11 research outputs found

    Long induced paths in graphs

    Full text link
    We prove that every 3-connected planar graph on nn vertices contains an induced path on Ω(logn)\Omega(\log n) vertices, which is best possible and improves the best known lower bound by a multiplicative factor of loglogn\log \log n. We deduce that any planar graph (or more generally, any graph embeddable on a fixed surface) with a path on nn vertices, also contains an induced path on Ω(logn)\Omega(\sqrt{\log n}) vertices. We conjecture that for any kk, there is a contant c(k)c(k) such that any kk-degenerate graph with a path on nn vertices also contains an induced path on Ω((logn)c(k))\Omega((\log n)^{c(k)}) vertices. We provide examples showing that this order of magnitude would be best possible (already for chordal graphs), and prove the conjecture in the case of interval graphs.Comment: 20 pages, 5 figures - revised versio

    The Parameterized Complexity of k

    Full text link

    Fine-grained parameterized complexity analysis of graph coloring problems

    Get PDF
    The q-COLORING problem asks whether the vertices of a graph can be properly colored with q colors. In this paper we perform a fine-grained analysis of the complexity of q-COLORING with respect to a hierarchy of structural parameters. We show that unless the Exponential Time Hypothesis fails, there is no constant θ such that q-COLORING parameterized by the size k of a vertex cover can be solved in O ∗(θ k) time for all fixed q. We prove that there are O ∗((q−ɛ) k) time algorithms where k is the vertex deletion distance to several graph classes for which q-COLORING is known to be solvable in polynomial time, including all graph classes F whose (q+1)-colorable members have bounded treedepth. In contrast, we prove that if F is the class of paths – some of the simplest graphs of unbounded treedepth – then no such algorithm can exist unless the Strong Exponential Time Hypothesis fails.</p

    Fine-grained parameterized complexity analysis of graph coloring problems

    Get PDF
    The q-COLORING problem asks whether the vertices of a graph can be properly colored with q colors. In this paper we perform a fine-grained analysis of the complexity of q-COLORING with respect to a hierarchy of structural parameters. We show that unless the Exponential Time Hypothesis fails, there is no constant θ such that q-COLORING parameterized by the size k of a vertex cover can be solved in O ∗(θ k) time for all fixed q. We prove that there are O ∗((q−ɛ) k) time algorithms where k is the vertex deletion distance to several graph classes for which q-COLORING is known to be solvable in polynomial time, including all graph classes F whose (q+1)-colorable members have bounded treedepth. In contrast, we prove that if F is the class of paths – some of the simplest graphs of unbounded treedepth – then no such algorithm can exist unless the Strong Exponential Time Hypothesis fails.</p

    Linear time algorithm for computing a small biclique in graphs without long induced paths

    No full text
    The biclique problem asks, given a graph G and a parameter k, whether G has a complete bipartite subgraph of k vertices in each part (a biclique of order k). Fixed-parameter tractability of this problem is a longstanding open question in parameterized complexity that received a lot of attention from the community. In this paper we consider a restricted version of this problem by introducing an additional parameter s and assuming that G does not have induced (i.e. chordless) paths of length s. We prove that under this parameterization the problem becomes fixed-parameter linear. The main tool in our proof is a Ramsey-type theorem stating that a graph with a long (not necessarily induced) path contains either a long induced path or a large biclique

    Hereditary classes of graphs : a parametric approach

    Get PDF
    The world of hereditary classes is rich and diverse and it contains a variety of classes of theoretical and practical importance. Thousands of results in the literature are devoted to individual classes and only a few of them analyse the universe of hereditary classes as a whole. To shift the analysis into a new level, in the present paper we exploit an approach, where we operate by infinite families of classes, rather than individual classes. Each family is associated with a graph parameter and is characterized by classes that are critical with respect to the parameter. In particular, we obtain a complete parametric description of the bottom of the lattice of hereditary classes and discuss a number of open questions related to this approach
    corecore