster the Giardia hypothetical proteins based on the longest common

substring, a suffix array was built to compare pairs of all the 2,542 hypothetical

sequences. As a result a symmetric squared matrix was obtained, where the rows

and columns represent the protein sequences. For example, the first row presents

the first hypothetical protein and each column its distance with the other proteins

until the 2542th column.

This matrix of distances is too large for easily seeing what are the largest sub-

sequences of strings. Thus we assigned to each cell in the resulting matrix a colour

for easy visualisation. This was done with the R statistical software with a cus-

tomised script based on Seidel’s [156] script. Thus, a colour map with a gradual

colour scaling is created, where blue shows distances that are closest to a lower

bound value, and yellow distances that are closest to upper bound value.

Results are depicted in Figure 5.6, where the top panel shows the distance

between the values of 0 and 10. Note that resulting distances are mainly very

small, even for sequences with a large number of amino acids. For this reason we

assigned a scale from 0 to 10, which is the range for most distances. Furthermore

the diagonal of this matrix is given by the length of the sequence. For instance,

if the first protein string is of length 100, then we have that the longest common

subsequence is 100 when compared with itself. If the second protein string is of

length 140, then the longest common substring in cell 2,2 is 140. And so on for all

sequences.

Note that in Figure 5.6 top panel the diagonal is not shown. This is because

the distances are well above the 0 to 10 range shown in this image.

In order to understand better the obtained result the original matrix of dis-

tances was rearranged. Largest distances were sorted towards the diagonal as

depicted in Figure 5.6 bottom panel, where patterns become clearer.

103

Figure 5.6: Longest common substring images: Top panel shows the unsorted distances from 0 to
10 for the Giardia 2,542 hypothetical proteins; Bottom panel shows the sorted distances from 0 to
10 agglomerated towards the diagonal.

104

The 10 longest common substrings from the similarity matrix are shown as

follows:

Hypothetical protein results for the 10 biggest distances in longest com-

mon substring matrix.

>gb|GL50803_112017: 218 >gb|GL50803_114014: 304 length 315

>gb|GL50803_112893: 255 >gb|GL50803_112937: 258 length 310

>gb|GL50803_113470: 281 >gb|GL50803_135870: 631 length 655

>gb|GL50803_113740: 291 >gb|GL50803_114779: 328 length 286

>gb|GL50803_115328: 341 >gb|GL50803_115337: 342 length 329

>gb|GL50803_115439: 351 >gb|GL50803_115468: 352 length 300

>gb|GL50803_115469: 353 >gb|GL50803_115478: 354 length 739

>gb|GL50803_11696 : 411 >gb|GL50803_116967: 412 length 290

>gb|GL50803_117164: 423 >gb|GL50803_117191: 424 length 317

>gb|GL50803_9099 : 2372 >gb|GL50803_9283 : 2406 length 254

where the first column is the protein name, the second column is its location in

the similarity matrix, the third column is the protein name, the forth column is

its location in the similarity matrix, and the last column is the length of shared

amino acids. For example, looking at the third row we have that the protein

sequence 281 and 631 in the similarity matrix (i.e. proteins gb|GL50803_113470

and gb|GL50803_135870) share 655 amino acids in common. Thus, a preliminary

conclusion is that for this set of proteins there is a high probability of common

biological function.

Additional results show that when filtering the longest common substring dis-

tances matrix: 21 pairs of sequences have at least 200 amino acids in common; 32

pairs of sequences have at least 150 amino acids in common; 60 pairs of sequences

have at least 100 amino acids in common; and 131 pairs of sequences have at least

50 amino acids in common.

Taking the last subset of 131 protein pairs, where at least 50 amino acids are

shared by the hypothetical proteins, we have the following results:

105

Cluster results using the longest common substring.

1st cluster, 5 proteins

>gb|GL50803_112557 gb|GL50803_112893 gb|GL50803_112937 gb|GL50803_11305

gb|GL50803_113137

245 255 length: 64

245 258 length: 108

245 263 length: 70

245 266 length: 53

2nd cluster, 4 proteins

>gb|GL50803_112893 gb|GL50803_112937 gb|GL50803_11305 gb|GL50803_113137

255 258 length: 310

255 263 length: 59

255 266 length: 53

3rd cluster, 5 proteins

>gb|GL50803_11305 gb|GL50803_11196 gb|GL50803_112557 gb|GL50803_112893

gb|GL50803_112937

263 213 length: 55

263 245 length: 70

263 255 length: 59

263 258 length: 75

4th cluster, 6 proteins

>gb|GL50803_113137 GL50803_10256 gb|GL50803_112557 gb|GL50803_112893

gb|GL50803_112937 gb|GL50803_11305

266 62 length: 55

266 245 length: 53

266 255 length: 53

266 258 length: 53

266 263 length: 118

5th cluster, 4 proteins

>gb|GL50803_16803 gb|GL50803_10423 gb|GL50803_112059 gb|GL50803_114698

1089 105 length: 52

1089 220 length: 127

1089 326 length: 104

106

where coordinates show the position in the distance matrix and length is the com-

mon substring length of the sequences.

Note that sharing the same group does not necessarily mean sharing the same

substring. For instance, if we take the 5th cluster results (where protein sequence

number 1089 shares 52 amino acids with the sequence number 105, 127 amino

acids with sequence 220, and 104 amino acids with sequence 326) the shared sub-

string does not mean that they are the same amino acids. What we imply here is

that sequence number 1089 shares a good number of amino acids with sequences

105, 220, and 326.

This kind of relationship is difficult to visualise clearly with the method shown

in Figure 5.6. The size of the matrix is 2, 542× 2, 542 which gives 6,461,764 cells.

For example taking the 131 pairs of sequences that share at least 50 amino acids

will only depict 131 bright yellow data points in the 6,461,764 space.

5.6.4 Results using the single-linkage clustering algorithm

In order to compare the clusters resulting from the longest common substring to

other methods, experiments were carried out to obtain clusters from unaligned

FASTA sequences using the single-linkage clustering method with the BLAST-

clust [48] program from the Bioinformatics Toolkit at the Max-Planck Institute for

Developmental Biology [19] website (http://toolkit.tuebingen.mpg.de/sections/

classification). A number of experiments were carried out with different pa-

rameters.

BLASTClust uses the BLOSUM62 [53] matrix for proteins. This involves gap

opening cost 11, gap extension cost 1, and no low-complexity filtering. Addi-

tionally, the e-value parameter threshold is set to 1e-6 by default. For each pair

of sequences the top-scoring alignment is evaluated according to the following

criteria [47]:

107

http://toolkit.tuebingen.mpg.de/sections/classification
http://toolkit.tuebingen.mpg.de/sections/classification

x1 x2

| |

sequence X ---======================-----

\\|||||||||||||||||//

sequence Y ----====================------

| |

y1 y2

where, high-scoring segment pair (HSP) length on sequence X: Hx = x2 − x1 + 1;

gaps in sequence X: Gx; sequence X: Lx; basic local alignment search tool (BLAST)

score: S; number of identical residues: N; sequence Y length: Ly; gaps in sequence

Y : Gy; HSP length on sequence Y : Hy = y2 − y1 + 1; coverage of sequence X:

Cx = Hx/Lx; coverage of sequence Y: Cy = Hy/Ly; coverage: max(Cx, Cy) or

min(Cx, Cy), depending on the value of -b option; alignment length Al = Hx +

Gx = Hy + Gy; score density: S/min(Hx, Hy) or N/Al ∗ 100%.

Then, if the coverage is above a certain threshold and the score density is

above a certain threshold, these two sequences are considered to be neighbours.

The neighbour relationships determined in this way are considered symmetric

and provide the basis for clustering by a single-linkage method (which associates

a sequence with a cluster if the sequence is a neighbour of at least one sequence

in the cluster).

108

Results are the following:

Using as parameters: lvalue = 100.

--

1st cluster, 1 group of 7 proteins

>gb|GL50803_102575 gb|GL50803_111973 gb|GL50803_112630 gb|GL50803_112914

gb|GL50803_112938 gb|GL50803_113165 gb|GL50803_113130

2nd cluster, 1 group of 4 proteins

>gb|GL50803_116393 gb|GL50803_116394 gb|GL50803_120651 gb|GL50803_120652

3rd cluster, 10 groups of 3 proteins

>gb|GL50803_17342 gb|GL50803_112063 gb|GL50803_114777

>gb|GL50803_101451 gb|GL50803_112341 gb|GL50803_103785

>gb|GL50803_117391 gb|GL50803_117392 gb|GL50803_117393

>gb|GL50803_125104 gb|GL50803_125105 gb|GL50803_125106

>gb|GL50803_118540 gb|GL50803_118541 gb|GL50803_118542

>gb|GL50803_123978 gb|GL50803_123979 gb|GL50803_123980

>gb|GL50803_134501 gb|GL50803_134502 gb|GL50803_88320

>gb|GL50803_119853 gb|GL50803_119854 gb|GL50803_1370

>gb|GL50803_115670 gb|GL50803_115671 gb|GL50803_37793

>gb|GL50803_123278 gb|GL50803_123279 gb|GL50803_123280

109

Using as parameters: lvalue = 95.

1st cluster, 1 group of 8 proteins

> gb|GL50803_16293 gb|GL50803_102575 gb|GL50803_111973 gb|GL50803_112630

gb|GL50803_112914 gb|GL50803_112938 gb|GL50803_113165 gb|GL50803_113130

2nd cluster, two groups of 6 protein

>gb|GL50803_117191 gb|GL50803_117192 gb|GL50803_10241 gb|GL50803_116967

gb|GL50803_116968 gb|GL50803_11149

>gb|GL50803_12830 gb|GL50803_20020 gb|GL50803_5206 gb|GL50803_101451

gb|GL50803_112341 gb|GL50803_103785

3rd cluster, 1 group of 4 proteins

gb|GL50803_116393 gb|GL50803_116394 gb|GL50803_120651 gb|GL50803_120652

4th cluster, 11 groups of 3 proteins

>gb|GL50803_90236 gb|GL50803_15404 gb|GL50803_10238

>gb|GL50803_17342 gb|GL50803_112063 gb|GL50803_114777

>gb|GL50803_117391 gb|GL50803_117392 gb|GL50803_117393

>gb|GL50803_119191 gb|GL50803_117436 gb|GL50803_117437

>gb|GL50803_125104 gb|GL50803_125105 gb|GL50803_125106

>gb|GL50803_118540 gb|GL50803_118541 gb|GL50803_118542

>gb|GL50803_123978 gb|GL50803_123979 gb|GL50803_123980

>gb|GL50803_134501 gb|GL50803_134502 gb|GL50803_88320

>gb|GL50803_119853 gb|GL50803_119854 gb|GL50803_1370

>gb|GL50803_115670 gb|GL50803_115671 gb|GL50803_37793

>gb|GL50803_123278 gb|GL50803_123279 gb|GL50803_123280

where l value indicates the minimum length coverage.

Comparing the result obtained from using the longest common subsequence

and the single-linkage clustering method it can be observed that resulting cluster-

ings are not the same. This is due to the way the single-linkage method groups

clusters, and to the fact that we do not use amino acid normalisation scoring ma-

trices when using the longest common substring (BLOSUM or PAM). The main

reason we do not use scoring matrices is based on the fact that hypothetical pro-

teins are not known, thus assigning any predefined schema for scoring (which

110

in fact can be seen as a normalisation process) can distort the resulting groups.

Furthermore many scoring methods are available which inevitably will lead to

different results.

5.7 Summary

The Baire (ultra)metric proposed in chapter 2 is based on the longest common

prefix. In the case of biological data, this approach cannot be applied directly to

the Giardia genome sequence case because proteins do not behave in a hierarchi-

cal manner when embedded in the traditional 20 amino acid letters space. This

distance can be modified from the longest common prefix to the longest common

substring. This results in a symmetric distance matrix where all proteins are com-

pared against each other. Based on this distance matrix we obtain clusters based

on the longest common substrings.

We find that using the longest common prefix as defined in chapter 2 does

not perform well due to the very nature of amino acid sequences. In the Giardia

case proteins are not similar from the beginning of the sequence when compared

with each other. We modified the longest common prefix distance to the longest

common substring distance. In this case we find many similarities, which means

that amino acid subsequences are common throughout the Giardia hypothetical

proteins.

Additionally we use the BLASTclust program to produce clusters based on the

single-linkage clustering algorithm. Comparing the result obtained from using the

longest common subsequence and the single-linkage clusterings method it can be

observed that resulting clustering are not the same. This is due to the way the

single-linkage method groups clusters, and to the fact that we do not use amino

acid normalisation when using the longest common substring (BLOSUM or PAM

scoring matrices).

111

Part II

Application to Information
Retrieval

112

Introduction to Part II

IN this part we deal with the application of the Baire (ultra)metric to informa-

tion retrieval and clustering of text.

Based on Part I of this thesis we show how our algorithm can be applied to

data from different scientific disciplines. In this part our work illustrates well:

• The unity of the mathematical and computational underpinning of our method

applied to the enterprise.

• The ability to take algorithms that have been developed and validated in one

field, e.g. astronomy, and use them successfully in other fields, e.g. business.

In Chapter 6 we give a general overview of the processes involved in imple-

menting a search solution. Furthermore, we describe the context of our work in

the enterprise setting.

In Chapter 7 we deploy our algorithm in the enterprise setting, and in the

heritage searching context. An important part of this chapter relates to the specific

nature of enterprise search, and moreover how it differs from, say, Web search.

114

Chapter 6

Supporting Massive Best Match
Search and Retrieval

6.1 Introduction

IN this chapter we look into the main processes to build a search engine from

the information retrieval perspective. In general we have that the main steps

for such a system are the same in different scenarios, namely a search engine

for the Internet, the enterprise, email or any other context. However there are

particularities that are very important in different cases, which will effectively

determine if the system is finally usable.

For example, when searching the Web all HTML files are publicly available

(with exception of protected directories) and crawled by robots (here again ex-

ception policies can be implemented) such as by Yahoo! and Google. This is not

necessarily true in the case of enterprise search, because different level of security

are needed for different users, and also results may have to be ranked with criteria

that are different to the Web case.

6.2 Structuring and searching text in a massive dataset

Figure 6.1 shows a schematic representation of the system that we are aiming to

address. Typically a user working on his/her computer would like to backup in-

formation contained within a specific directory (we refer only to one directory for

115

the sake of simplicity). This directory may contain documents in several formats

such as MS Word, MS Excel, MS PowerPoint, e-mails, PDF, HTML, text, etc. A

commercial application needs to handle all these different formats to be success-

ful. Producing parsers for each of these formats falls well out of the scope of this

work. Therefore, we are to concentrate on plain text, since this is the simplest of

cases and it is well suited to perform experiments (also we avoid the hassle of

dealing with proprietary formats such as MS Office). Our interest is to design a

system that if successful with plain text, later can be applied to other formats.

Coming back to Figure 6.1 we can see that a local collector takes care of storing

parsed tokens. These tokens are to be compressed and encrypted before being sent

to a centralised repository for backup purposes. Note that also the documents are

sent to the data centre to be stored.

Centralised repository
Indexer

Data Centre

Network

Documents
(TXT, MS Word, PDF, etc.)

Parser

Local Collector
Storage

(Encryption/
Compression)

Figure 6.1: Architecture overview. In general a document source is selected and parsed, the local
collector stores resulting key words. In turn these are compressed and encrypted, then sent to a
central repository for storage.

The scenario presented above is a simplification of a real life situation, but

gives us a good base as a starting point. A real life scenario would include a

116

situation where there are different units (e.g. sections, groups, departments, etc.)

within a corporation backup information. Then collectors for these different units

may interact in order to send information to the central repository (indexer).

A situation closer to reality would be the one presented in Figure 6.2. Here

we can see that different collectors feed an indexer process that in turn stores

information regarding tokens and document locations embedded in the database

(DB). This DB can later be queried to match tokens (or words) against documents

(at this point we are not considering compression nor encryption).

Collector

Collector

Collector

Collector

Indexer
Process

BDB

Querying
Process GUI

Indexer

Figure 6.2: Indexing process overview. Each collector process stores parsed documents (key words)
that are sent to an indexing process, which is in charge of merging collectors into a database ready
to be queried.

6.2.1 On searching

In this section we approach the question of what kind of searching system we aim

to build. Searching and retrieving the right information depends on many factors.

A similar query means different things to different people. Thus searching and

retrieving the “right” information depends greatly on context and meaning (i.e.

semantics), and how the query system handles these factors. For example, a sys-

tem that searches documents on the Web is different from a system that searches

images and videos. Searching in a single purpose system (let us call this “spe-

117

cialist search system”) such as fingerprints, astronomical, financial or economical

databases require different techniques and approaches if compared with the Web.

Also a deeper knowledge is required from the user. To complicate things further

user expertise is relevant when retrieving information, e.g. two users working on

the same search system and trying to retrieve the very same information may have

different approaches when searching due to their experience and expertise.

When starting to build a retrieval system some good questions to start to think

about are the following:

– Who are the users?

– What are the users looking for?

– What kind of information will the system be handling (text, numeric, etc.)

– Information context and meaning.

We will be dealing with a specialist search system, that is to say that very few

people will have access to it and the users would be looking for forensic types of

information. By forensic information we mean that the user will be doing exhaus-

tive queries to answer questions such as: a) retrieve all documents that contain a

particular person’s name, b) retrieve all documents related to certain projects, c)

retrieve documents produced on a particular date. By exhaustive search we mean

that all matches should be retrieved because all matches are relevant.

A realistic scenario would be something like this: a firm has been sued and

needs to retrieve and destroy all documents that mention a person’s name, if not

the company will be liable to pay compensation. The search engine should be able

to pinpoint all such documents and produce valid locations for them.

6.2.2 On indexing

In this section we explain in detail the collector component on the client side

of the system. Additionally some restrictions regarding development tools and

programming language are introduced.

118

Figure 6.3 shows the collector components: Parser and CollectorStorage En-

gine. The parser is in charge of taking information (tokens) from files that are

contained within a directory (and sub-directories), then extracting and filtering

valid tokens from these files. Note that directories should be walked through,

since a data source is considered to be a directory and all its dependencies.

Tokens are defined as words, therefore at this stage any token that is not a

word will not be included (e.g. symbols +, –, &, $ and numbers).

Data
Source

DB

Store Token
Frequencies

Parser

Indexer

Read Directory

Read File

Read Token

Store Token

Storage Engine

Stop-List

Stemming

Entity
Detection

Part of
Speach

Query

Figure 6.3: Collector overview. First a data source is defined, in this case a directory is specified.
All files within are read and tokens identified. At this point a stop-list, stemming, entity detection
and part of speech software can be used to help with the parsing. Afterwards tokens are stored, and
frequencies relative to a document identified. Finally, this information is sent to the central indexer
to be merged and stored in a DB.

Additionally the parser excludes words that are considered not relevant (e.g.

a, the, and, etc.). These are included in a stop-list file, and thus this file is a further

filter in the parsing process. Note that stop-words are language dependent and

119

there should be one stop-list per language.

When a valid token has been identified – this is a token that is neither a symbol,

number nor a word in the stop-list – it should be passed to the CollectorStorage,

which is in charge of storing tokens and their frequencies for a given document.

The CollectorRecord is effectively an intermediate form of metadata that is to

be stored in the final index. The important point is that no ranking or placement

within the actual index has taken place on the computer running the Indexer.

By using an intermediate form of the search metadata, the process of creating a

search index can be distributed. The other advantage is that computational impact

of indexing data does not adversely affect the server, which provides key services

during the course of the business day.

The Collector component incorporates the parser module. One key part of this

system is devising the storage of the search metadata. Any compression tech-

niques that can be applied to the metadata will be advantageous to the imple-

mentation. Ultimately this will reduce the amount of data Collector will have to

transmit up to the Indexer. For compression the zlib [67] compression/decom-

pression library is to be used. Optionally the parser generated metadata needs to

be stored in an encrypted form.

Dealing with documents the Collector needs to be able to handle the following

document scenarios.

– Document Additions – A new document is added to the corpus

– Document Updates – A document in the corpus has been updated

– Document Moves – The location of the file has changed

– Document Deletions – The document no longer exists.

The fact that a document has been renamed will be handled implicitly since it

will be seen as an addition of a new document and a deletion of the old file.

The CollectorRecord has two forms, a local form for use by the Collector and

another form for the Indexer, IndexerRecord. Inheritance can be used to relate the

basic form to the specialised form.

Some of the information that the CollectorRecord should store is the following:

1. DocumentID – The local document identifier

120

2. Timestamp – The last time the record was updated

3. Filename – The filesystem name for the file

4. Location – The path to the file

5. MD5 hash – The MD5 hash of the content of the file

6. Token list – Including the token and frequency

The Timestamp is the time at which the Indexer created the CollectorRecord,

the time-stamp format is YYYYMMDDHHMMSSTTT. Other formats are also valid,

the important point is to have a format that does not change. This in order to keep

the system simple.

The location and filename are stored separately because they are not exclusive,

since a file can have the same name, but reside at different locations. A Collec-

torRecord can be matched to a document if the Filename and Location match a

document being processed.

The Message-Digest algorithm 5 [148] (MD5 Checksum) of the content is needed

for detecting file changes (important for document updates). In this case the in-

dexing process should be re-applied to the document in question, causing the

conversion and parsing process to re-occur. This is not needed in the Indexer-

Record.

In addition the IndexRecord incorporates the Media Access Control address

(MAC address) of the computer running the Collector. The simplest combination

is to concatenate the 2 numbers together into a single string. This is needed so

that the Indexer can identify the record’s source.

e.g.

– MAC Address

– Sequence Number

– DocumentID

121

6.2.3 On retrieval

An important factor to consider is how the information will be retrieved; how the

queries are built; and how they are sent to the servers. Query representation in a

retrieval system is important because the effectiveness and efficiency will depend

on a good design and implementation. In the following chapter, chapter 7, we

look into queries in more detail. Next we provide a brief review of different query

strategies.

6.3 Supporting massive best match search and retrieval

A retrieval strategy is based on an algorithm that takes a query Q and a set of doc-

ument D (where di1, di2, di3, .., dit are individual documents) of length t, identify-

ing a similarity coefficient used to specify distances between documents (or between

documents and queries). Retrieval strategies can be classified as follows [79]:

– Vector space model: this presents the query and documents (terms) as vec-

tors, then a similarity measure is applied between vectors.

– Probabilistic retrieval: this is a computer probability based on the likeli-

hood that a term will appear in a relevant document.

– Language models: a language model is built for each document, and the

likelihood that the document will generate the query is computed.

– Inference network: here a Bayesian network is used to infer the relevance

of a document to a query. The strength of this inference is used to compute

the similarity coefficient.

– Boolean indexing: a score is assigned such that an initial boolean query

results in a ranking. This is done by associating a weight with each query

term so that this weight is used to compute a similarity coefficient.

– Latent semantic indexing: terms in a document are represented with a

term-document matrix. This matrix is reduced via Singular Value Decom-

position (SVD). Then documents that have the same semantics should be

located closer together.

122

– Neural networks: a neural network can be trained by adjusting the neuron’s

weights.

– Genetic algorithms: an optimal query to find documents can be produced

by evolution. An initial query is used with an estimated weight. New

queries are generated by modifying these weights. Then a new query sur-

vives by being close to known relevant documents and queries with less

strength or “fitness” are removed.

– Fuzzy set retrieval: boolean queries are mapped into fuzzy set intersections

and union. These associations are used as “strengths” in the same way as a

similarity coefficient.

6.4 Building a search engine

6.4.1 Vector space model

A document set D composed of m documents indexed by n terms can be repre-

sented as an m× n document-by-term matrix A. Thus, the matrix element aij is the

weighted frequency at which term i occurs in the document j [17]. It follows that

this document representation is very important when querying documents. Then

this vector space represents the columns of A denoting terms vectors, and rows

denoting document vectors.

Several different ways exist of comparing a query vector with a document.

The reader can refer to chapter 2 section 2.5.1 for more detail regarding commonly

used similarity measurements. The most common of these in the text retrieval con-

text is the cosine, where the cosine of the angle between the query and document

vector is given by:

d(xa, xb) = cos(θ) =
∑n

i=1 xi,a xi,b√
∑n

i=1 x2
i,a ∑n

i=1 x2
i,b

Other coefficients are the Dice and Jaccard, presented below. These are often

used for boolean or “binary” data, representing presences or absences. The Dice

123

coefficient is defined by the following:

Dc =
2|X ∩Y|

|X ∪Y|+ |X ∩Y| =
2|X ∩Y|
|X|+ |Y|

where ∩ depicts set intersection, | · | denotes set cardinality of the documents that

we have taken as sets of terms that are present in the document.

In vector terms,

Dc =
2 · XY

‖X‖+ ‖Y‖

where (XY) is the inner product of X and Y, and ‖X‖ is the Euclidean norm of X.

The Jaccard coefficient is defined as:

Js =
XY

‖X‖2 + ‖Y‖2 − (XY)

6.4.2 Document querying

Figure 6.4 describes the three-tier [18] process generally involved when transform-

ing a user’s query into a search engine query. In the first phase we have a user

using a GUI (graphical user interface) to formulate a query in a search engine, in

the second level the query is transformed into tokens, and in the last stage the

search engine must use the information given by the token to look for the relevant

information within a database to retrieve the desired documents.

Generally we can identify the following types of queries:

• Boolean: AND, OR, NOT words are included in the search in order to in-

clude/exclude results.

• Natural Language Queries: here the query is formulated as a question or a

statement.

• Thesaurus Queries: The user selects the term from a previous term-set pro-

vided by the information retrieval (IR) system.

• Fuzzy Queries: the threshold of relevance is expanded to include additional

documents.

• Term Searches: is based on a few words or phrases provided by the user.

124

Phase 1
Enter a Query to the

Search Engine

Phase 2
Search engines

translate query into
tokens

Phase 3
Tokens are used to
search document

collection

Figure 6.4: Typical querying retrieval systems [18]. In phase one a query is written into the search
engine, then in phase two this query is translated into tokens, which in phase three are converted
to the vector space for search.

• Probabilistic Queries: IR systems based on a computed probability to re-

trieve documents.

6.4.3 Term weighting

For text collections presenting many different contexts such as newspapers and

encyclopaedias, the number of terms (n) is typically bigger than the number of

documents (m), i.e. n > m. This is not necessarily true for every collection of text,

on the Web for example the situation is the opposite. In order to improve retrieval

performance term weighting can be used, meaning that relevant information about

word frequency can be incorporated in an automatic indexing system.

Following the formulas presented in Tables 6.1, 6.3 and 6.2 a simplified weight-

ing schema can be introduced [17, 18, 79, 152, 175].

125

Symbol Name Formula

B Binary [152] χ(fij) =

{
1 if (fij) > 0
0 if (fij) = 0

L Logarithmic log(1 + fij)

N Augmented normalised term freq.
χ(fij)+

(
fij

maxk fki

)
2

T Term frequency [152] fij

Table 6.1: Formulas for local term weights lij [18].

Here, fij is the number of times (frequency) that a term i appears in document

j.

Symbol Name Formula
X none 1

E Entropy 1 +
(

∑i(pij log(pij)
log n

)
F Inv. doc. freq. (IDF) log

(
n/ ∑i χ(fij)

)
G Global freq. IDF ∑i fij

∑i χ(fij)

N Normal 1√
∑i f 2

ij

P Probabilistic inverse log
(

n−∑i χ(fij)

∑i χ(fij)

)

Table 6.2: Formulas for global term weights [18, 51, 152] gi.

Here pij = fij/ ∑j fij.

126

Symbol Name Formula
X none 1

C Cosine (∑i(GiLij)
2)−1/2

Table 6.3: Formulas for document normalisation [152] dj.

For example, with reference to Tables 6.1, 6.3 and 6.2, a simple notation for

specifying a term-weighting scheme is to use the three-letter string associated

with particular local, global, and normalisation factors. For instance the L-F-C

weighting schema aij is defined by the following formula: LijFij/Cij.

This can be rewritten as:

aij =
log(1 + fij) log

(
n

∑i χ(fij)

)
√

∑j

(
log(1 + fij) log

(
n

∑i χ(fij)

))2

In general the term weighting schema presented here is available in many

traditional retrieval systems and is considered the basis from which further exten-

sions and customisation can be applied.

127

6.4.4 Compressed inverted list indexes

In this section we deal with the document indexing problem. We assume that data

preparation and extraction from a corpus has been carried out. Normally this will

include at least word extraction and recording of frequencies of occurrence, but

certainly additional steps can be taken in order to improve search results such

as including a stop-list (i.e., terms frequently used but not needed in the index

e.g. articles, prepositions and conjunctions), word normalisation (lemmatisation)

see [143], entity detection (e.g. a person’s name [14]) and part-of-speech tagging,

to name a few. We call this process parsing.

Once a document has been parsed and a token (e.g., a word) identified this will

be stored in an inverted indexed list [190]. This is an alphabetically ordered word

list typically stored in a vector, where each word occurrence has a pointer to the

document where it appears. Searching in this structure is reduced to looking for

coincident words (string matching) and then retrieving the document occurrences.

Building inverted text indices for a large document corpus mainly involves

three steps:

1. Build in-memory index,

2. Store memory index on disk,

3. Merge temporary indexes to a database.

Indexing text has expanded beyond recording word occurrences and merging

indexes. It follows that a key objective of inverted index files is to produce algo-

rithms to reduce I/O (input/output) bandwidth and storage overhead [26,59,136,

177].

Modern compression techniques are very useful to reduce search time and

index size. Here we are interested in lossless compression techniques applied to

inverted index files. For a lossy approach see [25].

Compression performance depends on the type of data that is handled. For ex-

ample obtaining good compression rates in English text with a particular method

may not be replicated when working with images or numerical data. Also it is

important to highlight that generally speaking compression has a trade off with

memory used: the better the compression, the slower the program execution. In

128

other words more memory is needed.

Most compression techniques are based on the idea of sorting the inverted list

in ascending order [79]. For example in [177], pp. 114-143, a number of compres-

sion techniques are used and evaluated over an inverted file index. In general for

practical purposes local Bernoulli method using Golomb coding [167] and [177],

p. 115, is the technique to use.

Certainly, compression techniques applied to inverted indexes are not limited

to the above. The so called Block-addressing compressed indexes [135] reduce the

index size by means of indexing blocks of text with fixed size. Other techniques

include caching and early query termination.

From the Baire distance perspective an important compression method is Lempel-

Ziv [188,189], because of its use of the longest common substring [159] to compress

data, which is closely related to the Baire metric.

6.5 Enterprise search

In this section we describe the current technologies used in the enterprise search

industry. Section 6.5 presents the main differences between the Web and enter-

prise search. This section also deals with the criteria to consider when evaluating

and selecting current search implementations. Section 6.5.1 shows the main com-

ponents in an information retrieval system. Finally section 6.5.8 presents a list of

commercial enterprise search providers as well as the main solutions today offered

by the open source community.

Differences between enterprise and Web search are very significant when look-

ing into areas such as compliance, security and other important topics. In [46] ten

issues that must be considered when building a retrieval system within an organ-

isation are considered.

– Security and privacy: implementing a search system within an organisation

should consider what information is to be indexed. This will prevent sensi-

tive information (e.g. employee data, intellectual property documents, etc.)

to be exposed unnecessarily.

129

– Policy and compliance: a well-designed enterprise search engine should

follow closely the company’s policies.

– Access control: access to information is limited by authentication, not all

users are allowed to access the same information and controls must be

placed to ensure the system is secure [135]

– Comprehensiveness: if a search is to be effective it needs to be compre-

hensive. Thus, access to different repositories, email systems, and business

applications (structured and unstructured data) are necessary.

– Relevant results: internet search engines generally rank relevance based on

document linkage. This is not necessarily true for enterprise applications

where a relevance algorithm may be configured to look for entities within

documents such as titles, names, dates, locations, etc.

– Federation: rather than re-indexing content across different retrieval sys-

tems, index integration (or federation) may be better in order to improve

performance.

– Personalisation: enterprise search results can be improved by incorporat-

ing user information into the result, e.g. by relating a specific department

(e.g. marketing, finances) for which the final result can benefit. Also search

history may be an important factor to consider.

– Search as a service: designing a search system as a service (i.e. Web service)

helps in order to present results on a variety of platforms. This is relevant

for a call centre, a portal, an intranet site, etc.

– Enterprise scale and scope: growth must be always taken into considera-

tion. Also multilingual support may be needed.

– Support: finally, support is crucial to maintain and update a search system.

Additionally to traditional search technology several aspects need consider-

ation. In the ThinkingSAFE case the following list includes some of the most

important characteristics to consider when implementing the search technology:

– Document synchronisation: the backup system has to handle document

sync based on delta records (i.e. the differences between the current and

130

previous versions). Then each record is processed to determine if a change

(i.e. add, delete, or modify operation) has been made.

– Query categorisation: when querying the system exhaustive searching will

be carried out, meaning a possibly large outcome. Then a mechanism to

categorise or rank this outcome is needed.

– System integration: it is a must to consider currently used systems, e.g. the

current ThinkingSAFE backup system. Any search capability will interact

with such a system, and therefore integration issues may arise.

– Performance: indexation processes should have a small footprint and high

performance. For the query system high performance also is needed. Per-

formance measures and benchmarks have to be produced for these software

components.

– Usability: graphical user interfaces are required to be intuitive, easy to use,

and simple.

– Compression and encryption: perhaps the biggest challenge is to take ad-

vantage of compression techniques to maximise performance and to min-

imise storage. Encryption support is a tough question since a by-pass tech-

nique is needed to query data that has been encrypted. In principle this can

be answered through keeping the index database in a secure location with

restricted access. The documents can be encrypted.

6.5.1 Anatomy of a search engine

This section describes the main processes within a search technology. We separate

this into six main areas: preprocessing, parsing, indexing, storing, querying and

system administration.

6.5.2 Preprocessing

This involves converting raw documents into a suitable structure to be processed.

By raw document we mean any kind of input that needs to be indexed. This

process recognises the kind of document and transforms its content into a stream

131

of text. Additionally processes such as language recognition can be implemented

here and this can be passed together with the text stream to the next process. A

great number of documents are used within an organisation so the preprocess-

ing stage should be implemented in a modular way (i.e. plug-ins), allowing for

inclusion of new formats such as:

– MS Office (mainly Word, Excel, in their different versions),

– PDF,

– e-mail repositories,

– HTML,

– RTF,

– Plain text,

– XML,

– Many others.

6.5.3 Parsing

We assume that data preparation and extraction from a corpus has been carried

out. Normally this includes at least word extraction, but language identification

and recording of word frequencies could have taken place. This data can be sep-

arated into two main sections, metadata (language, frequencies, etc.), and the text

stream.

Parsing is the process carried out to improve the understanding of the text

stream. Steps can be taken in order to improve search results such as including a

stop-list.

6.5.4 Indexing

Once a document has been parsed and a token (e.g., a word) identified this will

be stored in an inverted indexed list [190]. See section 6.5.3.

132

6.5.5 Storing

Storing deals with the indexing system and the way words or phrases are stored

and retrieved. The main tasks to consider here are the following:

– Index merging,

– Index updating,

– Index deletion,

– Index compression,

– Index performance,

– Storage.

6.5.6 Querying

The three-tier process is generally involved when transforming a user’s query

into a search engine query. As seen in section 6.5.6 in the first phase we have

a user using a graphical user interface to formulate a query in a search engine,

in the second level the query is transformed into tokens, in the last stage the

search engine must use the information given by the tokens to look for the relevant

information within a database (i.e. index of some sort) to retrieve the desired

documents.

Generally we can identify the following types of queries:

– Boolean: AND, OR, NOT words are included in the search in order to in-

clude/exclude results.

– Natural Language Queries: the query is formulated as a question or a state-

ment.

– Thesaurus Queries: the user selects the term from a previous term-set pro-

vided by the IR system.

– Fuzzy Queries: the threshold of relevance is expanded flexibly to include

additional documents.

– Term Searches: this is based on a few words or phrases provided by the

user.

133

– Probabilistic Queries: here the information retrieval system is based on a

computed probability to retrieve documents.

Other important issues to consider are the following. These were discussed in

section 6.5, describing enterprise search:

– User permissions and access control

– Term weighting for retrieval

– Graphical user interface

6.5.7 System administration

A complete retrieval system should include processes for maintenance, feedback

and control to detect atypical behaviour. This can be characterised as an adminis-

tration system that carries out tasks such as: log file analysis and usage tracking;

statistics reports; system monitoring; system diagnosis; system auditing and GUI

management.

Figure 6.5 shows the preprocessing, parsing and indexing steps described in

this section. Figure 6.6 presents the storing, querying and the system administra-

tion processes.

134

fetching/
crawling

HTML
plug-in

MS Office
plug-in

PDF
plug-in

raw
source

......
plug-in

tokenisation

stemming

stop-words

entity extraction

people's name
geographic location
organisations names
dates/time
monetary amounts/percentages

part-of-speech
tagging

inverted file list (IFL)

IFL compression

PREPROCESSING INDEXINGPARSING

world separation
check abbreviations
check word combination
check multi-words tokens
create new token list

provides information about the
semantic meaning of the text,
this process is computational
expensive, an alternative is to
use shallow PoS tagging

convert raw document into a
suitable structure to be
processed i.e. stream of text

file access rights

users' grants and
permission

email
plug-in

language
recognition

term weighting for
retrieval

Figure 6.5: Search engine processes (first part). Three main processes are described here: preprocessing, parsing and indexing.

135

index deletion

index merging

index updating

index
compression

query types

boolean
natural language
thesaurus queries
fuzzy
term search
probabilistic queries

data retrieval

refinement techniques
 suppression
 ordering
 pruning
 clustering

QUERYING SYSTEM ADMINSTORING

index storage

term weighting for
retrieval

GUI

categorisation and
ranking

this can include special built
indexes to query specif topics such
as: email; names; high frequency
used words, etc.

log files and usage
tracking

statistics

GUI manager

system monitor

system diagnosis

user permissions

system auditing

access control

Figure 6.6: Search engine processes (second part). Three processes are described here: storing, querying and system administration.

136

6.5.8 Evaluating enterprise search engines

Building a search solution from scratch is a hard process. Many times a desirable

solution is to adapt an already available product. Therefore if an in-house built

engine is not an option, the problem becomes how to evaluate and select one of

the currently offered technologies.

The following list includes the most relevant selection criteria when comparing

existing search technology. If an evaluation of different technologies is needed

these criteria can be used for such evaluation. This should be complemented with

a measurable scale to quantify each output.

• Ease of use

• Features

• Ability to integrate with other applications

• Cost

• Scalability

• Speed of search application

• Vendor reputation

• Ease of installation

• Upgradability

• Support

6.5.9 Enterprise search providers

In the enterprise search industry there are a great number of solutions based on in-

formation retrieval technology. Common characteristics are shared since they aim

to build search engines capable of extracting information from different sources

and make it readily available to users. They differ in the way the technology is

implemented and the methodologies used.

The following list includes a number of relevant commercial tools that have

been selected by their importance in the market place.

137

6.5.10 Commercial solutions

– Attivio, http://www.attivio.com

– Autonomy Corporation, http://www.autonomy.com (also see http://www.

ultraseek.com)

– Concept Searching Limited, http://www.conceptsearching.com

– Coveo, http://www.coveo.com

– Dieselpoint, Inc., http://www.dieselpoint.com

– dtSearch Corp., http://www.dtsearch.com

– Endeca Technologies Inc., http://www.endeca.com

– Exalead, http://www.endeca.com

– Expert System S.p.A., http://www.expertsystem.net

– Fast Search and Transfer, http://www.fastsearch.com

– Funnelback, http://funnelback.com

– ISYS Search Software, http://www.isys-search.com

– Northern Light, http://www.northernlight.com/engine.html

– Open Text Corporation, http://www.opentext.com

– Queplix Universal Search Appliance, http://www.queplix.com

– SLI_Systems, http://www.sli-systems.com

– TeraText, http://www.teratext.com

– Ultraseek, http://www.ultraseek.com

– Vivísimo, http://vivisimo.com

– X1 Technologies, Inc., http://www.x1.com

– ZyLAB Technologies, http://www.zylab.com

Companies that provide additional enterprise search technology

– IBM (OmniFind)

– Oracle (Oracle Secure Enterprise Search)

– SAP (Netweaver)

– Microsoft (Fast)

– Google Search Appliance, http://www.google.com/enterprise

An extensive list of currently offered solutions can be found in Appendix B.

138

http://www.attivio.com
http://www.autonomy.com
http://www.ultraseek.com
http://www.ultraseek.com
http://www.conceptsearching.com
http://www.coveo.com
http://www.dieselpoint.com
http://www.dtsearch.com
http://www.endeca.com
http://www.endeca.com
http://www.expertsystem.net
http://www.fastsearch.com
http://funnelback.com
http://www.isys-search.com
http://www.northernlight.com/engine.html
http://www.opentext.com
http://www.queplix.com
http://www.sli-systems.com
http://www.teratext.com
http://www.ultraseek.com
http://vivisimo.com
http://www.x1.com
http://www.zylab.com
http://www.google.com/enterprise

6.5.11 Open source solutions

The following list includes some of the most widely used open source search

engines. Most of them are mainly built to index Web pages with support for MS

Office, PDF, RTF and other well established document formats. These engines have

accumulated great experience in the information retrieval area. Therefore in case

of building an in-house solution they are the starting point regarding document

information extraction and index construction.

One of the main drawbacks of open source search engines (from the enterprise

point of view) is that they are built around the idea that document indexing is

open to everyone. This is not necessarily true in the enterprise search case; access

control and compliance are a must.

Particular attention should be given to the licencing of these technologies. Tak-

ing code and adapting it to the company’s needs saves a great deal of effort, but

some technologies will require release of the new code to the open source commu-

nity. In many cases, specially within the private sector, this is very problematic.

– GATE (http://www.gate.ac.uk): Java-based information extraction software

(see http://www.gate.ac.uk/sale/acl02/acl-main.pdf).

– Harvest (http://harvest.sourceforge.net): is a modular, distributed search

system framework with a modular architecture to make it a complete search

system.

– ht://Dig (http://www.htdig.org): is a long established WWW search en-

gine. With some work it can be modified and used as a search system. Main

issues to consider are security and compliance support for different users

within an organisation (this is true for most open source search engines).

– Lucene (http://lucene.apache.org): Apache Lucene has a long track record

in the open source search community. Lucene is a cross-platform software

built on Java but with ports to different languages such as C/C++, C#, .NET,

Python.

– Terrier (http://ir.dcs.gla.ac.uk/terrier): Terabyte Retriever is a robust

search engine, readily deployable on large-scale collections of documents.

Terrier implements state-of-the-art indexing and retrieval functionalities.

139

http://www.gate.ac.uk
http://www.gate.ac.uk/sale/acl02/acl-main.pdf
http://harvest.sourceforge.net
http://www.htdig.org
http://lucene.apache.org
http://ir.dcs.gla.ac.uk/terrier

– swish-e (http://www.swish-e.org): Simple Web Indexing System for Hu-

mans – Enhanced, it uses filters to convert files to XML and HTML for

indexing.

– Xapian (http://www.xapian.org): is a highly adaptable toolkit which allows

developers to easily add advanced indexing and search facilities to their own

applications. It supports the probabilistic information retrieval model and

also supports a rich set of boolean query operators.

– Zebra (http://indexdata.dk/zebra): very well supported search engine

that can index records in XML, SGML, MARC, e-mail archives and other

formats, it uses a combination of boolean searching and relevance ranking.

For more information refer to the above address or the following article

http://www.open-mag.com/features/Vol_78/zebra/zebra.htm

6.6 Summary

In this chapter we have seen that the search technology under any scenario of ap-

plication shares many common features, highlighting the particularities of enter-

prise search. These peculiarities are related to the specific needs in the enterprise

for search solutions that address concerns regarding security, compliance, support

and many others.

In particular here we are concerned with the main steps involved in an infor-

mation retrieval system, from the initial step of locating the data source to the final

query and answering processes. Of course there are many things not mentioned

here, such as parallel processing, query ranking, n-grams, etc.

Current enterprise search technology and its state of the art is examined in this

chapter, not only from the commercial viewpoint but also from the viewpoint of

the open source community.

140

http://www.swish-e.org
http://www.xapian.org
http://indexdata.dk/zebra
http://www.open-mag.com/features/Vol_78/zebra/zebra.htm

Chapter 7

Information Retrieval and the Baire
Distance

7.1 Introduction

IN chapter 6 we have seen the processes involved in building a search solu-

tions. Section 6.5 describes the characteristics of the enterprise search. We

saw that personalisation is one of a range of requirements. In order to apply the

fast Baire-based hierarchical clustering approach, with a personalisation focus, we

have selected a test domain that will allow us to carefully validate and evaluate

our approach.

In this chapter we go further to show how this can be implemented in two par-

ticular contexts. We will approach personalisation in a simple and straightforward

way, that points us towards the context of document retrieval. Then in section 7.3,

we will move further in the direction of personalisation, working in the context

of the cultural heritage domain. This will be useful to us in order to validate the

fast Baire distance-based hierarchical approach to structuring data and support

retrieval and other operations.

It will also form a bridge to the use of context in the final application to be

discussed in this chapter, relating to directory search. All cases discussed in this

chapter incorporate context in one way or another. These cases that we deal with

were selected in order to address, from the general perspective to an increasingly

specific perspective, the needs of enterprise search.

141

7.2 Document clustering

When searching large numbers of documents it sometimes makes sense to present

these documents in the form of clusters ordered by topic, content, or some other

criterion. We may find that the concept of a cluster can be a subjective one. For

example, Figure 7.1 shows points in a 2D plane. We can ask ourselves, how many

clusters are there? six? two? four? Therefore when applying a clustering tech-

nique the method or algorithm used and initialisation parameters will affect the

output.

How many clusters?

Two clusters

Six clusters

Four clusters

Figure 7.1: How many clusters? Determining the numbers of clusters can be a difficult question
and many times it will be determined by the algorithm’s initialisation parameters [164].

From a machine learning point of view clustering is called unsupervised learn-

ing. Here we do not have any training data to create a classifier that has learnt to

assign a document to a set. In other words, we do not have labels assigned to the

documents. In this case no previous knowledge of the number of groups, group

size, and the type of document is used

For a large collection of documents a clustering algorithm may create too many

clusters in an initial pass. To avoid this problem controlling parameters such as

the following can be specified [99]:

142

– minimum and maximum cluster size

– a matching threshold value for including documents in a cluster

– overlap degree between clusters

– a maximum number of clusters

7.3 Clustering and semantics preservation

In the digital cultural heritage domain, objects (indistinctly, items or artifacts) be-

long to different contexts (e.g. historical, social, geographical, etc.). Thus, the

ultimate purpose of the digital platforms is to help users to discover these con-

texts, and learn about cultural heritage, through the accessibility and exploration

of artifacts, independently from the place, technology or format. In this direction,

ontologies have proven to be an extraordinary tool aiding to index and retrieve

items recorded in large databases. Nevertheless, it is not unusual that diver-

sity of cultural objects induce potentially big ontologies and/or vocabularies in

some domains. One single object may be ontologically described, searched and

retrieved by a very small subset of concepts, as compared to the vocabulary’s

size. In such cases, searching for similar items would suppose processing of huge

sparse (object× concept) data structures.

Classical techniques to cluster objects by similarity on these data spaces are

not suitable because of their limited effectiveness in handling the available infor-

mation well [181, 182]. On the contrary, dimensional reduction methods present

special opportunities when faced with these structures. In particular, random pro-

jection has been shown to hugely improve the computation performance when

very large sparse databases are processed [63, 104] while simultaneously preserv-

ing characteristics of the original data space. See chapter 2 where we discussed

random projection. However, specific complementary methods must be used for

clustering purposes, which in turn helps to carry out dataset matching, and to

support fast proximity searching.

Massive and high dimensional data spaces often have hidden hierarchical reg-

ularity. Following the work in [130], see also chapter 4, we seek ultrametricity

143

in a cultural data set, but also the semantic preservation inside clusters when

allowed. An ultrametric is a distance that is defined strictly on a tree. An ultra-

metric induces a hierarchical structure on data. In previous chapters, chapter 3

and chapter 4, we have compared the Baire ultrametric and the k-means algorithm

as downstream clustering methods to random projection, finding that the former

is faster when grouping objects in the context of chemical structures [130] and

astronomy redshifts [31]. Nevertheless, very little is known about the quality of

clustering in the context of digital cultural heritage, where semantic preservation

inside clusters is relevant.

By semantic preservation we mean the original conceptual similarity between

two objects in a cluster. Regarding comparison of clustering methods, this is usu-

ally focused on evaluation of validity of clusters and algorithmic efficiency. Several

validity criteria have been developed in the literature which may be classified as

external, internal or relative criteria [69]. In the external approach, groups assem-

bled by a clustering algorithm are compared to a previously accepted partition on

the testing data set. In an internal approach, clustering validity is evaluated using

data and features contained in the dataset. The relative approach searches for the

best clustering result from an algorithm and compares it with a series of prede-

fined clustering schemes. In all cases, validity indexes are constructed to evaluate

proximity among objects in a cluster or proximity among resulting clusters.

In our case, prior to clustering, a dimensional reduction is applied. Thus,

an interesting question for us is the preservation of original semantic similarity

among objects when the dimensional reduction is practiced on the dataset, and

a further clustering process is performed on reduced data. In this work, an ex-

periment is designed to test Baire and k-means when prior random projection is

applied. A data matrix extracted from an ancient folk-music archive containing

information about 5000 titles and 9000 inherent characteristics was prepared for

the experiment. Because random projection reduces the data matrix into a vector

with components in the interval [0, 1[, as shown in earlier chapters (see chapter 4)

different precision levels for clustering purposes are tested.

Next, for each cluster produced by the Baire or k-means, semantic similarity

144

of individuals is calculated using the Jaccard index. However, since usually this

index measures similarity between two sets (vectors), without consideration of

semantic inclusion, we use a modified version. The mean (across different runs

of the clustering algorithm) similarity of clusters is calculated in order to compare

the clustering methods. Our findings show that semantics are difficult to preserve

by these methods, but notwithstanding this, that the Baire approach can be good

because it highlights local semantic preservation.

In section 7.3.1 the experiment process is presented and transformations ap-

plied on datasets are justified. Then section 7.3.4 presents the experiment applied

on the cultural dataset and results obtained from the clustering algorithms.

7.3.1 Experiment design

The experiment process used in this work is depicted in Figure 7.2. First, the raw

data to be used as input is selected. Usually, data consists of a data matrix where

rows represent items in some specific domain, and columns represent character-

istics or features associated with these items. In general, we may assume that the

dataset is in first normal form in the database sense [43], that is, each cell in the

matrix contains just one value. A number of items, and their characteristics, are

selected for the next phase.

Data source
selection

Data
comprehension

Random
projection

Clustering
process

Similarity
coefficient
estimation

Figure 7.2: Experiment process design, where five steps are described.

In the data comprehension step, data completeness, ambiguity and semantic

quality of data are evaluated. A pre-process activity is undertaken for analysis

purposes. In our case, the main process consists of the identification of semantic

data associated with items. Items are annotated following the semantic character-

istics, which implies coding the presence or absence of a characteristic for every

item in the data structure. The final result in this step is a {0, 1} matrix where

145

m items are represented by n attributes. The third step consists of the random

projection of the dataset. In this case, a (n× 1) normalised random vector is used

for projection.

A projected dataset is used for clustering purposes in the fourth step. Two

clustering algorithms are applied, obtaining a given number of clusters in each

case. In the fifth step, intrinsic semantics of clusters, issued from each algorithm,

are calculated using a modified Jaccard index. Finally, a hypothesis test is ap-

plied to know how significant the difference between the mean similarity of two

clustering algorithms is.

7.3.2 On clustering experiments for semantic preservation

In this work, data issued from a digital cultural heritage platform, called Con-

texta [13], was used to carry out the classification. Contexta aims to integrate and

contextualise dispersed, autonomous and heterogeneous cultural information. To

achieve this, it uses a middle-ware to integrate distributed data sources with dif-

ferent policies of use, providing uniform access despite multiple data types and

formats. Additionally it allows semantic handling of these data and contextuali-

sation based on user and item profiles (e.g. cultural artifact).

One of the main purposes of Contexta when helping users to find cultural

items is situation awareness. Indeed, in the cultural heritage domain, people us-

ing this kind of system are not necessarily interested in single artifacts or lists

of ranked items. User needs are inclined to general objectives, searching for el-

ements aiding to compare, interpret, aggregate, analyse, synthesise and discover

knowledge [111]. Users receiving recommendations also request explanations in

order to support sense-making processes and learning in a contextualised man-

ner. In this setting, this study aims to determine preservation of semantics among

items in clusters generated by a specific algorithm, when dimensional reduction

is applied.

Let S be the sample data and si ∈ S, (i = 1, . . . , n), an item in this set. Origi-

nally 21 fields are available as item descriptors, but seven characteristics are kept:

146

uri-identifier, author, content description, title, associated collection, and source. Other

attributes are discarded because of redundancy, incompleteness or being uninfor-

mative. For semantic purposes a term-based dictionary is created based on the

content description attribute, allowing an extended search for items. Keywords are

produced using the Apache Lucene [109] library, filtering out words (longer than

two characters) contained in a stop-list file. Processing the data source we obtain

a term-based dictionary with 8674 keywords. The final set of attributes (8680) are

considered semantic features. Finally, a matrix is created where the (i, j) element

represents the absence or presence (0 or 1) of the jth feature in the ith object. The

result is a binary information matrix I prepared to carry out the experiments.

7.3.3 Clustering process

Normalisation by column sum is performed in this dataset and the outcome is pre-

pared for the clustering process. In order to assemble clusters from data, random

projection is performed first on I. We know that clustering results with the Baire

ultrametric are sensitive to the precision level of the projected dataset (see chap-

ters 3 and 4), so seven levels of digit precision are selected for our experiments:

two, three, four, five, six, eight and twelve digits of precision. For each precision

level, ten random projection vectors are generated, which implies seventy projec-

tion outcomes in total. Interestingly, given a precision level, we have found that

the resulting projections are practically the same in all cases.

Starting with the Baire methodology, we defined a tree-like structure to store

the data’s object identifier. Each node has ten children and each value in the

projected vector is separated by digits of precision and associated with the tree.

The maximum tree depth is given by the digit precision used. For instance, when

using four digits of precision we have 104 possible branches, and a tree height of

four. Once all the data in the projected vector is processed we check each leaf in

the tree to identify the clusters. Note that only leaves with more than one element

are considered. Thus, for pairwise comparison inside clusters, the 1-item leaves

are excluded from the analysis.

147

Regarding k-means, each experiment uses the number of clusters generated by

the Baire method as initialisation parameter. For example, when comparing the

Baire clusters produced by four digits of precision, we use the number of clusters

with more than two elements as k for k-means (i.e. we exclude the empty and

1-item groups).

Once the clustering process is applied, we evaluate the pairwise semantic sim-

ilarity within clusters. At this point, similarity between two items may be assessed

by the Jaccard index, measuring the number of common items’ features, divided

by the total number of features present in the respective vectors in I. Given two

vector rows x, y ∈ I (representing the respective items in S), let F(.) be the set

of features satisfied by an object in the data description matrix I, i.e. where the

matrix value is 1. Then, the Jaccard coefficient of objects x and y in set notation is

expressed as:

J(x, y) =
|F(x) ∩ F(y)|
|F(x) ∪ F(y)| (7.1)

Notice however that this coefficient strongly penalises an item x such that F(x) ⊂
F(y) and |F(x)| � |F(y)|.

We propose that two items are semantically identical when the inclusion occurs

because they become instances of the same class and/or subclass in an ontological

system [150]. In this case, the object y may be considered a specialisation of x. In

consequence, a modified Jaccard coefficient is introduced here, which measures

the semantic similarity between two objects, and takes into account the inclusion:

Jmodi f .sim.(x, y) =
|F(x) ∩ F(y)|

min {|F(x)| , |F(y)|} (7.2)

Note that this similarity is also bounded by 0 and 1.

148

7.3.4 Results

The process was performed ten times for each precision level and clustering algo-

rithm. On each run, the following measures were calculated over the number of

clusters available for analysis:

1. R : average mean similarity among items within clusters;

2. R∗: average maximum similarity among items within clusters;

3. R∗: average minimum similarity among items within clusters.

Given one execution (with a specific random projection vector at a determined

precision level), the pairwise similarity among all items inside a cluster is averaged

to obtain the mean similarity. Then R is the average of values calculated on clusters

generated in such an execution. Equally, R∗ and R∗ are calculated as the average

of maximum and minimum cluster similarity, respectively, among all clusters in a

run.

Table 7.1 shows the different average values for every precision level. Also the

number of clusters with more than one single element are presented for Baire and

k-means, where semantic similarity makes sense.

149

2 Digit 3 Digit 4 Digit 5 Digits 6 Digits 8 Digits 12 Digits
k-means Baire k-means Baire k-means Baire k-means Baire k-means Baire k-means Baire k-means Baire

R 0.0924 0.0924 0.1105 0.1071 0.1475 0.2302 0.1215 0.3954 0.1197 0.4349 0.1208 0.4398 0.1191 0.4398
R∗ 0.6584 0.6584 0.4340 0.3596 0.4074 0.3567 0.4350 0.4806 0.4459 0.5131 0.4487 0.5179 0.4454 0.5178
R∗ 0.0027 0.0027 0.0194 0.0311 0.0456 0.1580 0.0248 0.3363 0.0207 0.3792 0.0204 0.3841 0.0216 0.3841
No clusters 99 100 561 740 868 896 602 638 566 594 576 586 558 586
1-item clusters 1 1 60 173 118 1950 30 2923 25 3062 24 3079 23 3079

Table 7.1: Average semantic similarity for 2, 3, 4, 5, 6, 8 and 12 decimal digits of precision. Where: R, average mean similarity among items
within clusters. R∗, average maximum similarity among items within clusters. R∗, average minimum similarity among items within clusters.

2 Digit 3 Digit 4 Digit 5 Digits 6 Digits 8 Digits 12 Digits
k-means Baire k-means Baire k-means Baire k-means Baire k-means Baire k-means Baire k-means Baire

R 0.0037 0.0061 0.0041 0.3463 0.0033 0.0052 0.0029 0.0043 0.0032 0.0016 0.0038 0.0001 0.0037 0.0001
R∗ 0.0190 0.0782 0.0098 0.3464 0.0049 0.0037 0.0077 0.0056 0.0088 0.0017 0.0587 0.0000 0.0102 0.0001
R∗ 0.0025 0 0.0043 0.3463 0.0035 0.0072 0.0025 0.0042 0.0039 0.0018 0.0032 0.0001 0.0031 0.0001
No clusters 1 0 12 11 8 9 5 11 4 2 4 1 7 1
1-item clusters 1 0 12 8 8 29 5 16 4 5 4 0 7 1

Table 7.2: Metrics standard deviation. Where: R, average mean similarity among items within clusters. R∗, average maximum similarity
among items within clusters. R∗, average minimum similarity among items within clusters.

150

Figure 7.3: Top panel: Jaccard values. Where: R, average mean similarity among items within
clusters. R∗, is average maximum similarity among items within clusters. R∗, is average minimum
similarity among items within clusters. Bottom panel: Number of clusters for k-means algorithm
(bottom left panel) and Baire method (bottom right).

151

In order to know whether differences on results obtained for Baire and k-means

have a large variation we calculated the standard deviation for each precision level

and R, R∗, and R∗. This is explained in Table 7.2, where we note that the standard

deviation does not reach 1% of the respective average similarity.

The following results may be observed from Table 7.1 when the precision level

increases:

– for the Baire algorithm, R and R∗ increase;

– for the k-means algorithm, R and R∗ remain almost unchanged;

– Baire is persistently better than k-means in R and R∗;

– the R value is not high for k-means, indicating that semantic similarity is not

consistently preserved, but it improves with higher precision in the Baire

case.

Additionally these results can be observed graphically in Figure 7.3 where k-

means and Baire semantic preservation are presented (top panel). Also in the

bottom panel the number of clusters as a function of the digit precision for k-

means and the Baire distance are shown.

Despite the fact that semantic similarity is difficult to preserve, we observe that

the longer a common prefix within a resulting cluster, the better the semantics of

the original data space are preserved. Thus, objects that are semantically closer in

the original data matrix I, hashing closer in the 1-dimensional random projected

vector, therefore more common prefixes exist among these groups. One could also

hypothesise that a heterogeneous original data matrix, in the sense that there is a

low semantic similarity among objects, could induce more orphan objects (1-item

clusters) in the Baire clustering method. On the other hand, it could be expected

that homogeneity implies less orphan elements, but a reasonably good semantic

similarity level on the resulting clusters. In fact, the Baire method provides an

effective process to detect semantic homogeneity in a matrix. Our experiment

indicates that the ratio of the number of orphan objects to the total number of

objects, at a high-level precision, could measure how semantically near are rows

in I. These considerations will be studied in our future research.

152

Having looked at new cluster characterisation approaches in domains where

we require the preservation of context and of what we can characterise as seman-

tics, we now return to an application to enterprise search.

7.4 On experiments and demonstrator: searching e-mails

In chapter 6 enterprise search has been introduced. In this section we investigate

how some of the processes explained there can be implemented. In particular we

are interested in e-mail search within the enterprise setting.

The first step before building a prototype was to find a suitable dataset to

work with. Unfortunately companies have to be very protective of their data,

and thus access to a good dataset was the first problem that we were confronted

with. Although there is a good number of research groups dedicated to building

data repositories, not any arbitrary data repository is of use to us. A repository

containing DNA sequences, economical or astronomical data (to name a few) is of

very little use when building a vocabulary-based indexing system (yet a number

of similarities can be found regarding methodology).

For this particular application a well suited dataset should contain documents

in different formats (e.g. MS Word, PDF, and text) and multi-purpose built doc-

uments (e.g. email, manuals, articles). Therefore, a good dataset is one that can

emulate the kind of document that companies use in a day-to-day business.

Table 7.3 shows the W3C TREC Enterprise Track [162] corpus. This is from

a crawl of public W3C information that comprises 331,037 documents, mainly e-

mails. Thus, in order to focus our efforts the e-mail subset was taken from the

W3C Enterprise TREC, and a parser was built to extract relevant information that

later was automatically inserted into a database.

153

Type Scope Size (GB) Documents Avg. docsize (kb)
E-mail lists 1.855 198,394 9.8
Code dev 2.578 62,509 43.2
Web www 1.043 45,975 23.8
Wiki web esw 0.181 19,605 9.7
Misc other 0.074 3,538 14.1
Web people 0.003 1,016 3.6

all 5.7 331,037 18.1

Table 7.3: W3C TREC Enterprise Corpus data source description. Here we are interested in the
e-mail set.

Following the design previously shown in chapter 6 the prototype main com-

ponents include the following:

– Parser design and construction: this is currently based on a set of C++ pro-

grams that extract tokens from text files, also it is able to filter stop words

and dump the result to a file.

– Metadata structure and fields: this was implemented through a database

model able to store e-mails and free text.

– Metadata storage system: MySQL was used to implement the current demon-

strator. Also tests with Berkeley Database (BDB) [138] were carried out. An

inverted list stores relevant tokens with references to documents.

– Metadata search and matching: a number of Java programs were created to

be used as interface between the database and the GUI.

– Web user interface: Java and Tomcat were used to create a GUI Servlet as

interface to the database.

Figure 7.4 shows a demonstrator screen-shot using Apache Tomcat [166] as

Servlet container in order to produce the GUI. Since we were working with e-mail

data the following tailored functions were implemented. This demonstrator can

be accessed at [32].

– file:keyword retrieves e-mails by file name

– from:name retrieves e-mails by sender

– to:email to retrieves e-mails by recipient

– cc:email cc retrieves e-mails by cc recipient

154

– subject:subject retrieves e-mails by subject

– keyword: retrieves keywords within the e-mail body

Figure 7.4: E-mail enterprise TREC search application.

In this demonstrator MySQL [133] is used for storing, exact match and re-

trieval. This also can be seen as common prefix exact matching.

7.5 Summary

We have analysed semantic similarity among objects when dimensional reduction

is applied on a dataset and a further clustering process is performed on dimen-

sionally reduced data.

An experiment was designed to test Baire, or longest common prefix ultra-

metric, and k-means when prior random projection is applied. A data matrix

extracted from an ancient folk-music archive was prepared for the experiment.

Different precision levels for clustering purposes were tested and semantic sim-

ilarity among grouped elements was calculated using a modified version of the

155

Jaccard index. Our findings show that semantics are difficult to preserve by these

methods, because the calculated similarity coefficient achieves moderate values

only. On the one hand we can say that the Baire method in this case works as

a filtering method for vectors that are semantically similar. On the other hand,

once the number of centroids is chosen, k-means works by pulling the data points

towards the centroids without considering if these points are justifiably close in

the original data space.

It was observed that both methods produce an important number of 1-item

groups. Nevertheless, our results show that taking advantage of inherent data ul-

trametricity is a possible strategy for detecting semantic homogeneity in the orig-

inal dataset. Therefore, our future research will consider alternative data sources,

always in the area of semantic analysis, to further exploit this.

Furthermore, an e-mail demonstrator was implemented as proof of concept for

an enterprise application, where exact matching was performed. This shows that

the longest common prefix can play a very central role in this important field.

156

Chapter 8

Conclusions

IN this thesis we are particularly concerned with exploratory data analysis.

We introduce a novel (ultra)metric distance for clustering. We validate this

method by comparing it with long established cluster algorithms such as k-means.

Moreover, we use real life examples and applications to different science areas as

well as information retrieval to exemplify its use.

The proposed method presents a number of advantages when compared with

more traditional techniques. When working with numeric data, distances can

be interpreted directly and classification carried out. Furthermore, the resulting

distances can be fitted strictly to a hierarchical tree. This is very important for

classification, storing and fast search.

The datasets used for experiment were the following:

• Astronomy: 443,014 objects in 2 dimensions.

• Chemoinformatics: 1.2 million compounds in 1,052 dimensions.

• Bioinformatics: 4,889 proteins from which 2,542 are hypothetical, where the

minimal protein length is of 33 amino acids and the longest 8,161 amino

acids, based on an alphabet of 20 letters.

• Digital heritage: 5,000 music titles in 8,674 dimensions.

• Enterprise search: 198,394 e-mail documents.

157

A list of the different software systems used through this work includes the

following:

• Programming languages: Java and C/C++.

• Statistical analysis: R and IDL.

• Ploting: GNUPLOT and R.

• Web and search technologies: Apache Web Server, Apache Tomcat and Apache

Lucene

• Databases: MySQL and Berkeley Database (BDB).

• Other: CLUSTAL, for multiple protein alignment.

Visualisation has also played an important role within this work. This is par-

ticularly relevant in the area of exploratory data analysis. Many times patterns are

better understood when plotted and trends can be much easier to identify. Thus

a great deal of effort was made to present visual data in such a way that can be

simple to understand.

8.1 Final remarks and possible extensions

The work presented in this thesis can be carried forward in many directions. The

first logical extension is to continue the application of the Baire distance to more

data sources, with particular focus on high dimensional spaces. There are many

things to discover about the topology and properties of high dimensional spaces,

where we expect that ultrametric topology will play an important role.

Other research topics include the following:

Baire with sliding window: on decimal base numerical data the Baire

clusters are created, and hence the data is partitioned at the finest pre-

cision level, from one number to the next. When obtaining the longest

common prefix, a sliding window can be introduced in order to make

flexible this data partitioning criterion. For example, in the case of the

following two numbers, 0.121 and 0.122, we have that the longest com-

mon prefix is K = 2, i.e. based on decimal position two. A new criterion

158

8.1 Final remarks and possible extensions 159

could be that after finding the longest common prefix, we look for the

next decimal digit and if this is close enough it can be used to consider

the two associated numbers to be part of the same cluster. Following

on from our example, we can look at K = 3 and if the numbers are

close enough we take them as being in the same group. In this case (i.e.

for the two numbers 0.121 and 0.122) 1 is close to 2, so with the new

definition we can say now that k = 3 is the distance between these two

numbers. Such a criterion for cluster formation can be used to allow

overlapping clusters.

Self indexing ultrametric for retrieval: the longest common prefix has

many applications in string matching. Some of most used data struc-

tures for string indexing are suffix trees, which are based on the longest

common prefix. Also this topic is very closely related to certain com-

pression algorithms. It would be very interesting to explore if an ultra-

metric embedding could help in improving the use and performance of

these data structures.

Appendix A

Baire Algorithm Implementation in
Java

In this appendix we present three Java methods that implement useful algorithms.

Thus, how to calculate the longest common prefix is shown in A.1. How to obtain

the Baire node index from a string is presented in A.2. Finally, how to calculate

the Baire distance from given string a and integer n is listed in A.3.

In A.1 two real numbers are read as strings and compared character by char-

acter. This is in order to determine how many common prefixes these two strings

have. In this particular case the “.” and “–” characters are not considered. There-

fore they are ignored in the total sum of characters if they appear.

Note that this implementation deals with decimal numbers and scientific no-

tation. For this reason there is a parsing step before obtaining the final string to

analyse (see lines 4 and 5).

160

161

1
2 public i n t commonPrefix (S t r i n g a , S t r i n g b) {
3
4 S t r i n g x = new BigDecimal (Double . t o S t r i n g (Double . parseDouble (a))) .

t o P l a i n S t r i n g () ;
5 S t r i n g y = new BigDecimal (Double . t o S t r i n g (Double . parseDouble (b))) .

t o P l a i n S t r i n g () ;
6
7 i n t commonPrefix = 0 ;
8
9 / / r e t r i e v e t h e l e n g t h o f t h e s h o r t e s t o f two s t r i n g

10 i n t length = Math . min (x . length () , y . length ()) ;
11
12 for (i n t i = 0 ; i < length ; i ++) {
13 i f ((x . charAt (i) == y . charAt (i))) {
14 commonPrefix ++;
15 i f ((x . charAt (i) == ’ . ’) || (y . charAt (i) == ’− ’)) {
16 commonPrefix = (commonPrefix − 1) ;
17 }
18 } e lse {
19 break ;
20 }
21 }
22 return commonPrefix ;
23 }

Listing A.1: Baire distance or longest common prefix of two strings.

162 Baire Algorithm Implementation in Java

In A.2 we retrieve the digit index based on the Baire distance. For example, if

we have a dB = 3 for the string “0.015746”, we retrieve 001. This is very useful in

case we decide to store the data points in a tree, because the digit index will be

the leaf of a tree to which a data point belongs.

1
2 public S t r i n g c l u s t e r I n d e x (S t r i n g a , i n t d i s t a n c e) {
3 S t r i n g x = new BigDecimal (Double . t o S t r i n g (Double . parseDouble (a))) .

t o P l a i n S t r i n g () ;
4 S t r i n g y = ’ ’ ;
5
6 for (i n t i = 0 ; i < x . length () ; i ++) {
7
8 i f ((x . charAt (i) == ’ . ’) || (x . charAt (i) == ’− ’)) {
9 } e lse {

10 y = y . concat (Character . t o S t r i n g (x . charAt (i))) ;
11 }
12 }
13 S t r i n g c l u s t e r I n d e x = y . subs t r ing (0 , d i s t a n c e) ;
14 return c l u s t e r I n d e x ;
15 }

Listing A.2: Baire index of a string.

In A.3 the Baire distance is calculated for a given n. Recall the non-trivial part

of the Baire distance formula:

dB(xK, yK) = in f 2−n xn = yn 1 ≤ n ≤ |K|

1
2 public double d i s t a n c e (i n t n) {
3 double b a i re D i s t a nc e = 0 ;
4 b a i r e D is t a n c e = Math . pow(2 , −n) ;
5
6 return b a i re D i s t a nc e ;
7 }

Listing A.3: Calculates the Baire distance from an integer provided by the longest common prefix.

Appendix B

Enterprise Search Providers

This is a extensive list of companies providing enterprise search technology in

2009. As noted in chapter 6, enterprise search has a number of characteristics

that make it different from traditional search engines. For example, special con-

sideration is needed to support effectively and efficiently permissions and file

authorisations.

Abrevity: http://www.abrevity.com
Access Innovations: http://www.accessinn.com
AltaVista: http://www.altavista.com see also: Fast
ATG: http://www.atg.com/en/products/commerce_search.jhtml
Attensity: http://www.attensity.com
Attivio: http://www.attivio.com
Autonomy: http://www.autonomy.com/content/home/index.en.html
BA-Insight: http://www.ba-insight.net/products.html
Basis Technology: http://www.basistech.com
Baynote: http://www.baynote.com
Blossom Software: http://www.blossom.com/index.html
Brainware: http://www.brainware.com
BRS/Search: see: OpenText
Business Objects: http://www.businessobjects.com/product/information_discovery,
see also: SAP
Clarabridge: http://www.clarabridge.com
Clusty: see: Vivisimo
COGITO: see: Expert System
Collanos: http://www.collanos.com
Collarity: http://www.collarity.com
Concept Searching: http://www.conceptsearching.com/web
Connotate: http://www.connotate.com
Convera: http://www.convera.com
Coveo: http://www.coveo.com/en/default.aspx
Cuadra Associates: http://www.cuadra.com
Data Harmony: see: Access Innovations

163

http://www.abrevity.com
http://www.accessinn.com
http://www.altavista.com
http://www.atg.com/en/products/commerce_search.jhtml
http://www.attensity.com
http://www.attivio.com
http://www.autonomy.com/content/home/index.en.html
http://www.ba-insight.net/products.html
http://www.basistech.com
http://www.baynote.com
http://www.blossom.com/index.html
http://www.brainware.com
http://www.businessobjects.com/product/information_discovery
http://www.clarabridge.com
http://www.collanos.com
http://www.collarity.com
http://www.conceptsearching.com/web
http://www.connotate.com
http://www.convera.com
http://www.coveo.com/en/default.aspx
http://www.cuadra.com

164 Enterprise Search Providers

Deki Wiki: see: MindTouch
Dieselpoint: http://www.dieselpoint.com/featurematrix.html
Documentum : see: EMC
dtSearch: http://www.dtsearch.com
EasyAsk: see: Progress Software
EMC: http://www.emc.com/products/detail/software/eci-services.htm
Endeca: http://endeca.com
Engenium: see: Kroll Ontrack
Exalead: http://corporate.exalead.com/enterprise/l=en
Excalibur: see: Convera
Expert System: http://www.expertsystem.net/?lang=1
Eyealike: http://www.eyealike.com/index.php
Fast ESP: see: Fast Search Transfer
Fast Search Transfer: http://www.fastsearch.com
Funnelback: http://funnelback.com
Google: http://www.google.com/enterprise/intranet_search.html
Grokker: http://www.grokker.com
Hummingbird Search Server: see: OpenText
IBM: http://www-306.ibm.com/software/data/enterprise-search
IDOL: see: Autonomy
Image-seeker: see: LTU Technologies
Index Engines: http://www.indexengines.com
Information Builders: http://www.informationbuilders.com/products/webfocus/
index.html
Inmagic: http://www.inmagic.com/index.html
InQuira: http://www.inquira.com
Instranet: http://www.instranet.com/index.asp
IntelliSearch: http://www.intellisearch.no/Solutions
InXight: see: Business Objects
iPhrase: see: IBM
ISYS: http://www.isys-search.com
IXIASOFT: http://www.ixiasoft.com
K2 Enterprise: see: Autonomy
Kaidara: http://www.kaidara.com
Knova: http://www.knova.com
Kroll Ontrack: http://www.engeniumsearch.com
Legato: see: EMC
Lexalytics: http://www.lexalytics.com/index.php
Liberty IMS: http://www.libertyims.com/index.html
LiveLink: see: OpenText
Longitude: see: BA-Insight
LTU Technologies: http://www.ltutech.com/en
Lucene: http://lucene.apache.org/java/docs
Luxid: see: Temis
MarkLogic: http://www.marklogic.com
Mercado: http://www.mercado.com
Microsoft: http://www.microsoft.com/enterprisesearch

http://www.dieselpoint.com/featurematrix.html
http://www.dtsearch.com
http://www.emc.com/products/detail/software/eci-services.htm
http://endeca.com
http://corporate.exalead.com/enterprise/l=en
http://www.expertsystem.net/?lang=1
http://www.eyealike.com/index.php
http://www.fastsearch.com
http://funnelback.com
http://www.google.com/enterprise/intranet_search.html
http://www.grokker.com
http://www-306.ibm.com/software/data/enterprise-search
http://www.indexengines.com
http://www.informationbuilders.com/products/webfocus/index.html
http://www.informationbuilders.com/products/webfocus/index.html
http://www.inmagic.com/index.html
http://www.inquira.com
http://www.instranet.com/index.asp
http://www.intellisearch.no/Solutions
http://www.isys-search.com
http://www.ixiasoft.com
http://www.kaidara.com
http://www.knova.com
http://www.engeniumsearch.com
http://www.lexalytics.com/index.php
http://www.libertyims.com/index.html
http://www.ltutech.com/en
http://lucene.apache.org/java/docs
http://www.marklogic.com
http://www.mercado.com
http://www.microsoft.com/enterprisesearch

165

MindServer: see: Recommind
MindTouch: http://wiki.mindtouch.com
MondoSoft: see: SurfRay
MultiTes: http://www.multites.com
MuseGlobal: http://www.museglobal.com
Nervana: http://www.nervana.com
NetWeaver: see: SAP
NorthernLight: http://www.northernlight.com
nStein: http://www.nstein.com
Olive Software: http://www.olivesoftware.com
OmniFind: see: IBM
Ontolica: see: SurfRay
Ontrack Engenium : see: Kroll Ontrack
OpenText: http://www.opentext.com
Oracle: http://www.oracle.com/database/secure-enterprise-search.html
Paglo: http://paglo.com
PicoSearch: http://www.picosearch.com
Polyspot: http://www.polyspot.com/Home.aspx
Powerset: http://www.powerset.com/about
Presto: see: Inmagic
Progress: Software http://www.progress.com/index.ssp
QL2: http://www.ql2.com
Recommind: http://www.recommind.com
Rosette Linguistics Platform: see: Basis Technology
SAIC: http://www.saic.com/products/software/teratext/products
SAP: http://www.sap.com/usa/solutions/informationworkers/enterprisesearch/
index.epx
SAS: http://www.sas.com/technologies/analytics/datamining
Schemalogic: http://www.schemalogic.com
Seaglex: http://www.seaglex.com
SearchBlox: http://www.searchblox.com
Semantra: http://www.semantra.com
Siderean: http://www.siderean.com
Silobreaker: http://www.silobreaker.com
Sinequa: http://www.sinequa.com/index.html
SLI Systems: http://www.sli-systems.com
STAR: see: Cuadra Associates
SurfRay: http://www.surfray.com
tazti: see: VoiceTech Group
Techrigy: http://www.techrigy.com
Temis: http://www.temis.com
Terabase: http://www.terabase.com
Teragram: see: SAS
TeraText: see: SAIC
Texis: see: Thunderstone
TEXTML: see: IXIASOFT
TextWorks: see: Inmagic

http://wiki.mindtouch.com
http://www.multites.com
http://www.museglobal.com
http://www.nervana.com
http://www.northernlight.com
http://www.nstein.com
http://www.olivesoftware.com
http://www.opentext.com
http://www.oracle.com/database/secure-enterprise-search.html
http://paglo.com
http://www.picosearch.com
http://www.polyspot.com/Home.aspx
http://www.powerset.com/about
http://www.progress.com/index.ssp
http://www.ql2.com
http://www.recommind.com
http://www.saic.com/products/software/teratext/products
http://www.sap.com/usa/solutions/informationworkers/enterprisesearch/index.epx
http://www.sap.com/usa/solutions/informationworkers/enterprisesearch/index.epx
http://www.sas.com/technologies/analytics/datamining
http://www.schemalogic.com
http://www.seaglex.com
http://www.searchblox.com
http://www.semantra.com
http://www.siderean.com
http://www.silobreaker.com
http://www.sinequa.com/index.html
http://www.sli-systems.com
http://www.surfray.com
http://www.techrigy.com
http://www.temis.com
http://www.terabase.com

166 Enterprise Search Providers

Thunderstone: http://www.thunderstone.com/texis/site/pages
TREX: see: SAP
Ultraseek: see: Autonomy
Velocity: see: Vivisimo
Verity: see: Autonomy
Vivisimo: http://vivisimo.com
VoiceTech: Group http://www.voicetechgroup.com
Vorsite: http://www.vorsite.com/Default.aspx
WAND: http://www.wand.com/core/AboutUs.aspx
WebFOCUS: see: Information Builders
WebSphere: see: IBM
Wikia: http://search.wikia.com/wiki/Search_Wikia
WordMap: http://www.wordmap.com
X1: http://www.wordmap.com
Xerox: PARC see: Powerset
ZyLAB: http://www.zylab.com

http://www.thunderstone.com/texis/site/pages
http://vivisimo.com
http://www.voicetechgroup.com
http://www.vorsite.com/Default.aspx
http://www.wand.com/core/AboutUs.aspx
http://search.wikia.com/wiki/Search_Wikia
http://www.wordmap.com
http://www.wordmap.com
http://www.zylab.com

Appendix C

Additional Resources Available
from This Thesis

A web area has been set up at the following address: http://thames.cs.rhul.

ac.uk/~pedro/dissertation.html. Many resources related to this dissertation

are present there, including the following.

Source codes in C/C++, Java and R scripts, including the following:

• C code for parsing and removing stop-list words, from the W3C TREC En-

terprise Corpus.

• Java code to export e-mail data to MySQL database.

• Java code for working with the Baire ultrametric.

• R code for analysing data and plotting.

• GnuPlot code for plotting.

Animated 3D plots, including the following:

• R 3D animated plot.

• GnuPlot 3D animated plot.

Data sets:

• SDSS FITS format data set.

• SDSS preprocessed data set.

• SDSS digit distribution data.

• Contexta semantically arranged data set.

• Contexta semantically arranged random projected data.

• Contexta digit distribution data from the random projected vectors.

167

http://thames.cs.rhul.ac.uk/~pedro/dissertation.html
http://thames.cs.rhul.ac.uk/~pedro/dissertation.html

Bibliography

[1] D. Achlioptas, “Database-friendly random projections,” in PODS ’01: Pro-
ceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems. New York, NY, USA: ACM, 2001, pp. 274–281.

[2] J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, K. S. J. Anderson, S. F.
Anderson, J. Annis, N. A. Bahcall, C. A. L. Bailer-Jones, I. K. Baldry, J. C.
Barentine, T. C. Beers, V. Belokurov, A. Berlind, M. Bernardi, M. R. Blanton,
J. J. Bochanski, W. N. Boroski, D. M. Bramich, H. J. Brewington, J. Brinch-
mann, J. Brinkmann, R. J. Brunner, T. Budavári, L. N. Carey, S. Carliles,
M. A. Carr, F. J. Castander, A. J. Connolly, R. J. Cool, C. E. Cunha, I. Csabai,
J. J. Dalcanton, M. Doi, D. J. Eisenstein, M. L. Evans, N. W. Evans, X. Fan,
D. P. Finkbeiner, S. D. Friedman, J. A. Frieman, M. Fukugita, B. Gillespie,
G. Gilmore, K. Glazebrook, J. Gray, E. K. Grebel, J. E. Gunn, E. de Haas, P. B.
Hall, M. Harvanek, S. L. Hawley, J. Hayes, T. M. Heckman, J. S. Hendry, G. S.
Hennessy, R. B. Hindsley, C. M. Hirata, C. J. Hogan, D. W. Hogg, J. A. Holtz-
man, S. ichi Ichikawa, T. Ichikawa, Željko Ivezić, S. Jester, D. E. Johnston,
A. M. Jorgensen, M. Jurić, G. Kauffmann, S. M. Kent, S. J. Kleinman, G. R.
Knapp, A. Y. Kniazev, R. G. Kron, J. Krzesinski, N. Kuropatkin, D. Q. Lamb,
H. Lampeitl, B. C. Lee, R. F. Leger, M. Lima, H. Lin, D. C. Long, J. Loveday,
R. H. Lupton, R. Mandelbaum, B. Margon, D. Martínez-Delgado, T. Mat-
subara, P. M. McGehee, T. A. McKay, A. Meiksin, J. A. Munn, R. Nakajima,
T. Nash, E. H. Neilsen, Jr., H. J. Newberg, R. C. Nichol, M. Nieto-Santisteban,
A. Nitta, H. Oyaizu, S. Okamura, J. P. Ostriker, N. Padmanabhan, C. Park,
J. Peoples, Jr., J. R. Pier, A. C. Pope, D. Pourbaix, T. R. Quinn, M. J. Raddick,
P. R. Fiorentin, G. T. Richards, M. W. Richmond, H.-W. Rix, C. M. Rockosi,
D. J. Schlegel, D. P. Schneider, R. Scranton, U. Seljak, E. Sheldon, K. Shi-
masaku, N. M. Silvestri, J. A. Smith, V. Smolčić, S. A. Snedden, A. Stebbins,
C. Stoughton, M. A. Strauss, M. SubbaRao, Y. Suto, A. S. Szalay, I. Szapudi,
P. Szkody, M. Tegmark, A. R. Thakar, C. A. Tremonti, D. L. Tucker, A. Uo-
moto, D. E. V. Berk, J. Vandenberg, S. Vidrih, M. S. Vogeley, W. Voges, N. P.
Vogt, D. H. Weinberg, A. A. West, S. D. M. White, B. Wilhite, B. Yanny, D. R.
Yocum, D. G. York, I. Zehavi, S. Zibetti, and D. B. Zucker, “The fifth data

168

BIBLIOGRAPHY 169

release of the Sloan Digital Sky Survey,” The Astrophysical Journal Supplement
Series, vol. 172, no. 2, pp. 634–644, 2007.

[3] A. N. Albatineh, M. Niewiadomska-Bugaj, and D. Mihalko, “On similarity
indices and correction for chance agreement,” Journal of Classification, vol. 23,
no. 2, pp. 301–313, 2006.

[4] A. Ali and D. Hill, “Giardia intestinalis,” Current opinion in infectious diseases,
vol. 16, no. 5, pp. 453–460, 2003.

[5] M. R. Anderberg, Cluster Analysis for Applications. New York: Academic
Press, 1973.

[6] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, Nearest-
Neighbor Methods in Learning and Vision: Theory and Practice (Neural Informa-
tion Processing). The MIT Press, 2006, ch. Locally-Sensitive Hashing Using
Stable Distributions, pp. 55–65.

[7] Arecibo, “Arecibo Observatory,” 2005, http://www.naic.edu.

[8] AstroWeb, “Astronomical survey projects,” The AstroWeb Database of In-
ternet Resources, 2010, http://cdsweb.u-strasbg.fr/astroweb/survey.html.

[9] ——, “The AstroWeb database of internet resources,” 2010, http://cdsweb.
u-strasbg.fr/astroWeb/astroweb.html.

[10] ——, “Ground-based telescopes and observatories,” The AstroWeb
Database of Internet Resources, 2010, http://cdsweb.u-strasbg.fr/
astroweb/telnotspace.html.

[11] ——, “Observatories and telescopes,” The AstroWeb Database of Internet
Resources, 2010, http://cdsweb.u-strasbg.fr/astroweb/telescope.html.

[12] ——, “Space telescopes and observatories,” The AstroWeb Database of In-
ternet Resources, 2010, http://cdsweb.u-strasbg.fr/astroweb/telspace.html.

[13] H. Astudillo and et al, “Contexta: Semantic and contextualized management
of distributed heterogeneous collections,” 2007, fONDEF Chilean Grant
D05I10286.

[14] K. Balog, “People search in the enterprise,” Ph.D. dissertation, ISLA, Univer-
sity of Amsterdam, 2008, http://staff.science.uva.nl/~kbalog/phd-thesis.

[15] R. E. Bellman, Adaptive Control Processes: A Guided Tour. Princeton: Prince-
ton University Press, 1961.

http://www.naic.edu
http://cdsweb.u-strasbg.fr/astroweb/survey.html
http://cdsweb.u-strasbg.fr/astroWeb/astroweb.html
http://cdsweb.u-strasbg.fr/astroWeb/astroweb.html
http://cdsweb.u-strasbg.fr/astroweb/telnotspace.html
http://cdsweb.u-strasbg.fr/astroweb/telnotspace.html
http://cdsweb.u-strasbg.fr/astroweb/telescope.html
http://cdsweb.u-strasbg.fr/astroweb/telspace.html
http://staff.science.uva.nl/~kbalog/phd-thesis

170 BIBLIOGRAPHY

[16] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping
Multidimensional Data Recent Advances in Clustering. Springer, 2006, pp. 25–
71.

[17] M. W. Berry, Survey of Text Mining: Clustering, Classification, and Retrieval.
Springer-Verlag, New York, 2004.

[18] M. W. Berry and M. Browne, Understanding Search Engines: Mathematical
Modeling and Text Retrieval, 2nd ed. SIAM, Society for Industrial and Ap-
plied Mathematics, 2005.

[19] A. Biegert, C. Mayer, M. Remmert, J. Soding, and A. N. Lupas, “The MPI
bioinformatics toolkit for protein sequence analysis,” Nucleic Acids Research,
vol. 34, pp. W335–W339, 2006.

[20] E. Bingham and H. Mannila, “Random projection in dimensionality reduc-
tion: Applications to image and text data,” in Proceedings of the Seventh Inter-
national Conference on Knowledge Discovery and Data Mining. New York, NY,
USA: ACM, 2001, pp. 245–250.

[21] R. Blashfield and M. Aldenderfer, “The literature on cluster analysis,” Mul-
tivariate Behavioral Research, vol. 13, no. 3, pp. 271–295, 1978.

[22] N. Bolshakova and F. Azuaje, “Cluster validation techniques for genome
expression data,” Signal Processing, vol. 83, no. 4, pp. 825–833, 2003.

[23] N. Brown, “Chemoinformatics—an introduction for computer scientists,”
ACM Computing Surveys, vol. 41, no. 2, pp. 1–38, 2009.

[24] R. J. Brunner, S. G. Djorgovski, T. A. Prince, and A. S. Szalay, Handbook of
Massive Data Sets. Norwell, MA, USA: Kluwer Academic Publishers, 2002,
ch. Massive datasets in astronomy, pp. 931–979.

[25] D. Carmel, D. Cohen, E. Farchi, M. Herscovici, Y. S. Maarek, and A. Soffer,
“Static index pruning for information retrieval systems,” in 24th ACM SIGIR
Conference on Research and Development in Information Retrieval. New Orleans,
Louisiana, USA: ACM, 2001, pp. 43–50.

[26] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane, “Compressed indexes
for dynamic text collections,” ACM Transactions on Algorithms, vol. 3, no. 2,
May 2007.

[27] Chandra, “Chandra X-ray Observatory,” 2007, http://chandra.harvard.edu.

[28] J.-W. Chang and D.-S. Jin, “A new cell-based clustering method for large,
high-dimensional data in data mining applications,” in SAC ’02: Proceedings

http://chandra.harvard.edu

BIBLIOGRAPHY 171

of the 2002 ACM symposium on Applied computing. New York, NY, USA:
ACM, 2002, pp. 503–507.

[29] C. Charras and T. Lecroq, Handbook of Exact String Matching Algorithms.
King’s College Publications, 2004.

[30] J. Cohen, “Bioinformatics – an introduction for computers scientists,” ACM
Computing Surveys, vol. 36, no. 2, pp. 122–158, 2004.

[31] P. Contreras and F. Murtagh, “Fast hierarchical clustering from the Baire
distance,” in Classification as a Tool for Research. Proceedings of the 11th IFCS
Biennial Conference and 33rd Annual Conference of the Gesellschaft für Klassifika-
tion. Dresden: Springer, 2009, in press.

[32] P. Contreras, “E-mail Search Demonstrator,” January 2007, http://thames.
cs.rhul.ac.uk:8080/email/Search.

[33] P. Contreras and F. Murtagh, “Evaluation of hierarchies based on the longest
common prefix, or Baire, metric,” 2007, Classification Society of North
America (CSNA) meeting, University of Illinois. Urbana-Champaign. IL,
USA.

[34] R. M. Cormack, “A review of classification,” Journal of the Royal Statistical
Society. Series A (General), vol. 134, no. 3, pp. 321–367, 1971.

[35] M. Crochemoree, C. Hancart, and T. Lecroq, Algorithms on Strings. Cam-
bridge University Press, 2007.

[36] R. D’Abrusco, G. Longo, M. Paolillo, M. Brescia, E. D. Filippi, A. Staiano,
and R. Tagliaferri, “The use of neural networks to probe the structure of the
nearby universe,” April 2007, http://arxiv.org/abs/astro-ph/0701137.

[37] R. D’Abrusco, A. Staiano, G. Longo, M. Brescia, M. Paolillo, E. D. Filippis,
and R. Tagliaferri, “Mining the SDSS archive. I. Photometric redshifts in the
nearby universe,” Astrophysical Journal, vol. 663, no. 2, pp. 752–764, July 2007.

[38] R. D’Abrusco, A. Staiano, G. Longo, M. Paolillo, and E. D. Filippis, “Steps
toward a classifier for the virtual observatory. I. Classifying the SDSS photo-
metric archive,” 1st Workshop of Astronomy and Astrophysics for Students-
Naples, April 2006, http://arxiv.org/abs/0706.4424.

[39] S. Dasgupta, “Experiments with random projection,” in Proceedings of the
16th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, pp. 143–151.

http://thames.cs.rhul.ac.uk:8080/email/Search
http://thames.cs.rhul.ac.uk:8080/email/Search
http://arxiv.org/abs/astro-ph/0701137
http://arxiv.org/abs/0706.4424

172 BIBLIOGRAPHY

[40] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of Johnson
and Lindenstrauss,” Random Structures & Algorithms, vol. 22, no. 1, pp. 60–65,
2003.

[41] M. Dash, H. Liu, P. Scheuermann, and K. L. Tan, “Fast hierarchical clustering
and its validation,” Data and Knowledge Engineering., vol. 44, no. 1, pp. 109–
138, 2003.

[42] M. Dash, H. Liu, and X. Xu, “‘1 + 1 > 2’: Merging distance and density
based clustering,” in DASFAA ’01: Proceedings of the 7th International Confer-
ence on Database Systems for Advanced Applications. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 32–39.

[43] C. J. Date, An Introduction to Database Systems, 8th ed. Addison-Wesley,
2003.

[44] S. Deegalla and H. Boström, “Reducing high-dimensional data by principal
component analysis vs. random projection for nearest neighbor classifica-
tion,” in ICMLA ’06: Proceedings of the 5th International Conference on Machine
Learning and Applications. Washington, DC, USA: IEEE Computer Society,
2006, pp. 245–250.

[45] M. M. Deza and E. Deza, Encyclopedia of Distances. Springer-Verlag Berlin,
2009.

[46] B. Dirking, Enterprise Search Source Book. Information Today, Inc., 2008, http:
//www.nxtbook.com/nxtbooks/infotoday/enterprisesearchsourcebook08.

[47] I. Dondoshansky and Y. Wolf, “BLASTClust, BLAST score-based single-
linkage clustering,” 2010, http://www.csc.fi/english/research/sciences/
bioscience/programs/blast/blastclust.

[48] ——, “BLASTClust, Clustering Non-redundant Sequence Sets,” 2010, http:
//www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html.

[49] G. M. Downs and J. M. Barnard, Reviews in Computational Chemistry, Volume
18. John Wiley & Sons, Inc, 2003, ch. Clustering Methods and Their Uses
in Computational Chemistry.

[50] B. Dragovich and A. Dragovich, “p-Adic modelling of the genome and the
genetic code,” The Computer Journal, vol. 53, no. 4, pp. 432–442, 2010.

[51] S. T. Dumais, “Improving the retrieval of information from external
sources,” in Behavior Research Methods, Instruments, & Computers, vol. 23,
1991, pp. 229–236.

http://www.nxtbook.com/nxtbooks/infotoday/enterprisesearchsourcebook08
http://www.nxtbook.com/nxtbooks/infotoday/enterprisesearchsourcebook08
http://www.csc.fi/english/research/sciences/bioscience/programs/blast/blastclust
http://www.csc.fi/english/research/sciences/bioscience/programs/blast/blastclust
http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html

BIBLIOGRAPHY 173

[52] J. L. Durant, B. A. Leland, D. R. Henry, and J. G. Nourse, “Reoptimization
of MDL keys for use in drug discovery,” Journal of Chemical Information and
Computer Sciences, vol. 42, no. 6, pp. 1273–1280, 2002.

[53] S. R. Eddy, “Where did the BLOSUM62 alignment score matrix come from?”
Nature Biotechnology, vol. 22, no. 4, pp. 1035–1036, 2004.

[54] B. Erevitt, Cluster Analysis. John Wiley & Sons Inc, 1993.

[55] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in 2nd Interna-
tional Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996,
pp. 226–231.

[56] M. Farthing, “Giardia intestinalis,” Gastroenterology clinics of North America,
vol. 25, no. 3, 1996.

[57] X. Z. Fern and C. Brodly, “Random projection for high dimensional data
clustering: A cluster ensemble approach,” in Proceedings of the Twentieth In-
ternational Conference on Machine Learning. Washington, DC, USA: AAAI
Press, 2007.

[58] A. Fernández-Soto, K. M. Lanzetta, H.-W. Chen, S. M. Pascarelle, and N. Ya-
hata, “On the compared accuracy and reliability of spectroscopic and pho-
tometric redshift measurements,” The Astrophysical Journal Supplement Series,
vol. 135, pp. 41–61, 2001.

[59] P. Ferragina and G. Manzini, “Indexing compressed text,” Journal of the
ACM, vol. 52, no. 4, pp. 552–581, July 2005.

[60] FITS, “Flexible Image Transport System,” International Astronomical Union,
2010, http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html.

[61] P. Flanagan, “Giardia–diagnosis, clinical course and epidemiology. a re-
view,” Epidemiology and infection, vol. 109, no. 1, pp. 1–22, 1992.

[62] B. J. Ford, “The Discovery of Giardia,” Microscope, vol. 53, no. 4, pp. 147–153,
2005.

[63] D. Fradkin and D. Madigan, “Experiments with random projections for ma-
chine learning,” in KDD 2003: Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. New York, NY,
USA: ACM, 2003, pp. 517–522.

[64] P. Frankl and H. Maehara, “The Johnson-Lindenstrauss lemma and the
sphericity of some graphs,” Journal of Combinatorial Theory, Series B, vol. 44,
no. 3, pp. 355–362, 1988.

http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html

174 BIBLIOGRAPHY

[65] K. Fraser, Z. Wang, and X. Liu, Microarray Image Analysis. CRC Press, 2010.

[66] R. Freedman and W. Kaufmann, Universe, 6th ed. W. H. Freeman, 2001.

[67] J. Gailly and M. Adler, “zlib,” 2007, http://www.zlib.net.

[68] GALEX, “The Galaxy Evolution Explorer,” 2006, http://www.galex.caltech.
edu/index.html.

[69] G. Gan, C. Ma, and J. Wu, Data Clustering Theory, Algorithms, and Applications.
Society for Industrial and Applied Mathematics. SIAM, 2007.

[70] J. F. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting,
and A. Toncheva, “The diverse and exploding digital universe: An update
forecast of worldwide information growth through 2011,” in IDC White Pa-
per. IDC, March 2008.

[71] J. F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur, S. Minton,
I. Xhenei, A. Toncheva, and A. Manfrediz, “The expanding digital universe:
A forecast of worldwide information growth through 2010,” in IDC White
Paper. IDC, March 2007.

[72] T. Gardner and D. Hill, “Treatment of giardiasis,” Clinical Microbiology Re-
views, vol. 14, no. 1, pp. 114–128, 2001.

[73] Giardia, “The Giardia lamblia organism,” 2010, Mission Pharmacal Com-
pany, http://www.giardiasis.org.

[74] V. J. Gillet, D. J. Wild, P. Willett, and J. Bradshaw, “Similarity and dissimi-
larity methods for processing chemical structure databases,” The Computer
Journal, vol. 41, no. 8, pp. 547–558, 1998.

[75] B. Goetz, “Java theory and practice: Where’s your point?” IBM, 2003, http:
//www.ibm.com/developerworks/java/library/j-jtp0114/.

[76] A. D. Gordon, “A review of hierarchical classification,” Journal of the Royal
Statistical Society. Series A (General), vol. 150, no. 2, pp. 119–137, 1987.

[77] P. Grabusts and A. Borisov, “Using grid-clustering methods in data classifi-
cation,” in PARELEC ’02: Proceedings of the International Conference on Parallel
Computing in Electrical Engineering. Washington, DC, USA: IEEE Computer
Society, 2002, p. 425.

[78] R. L. Graham and P. Hell, “On the history of the minimum spanning tree
problem,” IEEE Annals of the History of Computing, vol. 7, no. 1, pp. 43–57,
1985.

http://www.zlib.net
http://www.galex.caltech.edu/index.html
http://www.galex.caltech.edu/index.html
http://www.giardiasis.org
http://www.ibm.com/developerworks/java/library/j-jtp0114/
http://www.ibm.com/developerworks/java/library/j-jtp0114/

BIBLIOGRAPHY 175

[79] D. A. Grossman and O. Frieder, Information Retrieval: Algorithms and Heuris-
tics, 2nd ed. Springer, 2004.

[80] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[81] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” Journal of Intelligent Information Systems, vol. 17, no. 2–3, pp.
107–145, 2001.

[82] ——, “Cluster validity methods: part I,” ACM SIGMOD Record, vol. 31, no. 2,
pp. 40–45, 2002.

[83] J. Hartigan and M. Wong, “A k-means clustering algorithm,” in Applied
Statistics, vol. 28, no. 1. Blackwell Publishing for the Royal Statistical Society,
1979, pp. 100–108.

[84] J. A. Hartigan, Clustering Algorithms. New York: Wiley, 1975.

[85] R. Hecht-Nielsen, Computational intelligence: Imitating life. IEEE Press, 1994,
ch. Context Vectors; General Purpose Approximate Meaning Representa-
tions Self-Organized from Raw Data.

[86] A. Hinneburg and D. Keim, “Optimal grid-clustering: Towards breaking
the curse of dimensionality in high-dimensional clustering,” in VLDB ’99:
Proceedings of the 25th International Conference on Very Large Data Bases. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 506–517.

[87] A. Hinneburg and D. A. Keim, “A density-based algorithm for discovering
clusters in large spatial databases with noise,” in Proceeding of the 4th Interna-
tional Conference on Knowledge Discovery and Data Mining. New York: AAAI
Press, 1998, pp. 58–68.

[88] IVOA, “International Virtual Observatory Alliance,” 2009, http://www.
ivoa.net.

[89] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM
Computer Surveys, vol. 31, no. 3, pp. 264–323, September 1999.

[90] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1988.

[91] A. K. Jain, A. Topchy, M. H. C. Law, and J. M. Buhmann, “Landscape of
clustering algorithms,” in ICPR ’04: Proceedings of the Pattern Recognition,
17th International Conference on (ICPR’04), vol. 1. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 260–263.

http://www.ivoa.net
http://www.ivoa.net

176 BIBLIOGRAPHY

[92] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz maps into a
Hilbert space,” in Conference in modern analysis and probabilities, vol. 26. Con-
temporary Mathematics. American Mathematical Society, 1984, pp. 189–
206.

[93] W. Kahan and J. Darcy, “How Java’s floating-point hurts everyone every-
where,” 1998, http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf.

[94] S. Kaski, “Dimensionality reduction by random mapping: fast similarity
computation for clustering,” in IEEE International Joint Conference on Neural
Networks. IEEE, May 1998.

[95] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data. An Introduction to
Cluster Analysis. New Jersey: John Wiley & Son, 1990.

[96] J. R. Kettenring, “Massive datasets,” Wiley Interdisciplinary Reviews: Compu-
tational Statistics, vol. 1, no. 1, pp. 25–32, 2009.

[97] A. Y. Khrennikov and S. V. Kozyrev, “p-Adic numbers in bioinformatics:
from genetic code to PAM-matrix,” 2009, http://arxiv.org/abs/0903.0137.

[98] A. Khrennikov and S. Kozyrev, “Genetic code on the diadic plane,” Physica
A, vol. 381, pp. 265–272, 2007.

[99] M. Konchady, Text Mining Application Programming. Charles River Media,
2006.

[100] H. C. Law, “Clustering, Dimensionality Reduction, and Side Information,”
Ph.D. dissertation, Michigan State University, 2006, http://dataclustering.
cse.msu.edu/papers/martin_law_thesis_compact.pdf.

[101] I. C. Lerman, Classification et Analyse Ordinale des Données. Paris: Dunod,
1981.

[102] A. M. Lesk, Introduction to Bioinformatics, 2nd ed. Oxford: Oxford University
Press, 2007.

[103] C. Lewis, “Suffix trees in computational biology,” 2010, http://homepage.
usask.ca/~ctl271/857/suffix_tree.shtml.

[104] P. Li, T. Hastie, and K. Church, “Very sparse random projections,” in KDD
2006: Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, vol. 1. New York, NY, USA: ACM, 2006, pp.
287–296.

[105] J. Lin and D. Gunopulos, “Dimensionality reduction by random projection
and latent semantic indexing,” in 3rd SIAM International Conference on Data
Mining, San Francisco, CA, USA, March 2003.

http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://arxiv.org/abs/0903.0137
http://dataclustering.cse.msu.edu/papers/martin_law_thesis_compact.pdf
http://dataclustering.cse.msu.edu/papers/martin_law_thesis_compact.pdf
http://homepage.usask.ca/~ctl271/857/suffix_tree.shtml
http://homepage.usask.ca/~ctl271/857/suffix_tree.shtml

BIBLIOGRAPHY 177

[106] H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher,
H. Ploegh, and P. Matsudaira, Molecular Cell Biology, 6th ed. New York,
NY, USA: W. H. Freeman, 2007.

[107] G. Longo, “DAME,” Data Mining & Exploration, 2010, http://people.na.
infn.it/~astroneural/.

[108] M. Lorr, Cluster Analysis for Social Scientists. San Francisco: Jossey-Bass,
1983.

[109] Lucene, “Lucene Apache project,” 2009, http://lucene.apache.org.

[110] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, L. M. LeCam and J. Neyman, Eds., vol. 1. Univer-
sity of California Press, 1967, pp. 281–297.

[111] E. Mäkelä, O. Suominen, and E. Hyvnen, “Automatic exhibition generation
based on semantic cultural content,” in Proceedings of the Cultural Heritage
on the Semantic Web Workshop at the 6th International Semantic Web Conference
(ISWC 2007), November 12 2007.

[112] J. C. McDowell, “Special report astronomy: downloading the sky,” IEEE
Spectrum, vol. 41, no. 8, pp. 35–39, 2004.

[113] M. L. Miller, M. A. Rodriguez, and I. J. Cox, “Audio fingerprinting: Nearest
neighbor search in high dimensional binary spaces,” Journal of VLSI Signal
Processing Systems, vol. 41, no. 3, pp. 285–291, 2005.

[114] B. Mirkin, Mathematical Classification and Clustering: Nonconvex Optimization
and Its Applications. Springer, 1996.

[115] ——, Clustering for Data Mining: A Data Recovery Approach. Chapman &
Hall/CRC, 2005.

[116] B. Mirkin and P. Fishburn, Group Choice. V. H. Winston, 1979.

[117] M. Mitzenmacher, “A brief history of generative models for power law and
lognormal distributions,” Internet Mathematics, vol. 1, no. 2, pp. 226–251,
2003.

[118] D. Monniaux, “The pitfalls of verifying floating-point computations,” ACM
Transactions on Programming Languages and Systems, vol. 30, no. 3, pp. 1–41,
2008.

http://people.na.infn.it/~astroneural/
http://people.na.infn.it/~astroneural/
http://lucene.apache.org

178 BIBLIOGRAPHY

[119] H. G. Morrison, A. G. McArthur, F. D. Gillin, S. B. Aley, R. D. Adam, G. J.
Olsen, A. A. Best, W. Z. Cande, F. Chen, M. J. Cipriano, B. J. Davids, S. C.
Dawson, H. G. Elmendorf, A. B. Hehl, M. E. Holder, S. M. Huse, U. U. Kim,
E. Lasek-Nesselquist, G. Manning, A. Nigam, J. E. J. Nixon, D. Palm, N. E.
Passamaneck, A. Prabhu, C. I. Reich, D. S. Reiner, J. Samuelson, S. G. Svard,
and M. L. Sogin, “Genomic minimalism in the early diverging intestinal
parasite Giardia lamblia,” Science, vol. 317, no. 5946, pp. 1921–1926, 2007.

[120] F. Murtagh, “A survey of recent advances in hierarchical clustering algo-
rithms,” Computer Journal, vol. 26, no. 4, pp. 354–359, 1983.

[121] ——, “Counting dendrograms: a survey,” Discrete Applied Mathematics,
vol. 7, no. 2, pp. 191–199, 1984.

[122] ——, Multidimensional Clustering Algorithms. Physica-Verlag, 1985.

[123] ——, “On ultrametricity, data coding, and computation,” Journal of Classifi-
cation, vol. 21, pp. 167–184, 2004.

[124] ——, “Quantifying ultrametricity,” in COMPSTAT 2004 – Proceedings in Com-
putational Statistics, J. Antoch, Ed. Springer, 2004, pp. 1561–1568.

[125] ——, “Thinking ultrametrically,” in Classification, Clustering, and Data Mining
Applications. Proceedings of the Meeting of the International Federation of Classi-
fication Societies (IFCS), D. Banks, L. House, F. R. McMorris, P. Arabie, and
W. Gaul, Eds. Springer, July 2004, pp. 3–14.

[126] ——, Correspondence Analysis and Data Coding with Java and R. Clapman &
Hall/CRC, 2005.

[127] ——, “Identifying the ultrametricity of time series,” in The European Physical
Journal B, vol. 43, no. 4. Springer Berlin, February 2005, pp. 573–579.

[128] ——, “The Haar wavelet transform of a dendrogram,” Journal of Classifica-
tion, vol. 24, no. 1, pp. 3–32, 2007.

[129] ——, “The remarkable simplicity of very high dimensional data: Applica-
tion of model-based clustering,” Journal of Classification, vol. 26, no. 3, pp.
249–277, 2009.

[130] F. Murtagh, G. Downs, and P. Contreras, “Hierarchical clustering of massive,
high dimensional data sets by exploiting ultrametric embedding,” SIAM
Journal on Scientific Computing, vol. 30, no. 2, pp. 707–730, February 2008.

[131] F. Murtagh and J.-L. Starck, “Pattern clustering based on noise modeling in
wavelet space,” Pattern Recognition, vol. 31, no. 7, pp. 847–855, 1998.

BIBLIOGRAPHY 179

[132] F. Murtagh, J.-L. Starck, and M. W. Berry, “Overcoming the curse of dimen-
sionality in clustering by means of the wavelet transform,” The Computer
Journal, vol. 43, no. 2, pp. 107–120, 2000.

[133] MySQL, “MySQL Community Server,” 2009, http://www.mysql.com.

[134] G. Navarro, “A guided tour to approximate string matching,” ACM Comput-
ing Surveys, vol. 33, no. 1, pp. 31–88, March 2007.

[135] G. Navarro, E. S. de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates,
“Adding compression to block addressing inverted indexes,” Information Re-
trieval, vol. 3, no. 1, pp. 49–77, July 2000.

[136] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM Comput-
ing Surveys, vol. 39, no. 1, May 2007, http://doi.acm.org/10.1145/1216370.
1216372.

[137] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Practical
On-Line Search Algorithms for Texts and Biological Sequences. Cambridge Uni-
versity Press, 2007.

[138] Oracle, “Berkeley Data Base,” 2007, http://www.oracle.com/database/
berkeley-db/index.html.

[139] M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic. So-
ciety for Industrial and Applied Mathematics. SIAM, 2001.

[140] Palomar, “Palomar Observatory,” 2008, http://www.astro.caltech.edu/
palomar.

[141] N. H. Park and W. S. Lee, “Statistical grid-based clustering over data
streams,” SIGMOD Record, vol. 33, no. 1, pp. 32–37, 2004.

[142] W. Pearson and D. Lipman, “Improved tools for biological sequence com-
parison,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 85, no. 8, pp. 2444–2448, 1988.

[143] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp.
130–137, July 1997.

[144] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes 3rd Edition: The Art of Scientific Computing. New York, NY, USA:
Cambridge University Press, 2007.

[145] ProteomeCommons, “FASTA and ProteomeCommons,” 2010, https://
proteomecommons.org/data/fasta/hupo_standard.jsp.

http://www.mysql.com
http://doi.acm.org/10.1145/1216370.1216372
http://doi.acm.org/10.1145/1216370.1216372
http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html
http://www.astro.caltech.edu/palomar
http://www.astro.caltech.edu/palomar
https://proteomecommons.org/data/fasta/hupo_standard.jsp
https://proteomecommons.org/data/fasta/hupo_standard.jsp

180 BIBLIOGRAPHY

[146] A. Rapoport and S. Fillenbaum, “An experimental study of semantic struc-
tures,” Multidimensional Scaling; Theory and Applications in the Behavioral Sci-
ences, vol. 2, pp. 93–131, 1972.

[147] V. Reshetnikov, “Sky surveys and deep fields of ground-based and space
telescopes,” Physics-Uspekhi, vol. 48, no. 11, pp. 1109–1127, 2005.

[148] R. L. Rivest, “The MD5 message-digest algorithm,” MIT Laboratory for
Computer Science and RSA Data Security, Inc., 1992, http://people.csail.
mit.edu/rivest/Rivest-MD5.txt.

[149] A. D. Rodney, “The biology of Giardia spp,” American Society for Microbiol-
ogy, vol. 55, no. 4, pp. 706–732, 1991.

[150] T. Ruotsalo and E. Hyvönen, “A method for determining ontology-based se-
mantic relevance,” in Proceedings of the International Conference on Database and
Expert Systems Applications DEXA 2007. Regensburg, Germany: Springer,
2007, pp. 680–688.

[151] M. Sahlgren, “An introduction to random indexing,” in Methods and Ap-
plications of Semantic Indexing Workshop at the 7th International Conference on
Terminology and Knowledge Engineering, Copenhagen, Denmark, 2005.

[152] G. Salton and C. Buckley, “Term-weighting approaches in automatic text
retrieval,” Information Processing and Management, vol. 24, no. 5, pp. 513–523,
Jan 1998.

[153] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering in
spatial databases: The algorithm GDBSCAN and its applications,” Data Min-
ing Knowledge Discovery, vol. 2, no. 2, pp. 169–194, 1998.

[154] E. Schikuta, “Grid-clustering: An efficient hierarchical clustering method
for very large data sets,” in ICPR ’96: Proceedings of the 13th International
Conference on Pattern Recognition. Washington, DC, USA: IEEE Computer
Society, 1996, p. 101.

[155] SDSS, “Sloan Digital Sky Survey,” 2008, http://www.sdss.org.

[156] C. Seidel, “Plotting a table of numbers as an image using R,” 2010, http:
//www.phaget4.org/R/image_matrix.html.

[157] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “Wavecluster: a wavelet-
based clustering approach for spatial data in very large databases,” The
VLDB Journal, vol. 8, no. 3-4, pp. 289–304, 2000.

[158] SIAM-News, “Inquiry board traces Ariane 5 failure to overflow error,”
SIAM, vol. 29, no. 8, pp. 1, 12-13, October 1996.

http://people.csail.mit.edu/rivest/Rivest-MD5.txt
http://people.csail.mit.edu/rivest/Rivest-MD5.txt
http://www.sdss.org
http://www.phaget4.org/R/image_matrix.html
http://www.phaget4.org/R/image_matrix.html

BIBLIOGRAPHY 181

[159] L. Silveira, “Enhanced full-text self-indexes based on Lempel-Ziv com-
pression,” Ph.D. dissertation, Universidad Técnica de Lisboa, 2007, http:
//kdbio.inesc-id.pt/~lsr/phd/book.r.ps.

[160] J. W. Smith and M. S. Wolfe, “Giardiasis,” Annual Reviews of Medicine, vol. 31,
pp. 373–383, 1980.

[161] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy. San Francisco: Free-
man, 1973.

[162] I. Soboroff, A. de Vries, and N. Craswell, “Overview of the TREC 2006 enter-
prise track,” in The Fourteenth Text REtrieval Conference (TREC 2005) Proceed-
ings, E. Voorhees and L. Buckland, Eds., November 2005, http://trec.nist.
gov/pubs/trec14/papers/ENTERPRISE.OVERVIEW.pdf.

[163] Spitzer, “Spitzer Space Telescope,” 2007, http://www.spitzer.caltech.edu.

[164] M. Steinbach, L. Ertöz, and V. Kumar, New Directions in Statistical Physics:
Econophysics, Bioinformatics and Pattern Recognition. Berlin: Springer, 2004,
ch. The Challenges of Clustering High Dimensional Data, pp. 273–309.

[165] Swift, “Swift Gamma-Ray Burst Explorer Mission,” 2007, http://www.swift.
psu.edu.

[166] Tomcat, “Apache Tomcat,” 2008, http://tomcat.apache.org.

[167] A. Trotman, “Compressing inverted files,” Information Retrieval, vol. 6, no. 1,
pp. 5–19, January 2003.

[168] A. van Rooij, Non-Archimedean Functional Analysis. Marcel Dekker, 1978.

[169] S. S. Vempala, The Random Projection Method. DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Soci-
ety, 2004, vol. 65.

[170] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clus-
terings comparison: is a correction for chance necessary?” in ICML ’09:
Proceedings of the 26th Annual International Conference on Machine Learning.
New York, NY, USA: ACM, 2009, pp. 1073–1080.

[171] VLA, “Very Large Array,” 2008, http://www.vla.nrao.edu.

[172] L. Wang and Z.-O. Wang, “CUBN: a clustering algorithm based on density
and distance,” in Proceeding of the 2003 International Conference on Machine
Learning and Cybernetics. IEEE Press, 2003, pp. 108–112.

http://kdbio.inesc-id.pt/~lsr/phd/book.r.ps
http://kdbio.inesc-id.pt/~lsr/phd/book.r.ps
http://trec.nist.gov/pubs/trec14/papers/ENTERPRISE.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec14/papers/ENTERPRISE.OVERVIEW.pdf
http://www.spitzer.caltech.edu
http://www.swift.psu.edu
http://www.swift.psu.edu
http://tomcat.apache.org
http://www.vla.nrao.edu

182 BIBLIOGRAPHY

[173] W. Wang, J. Yang, and R. Muntz, “STING: A statistical information grid
approach to spatial data mining,” in VLDB ’97: Proceedings of the 23rd In-
ternational Conference on Very Large Data Bases. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1997, pp. 186–195.

[174] J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and R. Losick, Molec-
ular Biology of the Gene, 6th ed. San Francisco, CA, USA: Pearson/Benjamin
Cummings, 2008.

[175] S. M. Weiss, N. Indurkhya, T. Zhang, and F. J. Damerau, Text Mining. Predic-
tive Methods for Analyzing Unstructured Information. Springer, 2005.

[176] WHO, Addendum: Microbiological agents in drinking water, 2nd ed. World
Health Organization, 2003, ch. Protozoan Parasites (Cryptosporidium,
Giardia, Cyclospora), http://www.who.int/water_sanitation_health/dwq/
microbioladd/en/index.html.

[177] I. Witten, A. Moffat, and T. Bell, Managing Gigabytes: Compressing and Index-
ing Documents and Images, 2nd ed. Morgan Kaufmann, May 1999.

[178] M. Wright, “Fingerprinting and dictionary generation,” 2009, http://www.
digitalchemistry.co.uk/prod_fingerprint.html.

[179] J. Xiong, Essential Bioinformatics. Cambridge: Cambridge University Press,
2006.

[180] XMM-Newton, “ESA XMM-Newton,” 2008, http://xmm.esac.esa.int/.

[181] R. Xu and D. C. Wunsch, “Survey of clustering algorithms,” IEEE Transac-
tions on Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005.

[182] ——, Clustering. IEEE Computer Society Press, 2008.

[183] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, “A distribution-based clustering
algorithm for mining in large spatial databases,” in ICDE ’98: Proceeding of
the Fourteenth International Conference on Data Engineering. Washington, DC,
USA: IEEE Computer Society, 1998, pp. 324–331.

[184] X. Xu, J. Jäger, and H.-P. Kriegel, “A fast parallel clustering algorithm for
large spatial databases,” Data Mining Knowledge Discovery, vol. 3, no. 3, pp.
263–290, 1999.

[185] J. Zaat, T. Mank, and W. Assendelft, “A systematic review on the treatment
of giardiasis,” Tropical Medicine & International Health, vol. 2, no. 1, pp. 63–82,
1997.

http://www.who.int/water_sanitation_health/dwq/microbioladd/en/index.html
http://www.who.int/water_sanitation_health/dwq/microbioladd/en/index.html
http://www.digitalchemistry.co.uk/prod_fingerprint.html
http://www.digitalchemistry.co.uk/prod_fingerprint.html
http://xmm.esac.esa.int/

BIBLIOGRAPHY 183

[186] O. R. Zaïane and C.-H. Lee, “Clustering spatial data in the presence of ob-
stacles: a density-based approach,” in IDEAS ’02: Proceedings of the 2002 In-
ternational Symposium on Database Engineering and Applications. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 214–223.

[187] A. Zhang, Protein Interaction Networks. Computational Analysis. Cambridge:
Cambridge University Press, 2006.

[188] J. Ziv and A. Lempel, “A universal algorithm for sequential data compres-
sion,” IEEE Transactions on Information Theory, vol. 23, no. 5, pp. 337–343,
1977.

[189] ——, “Compression of individual sequences via variable-rate coding,” IEEE
Transactions on Information Theory, vol. 24, no. 5, pp. 530–536, 1978.

[190] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM Com-
puting Surveys, vol. 38, no. 2, pp. 69–82, July 2006.

[191] M. Zvelebil and J. O. Baum, Understanding Bioinformatics. Garland Science,
2007.

	Declaration
	Abstract
	Dedication
	Acknowledgements
	Preface
	Introduction
	About this thesis
	Main contributions
	Publications by the author related to this thesis

	Background and Related Work
	Introduction
	Massive datasets and data growth
	The curse of dimensionality
	Dimensionality reduction by random projection
	Clustering
	Similarity measures
	Clustering algorithms
	Hierarchical clustering algorithms
	Agglomerative hierarchical clustering algorithms
	Partition clustering algorithms

	Other clustering techniques
	Grid-based clustering algorithms
	Density-based clustering algorithms

	Evaluating cluster quality
	Baire distance or longest common prefix
	Metric and ultrametric spaces
	Ultrametric Baire space and distance

	A note on working with very small decimal numbers
	Summary

	I Applications to Science
	Application to Astronomy: SDSS Redshift Calibration
	Introduction
	Astronomical data and information
	Doppler effect and redshift
	The Sloan Digital Sky Survey
	Applying Baire ultrametric to astronomy data (SDSS)
	Clustering SDSS data based on a Baire distance
	Baire and k-means cluster comparison
	Baire and k-means clustering time comparison

	Spectrometric and photometric digit distribution
	Summary

	Application to Chemistry: Clustering Chemical Compounds
	Introduction
	Problem description and data characterisation
	Notation used and data normalisation
	Data distribution and properties

	Ultrametric from longest common prefixes
	From boolean data to normalised, real-valued data
	Ultrametrisation through Baire space embedding
	Comparison with k-means clustering algorithm

	Discussion on random projection and hashing
	Random projection and digit distribution
	Computational time complexity

	Summary

	Application to Biology: Protein Clustering
	Introduction
	Giardia lamblia
	DNA and proteins encoding
	Hypothetical proteins

	Genome databases and file formats
	Data characterisation
	Clustering on strings
	Suffix array for searching and matching
	A note on DNA and protein embedding in ultrametric spaces
	Results from the longest common substring
	Results using the single-linkage clustering algorithm

	Summary

	II Application to Information Retrieval
	Supporting Massive Best Match Search and Retrieval
	Introduction
	Structuring and searching text in a massive dataset
	On searching
	On indexing
	On retrieval

	Supporting massive best match search and retrieval
	Building a search engine
	Vector space model
	Document querying
	Term weighting
	Compressed inverted list indexes

	Enterprise search
	Anatomy of a search engine
	Preprocessing
	Parsing
	Indexing
	Storing
	Querying
	System administration
	Evaluating enterprise search engines
	Enterprise search providers
	Commercial solutions
	Open source solutions

	Summary

	Information Retrieval and the Baire Distance
	Introduction
	Document clustering
	Clustering and semantics preservation
	Experiment design
	On clustering experiments for semantic preservation
	Clustering process
	Results

	On experiments and demonstrator: searching e-mails
	Summary

	Conclusions
	Final remarks and possible extensions

	Baire Algorithm Implementation in Java
	Enterprise Search Providers
	Additional Resources Available from This Thesis
	Bibliography

