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The world of hereditary classes is rich and diverse and it contains a variety of classes of
theoretical and practical importance. Thousands of results in the literature are devoted
to individual classes and only a few of them analyse the universe of hereditary classes
as a whole. To shift the analysis into a new level, in the present paper we exploit an
approach, where we operate by infinite families of classes, rather than individual classes.
Each family is associated with a graph parameter and is characterized by classes that are
critical with respect to the parameter. In particular, we obtain a complete parametric
description of the bottom of the lattice of hereditary classes and discuss a number of
open questions related to this approach.
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. Introduction

We begin our journey to the land of hereditary classes with two short stories.

In 1928, Frank Ramsey published the paper ‘‘On a problem of formal logic’’ [41], where he proved a result, which
nowadays bears his name and is known as Ramsey’s Theorem. He proved it parenthetically, as a minor lemma on
the way to his true goal in the paper, solving a special case of the decision problem for first-order logic. In fact, this
‘‘minor’’ result turned out to be so fruitful that it led to the emergence of an entire branch of mathematics, known
as Ramsey Theory.
In 1977, Václav Chvátal and Peter Hammer published the paper ‘‘Aggregation of inequalities in integer program-
ming’’ [18] and interpreted the main result of this paper in terms of graph theory and threshold logic. This
interpretation became the origin of the notion of threshold graphs, which gave rise to an ocean of results and a
vast literature, including a book devoted to this class of graphs [35].

n obvious moral uniting both stories is that the main result is not necessarily the most valued one. To reveal more
onnections between the two stories, we observe the following.
According to Ramsey, in the universe of hereditary classes there exist precisely two minimal classes containing graphs

ith an arbitrarily large number of vertices: complete graphs and edgeless graphs. The number of vertices is the main
raph parameter and Ramsey’s Theorem characterizes the family of hereditary classes where this parameter is bounded
y means of two minimal obstructions, or ‘‘forbidden’’ elements, i.e. two minimal classes that do not belong to the family.
The number of vertices is the main graph parameter, but not the only one, and in some cases not the most valued

ne. With the advent of parameterized complexity, the world of graph parameters has been enriched with a myriad of
ew representatives, and many of them admit a Ramsey-type characterization in terms of minimal hereditary classes
here these parameters are unbounded. In particular, as we shall see later, the class of threshold graphs is one of the
ine minimal hereditary classes of unbounded neighbourhood diversity.
These examples explain the main idea of our approach. We explore the universe of hereditary classes by analysing

amilies of classes where some graph parameters are bounded, and characterize these families by means of minimal
orbidden elements, i.e. minimal classes that do not belong to the families. The idea of minimal forbidden elements for
amilies of classes generalizes the idea of minimal forbidden induced subgraphs for individual classes. It is well-known
and not difficult to see) that a class of graphs is hereditary if and only if it admits a characterization in terms of minimal
orbidden induced subgraphs, i.e. minimal graphs that do not belong to the class. To emphasize the importance of such a
haracterization, we present one more story.

In 1969, Journal of Combinatorial Theory published the paper entitled ‘‘An interval graph is a comparability
graph’’ [26]. One year later, the same journal published another paper entitled ‘‘An interval graph is not a
comparability graph’’ [24]. Each of the two classes mentioned in these papers is hereditary, and for each of them,
there exists a list of minimal forbidden induced subgraphs. Apparently, in 1969 this list was not available for at least
one of them, because minimal forbidden induced subgraphs provide a simple way of comparing two classes.

ow let us shift our discussion from classes of graphs to families of classes and ask whether a family A of classes closed
nder taking subclasses can be characterized in terms of minimal classes that do not belong to A. In a well-quasi-ordered
orld, the answer to this question is ‘yes’. For instance, the graph minor relation is a well-quasi-order [43], and in the

amily of minor-closed classes of graphs the class of planar graphs constitutes a unique minimal class of unbounded
ree-width [42]. The induced subgraph relation is not a well-quasi-order, because it contains infinite antichains of graphs,
or instance, cycles. As a result, the lattice of hereditary classes contains infinite strictly descending chains of classes, and
ence minimal classes outside of a particular family may not exist. In this case, we employ the notion of boundary classes.
his is a relaxation of the notion of minimal classes and it is defined as follows.
Let A be a family of hereditary classes closed under taking subclasses, and let X1 ⊇ X2 ⊇ X3 ⊇ . . . be a chain of classes

not in A. The intersection of all classes in this chain is called a limit class and a minimal limit class is called a boundary class
for A. The importance of this notion is due to the fact that it plays the role of minimal forbidden elements for hereditary
classes defined by finitely many forbidden induced subgraphs (finitely defined classes, for short). More precisely, a finitely
defined class X belongs to A if and only if X contains none of the boundary classes for A.

The notion of boundary classes was formally introduced by Alekseev in [6], where he proved basic results related
to this notion. However, implicitly it appeared earlier. In particular, the famous Gyárfás–Sumner conjecture [17] can be
stated in the terminology of boundary classes as follows: the class of forests is the only boundary class for the family of
hereditary classes of bounded chromatic number. Notice that for this family there is one more obstruction, the class of
complete graphs, which is a minimal hereditary class of unbounded chromatic number.

Together, minimal and boundary classes, are known as critical properties, and they provide a universal and uniform
approach to the description of various families of classes. In particular, in [33] this approach was applied to hereditary
classes of graphs of bounded tree-width, providing a complete dichotomy for finitely defined classes with respect to
bounded/unbounded tree-width.

In the present paper, we apply this approach in order to provide a complete parametric description of several lower
layers in the lattice of hereditary classes. This part of the universe consists of classes that are well-quasi-ordered by
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nduced subgraphs. As a result, each of the lower layers admits a description in terms of minimal hereditary classes that
o not belong to the layer. We obtain this description by means of a number of Ramsey-type results derived in Section 3. In
ection 4, we show that our parametric characterization of the lower layers is consistent with the quantitative description
f this part of the universe, in the sense that for every jump in the speed of hereditary classes, there is a parameter
esponsible for the jump. Our parametric description covers all hereditary classes with speeds up to the Bell number
Section 5). Beyond this level, only partial information is available, which we present in Section 6 together with some
pen problems and conjectures. All preliminary information related to the topic of the paper can be found in Section 2.

. Graphs, classes of graphs and graph parameters

We consider only simple undirected graphs without loops and multiple edges and denote the vertex set and the edge
et of a graph G by V (G) and E(G), respectively. If v is a vertex of G, then N(v) is its neighbourhood, i.e. the set of vertices
f G adjacent to v. The closed neighbourhood of v is defined and is denoted as N[v] = N(v)∪ {v}. The degree of v is |N(v)|.
Given a graph G and a subset U ⊆ V (G), we denote by G[U] the subgraph of G induced by U , i.e. the subgraph obtained

rom G by deleting all the vertices not in U . We say that a graph G contains a graph H as an induced subgraph if H is
isomorphic to an induced subgraph of G. If G contains no induced subgraphs isomorphic to H , then we say that G is H-free
nd call H a forbidden induced subgraph for G. As usual, we denote by Kn a complete graph with n vertices and by Pn a
hordless path with n vertices. By nG we denote the disjoint union of n copies of a graph G.
For a graph G, we denote by G the complement of G. Similarly, for a set X of graphs, we denote by X the set of

omplements of graphs in X . A graph G is said to be n-universal for a set X of graphs if G contains all n-vertex graphs
rom X as induced subgraphs.

In a graph,

• an independent set is a set of vertices no two of which are adjacent,
• a clique is a set of vertices every two of which are adjacent,
• a matching is a set of edges no two of which share a vertex.

class of graphs is a set of graphs closed under isomorphism. A class is hereditary if it is closed under taking induced
ubgraphs. Two hereditary classes of particular interest in this paper are split graphs and bipartite graphs.
A graph G is a split graph if V (G) can be partitioned into an independent set and a clique, and G is bipartite if V (G)

an be partitioned into two independent sets. A bipartite graph G given together with a bipartition of its vertices into
ndependent sets A and B will be denoted G = (A, B, E), in which case we will say that A and B are the colour classes or
imply the parts of G. If every vertex of A is adjacent to every vertex of B, then G = (A, B, E) is complete bipartite, also
nown as a biclique. A star is a complete bipartite graph with one of the colour classes being of size 1. The star with the
econd colour class being of size n is denoted K1,n. Throughout the paper we denote by 2K1,n the bipartite graph in which
he centres of the two stars belong to the same part of its bipartition and call any graph of this form a double star.

The bipartite complement of a bipartite graph G = (A, B, E) is the bipartite graph Gbc
= (A, B, E ′), where ab ∈ E ′ if and

nly if ab ̸∈ E for any a ∈ A and b ∈ B. Observe that the bipartite complement of 2K1,n is 2K1,n again. The bi-codegree of a
ertex v in a bipartite graph G = (A, B, E) is the degree of v in the bipartite complement of G. Clearly, by creating a clique
n one of the colour classes of a bipartite graph, we transform it into a split graph, and vice versa.

Given a graph G and two disjoint subset A, B of its vertices, we denote by G[A, B] the bipartite (not necessarily induced)
ubgraph with colour classes A and B formed by the edges of G between A and B.
A graph G is complete multipartite if the complement of G is a disjoint union of cliques. It is well-known (and not

ifficult to see) that G is complete multipartite if and only if G is P3-free.
For a graph G,

• the independence number α(G) of G is the size of a maximum independent set in G,
• the clique number ω(G) of G is the size of a maximum clique in G,
• the matching number µ(G) of G is the size of a maximum matching in G,
• the chromatic number of G is the minimum number of sets in a partition of V (G) into independent sets,
• the co-chromatic number of G is the minimum number of sets in a partition of V (G) such that every subset is either

a clique or an independent set,
• the biclique number of a graph G is the size of a maximum complete bipartite (not necessarily induced) subgraph of

G with equal parts.

More graph classes and graph parameters will be introduced in the subsequent sections.

3. Graph parameters and Ramsey theory

In 1930, a 26 years old British mathematician Frank Ramsey proved the following theorem, known nowadays as
Ramsey’s Theorem.
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heorem 1 ([41]). For any positive integers k, r, p, there exists a minimum positive integer F = F (k, r, p) such that if the
-subsets of an F-set are coloured with r colours, then there is a monochromatic p-set, i.e. a p-set all of whose k-subsets have
he same colour.

We will refer to the number F (k, r, p) defined in this theorem as the Frank Ramsey number.
It is not difficult to see that with k = 1 Ramsey’s theorem coincides with Pigeonhole Principle. For k = 2, the theorem

dmits an interpretation in the terminology of graph theory, since colouring 2-subsets can be viewed as colouring the
dges of a complete graph: for any positive integers r and p, there is a positive integer n = n(r, p) such that if the edges
f an n-vertex complete graph are coloured with r colours, then there is a monochromatic clique of size p, i.e. a clique all
f whose edges have the same colour.
In the case of r = 2 colours, the graph-theoretic interpretation of Ramsey’s Theorem can be further rephrased as

ollows.

heorem 2. For any positive integer p, there is a minimum positive integer R(p) such that every graph with at least R(p)
ertices has either a clique of size p or an independent set of size p.

The number R(p) is known as the symmetric Ramsey number. In other words, R(p) = F (2, 2, p), where F (k, r, p) is the
Frank Ramsey number. Theorem 2 also admits a non-symmetric formulation as follows.

Theorem 3. For any positive integers p and q, there is a minimum positive integer R(p, q) such that every graph with at least
R(p, q) vertices has either a clique of size p or an independent set of size q.

The number R(p, q) is known as the Ramsey number R(p, q). In particular, R(p, p) = R(p).
Theorem 3 (or Theorem 2) allows us to make the following conclusion: if X is a hereditary class that does not contain

a complete graph Kp and an edgeless graph K q, then graphs in X have fewer than R(p, q) vertices, i.e. X is finite. More
ormally, Theorem 3 implies the following conclusion.

heorem 4. The class of complete graphs and the class of edgeless graphs are the only two minimal infinite hereditary classes
f graphs.

On the other hand, it is not difficult to see that the reverse is also true: Theorem 4 implies Theorem 3. In other words,
hese two theorems are equivalent.

Theorem 4 characterizes the family of hereditary classes containing graphs with a bounded number of vertices in terms
f minimal ‘‘forbidden’’ elements, i.e. minimal classes with an arbitrarily large number of vertices. It turns out that various
ther parameters admit a similar characterization. For instance, directly from Ramsey’s Theorem it follows that

• the class of complete graphs and the class of stars (and all their induced subgraphs) are the only two minimal
hereditary classes of graphs of unbounded vertex degree,

• the class of complete graphs and the class of complete bipartite graphs are the only two minimal hereditary classes
of graphs of unbounded biclique number.

One more example of this type was obtained in [17] and deals with the splitness of a graph G, which is the minimum
such that V (G) can be partitioned into two subsets A and B with α(G[A]) ≤ k and ω(G[B]) ≤ k. According to a result
roved in [17], the class of complete multipartite graphs and the class of their complements are the only two minimal
ereditary classes of graphs of unbounded splitness.
In the next section, we use Ramsey-type arguments in order to characterize several other graph parameters by means

f minimal hereditary classes where these parameters are unbounded. In addition to the original Ramsey’s Theorem we
ill need its bipartite version, which can be stated as follows.

heorem 5. For every positive integer s, there is a positive integer n = n(s) such that every bipartite graph G with at least n
ertices in each part contains either a biclique with colour classes of size s or its bipartite complement.

.1. Independence number, clique number and complex number

We repeat that α(G) stands for the size of a maximum independent set in G, and ω(G) for the size of a maximum clique
n G. Now we introduce one more parameter:

c(G) = min(α(G), ω(G)) is the complex number of G.

In what follows we give a Ramsey-type characterization of this parameter, i.e. we characterize it in terms of minimal
ereditary classes where this parameter is unbounded. To this end, let us denote by

S the class of graphs partitionable into a clique and a set of isolated vertices. Also, let Sn be a graph in S with a clique
of size n and a set of isolated vertices of size n. Obviously, Sn is n-universal for graphs in S , i.e. it contains every
n-vertex graph from S as an induced subgraph.
137
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heorem 6. S and S are the only two minimal hereditary classes of graphs of unbounded complex number.

roof. Obviously, the complex number of graphs in S and S can be arbitrarily large. Conversely, let X be a hereditary
lass containing a graph G with c(G) ≥ k for each value of k. Then G contains a clique C of size k and an independent set
of size k. Since C and I have at most one vertex in common, we may assume without loss of generality that they are
isjoint, and since k can be arbitrarily large, in the bipartite graph G[C, I] we can find an arbitrarily large biclique or its

bipartite complement (Theorem 5). Therefore, graphs in X contain either Sn or Sn for arbitrarily large values of n, i.e. X
contains either S or S. □

.2. Degree, co-degree and complex degree

Let G be a graph and v a vertex of G. We denote by d(v) the degree of v and by d(v) the co-degree of v, i.e. the degree
f v in the complement of G. The c-degree of v is denoted and defined as follows: cd(v) = min(d(v), d(v)).
As usual, ∆(G) is the maximum vertex degree in G. Also, we denote by ∆(G) the maximum co-degree and by c∆(G)

the maximum c-degree in G. We call c∆(G) the complex degree of G. In order to characterize this parameter by means of
inimal hereditary classes where complex degree is unbounded, let us denote by

Q the class of graphs whose vertices can be partitioned into a set inducing a star and a set of isolated vertices. Also, let
Qn be a graph in Q whose vertices can be partitioned into an induced star K1,n and a set of isolated vertices of size
n. Obviously, Qn is n-universal for graphs in Q, i.e. it contains every n-vertex graph from Q as an induced subgraph.

B the class of complete bipartite graphs (an edgeless graph is counted as complete bipartite with one part being empty).
For consistency of notation with previously defined classes, we will denote a biclique (complete bipartite graph) with
n vertices in each part of its bipartition by Bn. Clearly, Bn is n-universal for graphs in B, i.e. it contains all n-vertex
graphs in B as induced subgraphs.

heorem 7. S , S , Q, Q, B and B are the only minimal hereditary classes of graphs of unbounded complex degree.

Proof. Obviously, the complex degree of graphs in S , S , Q, Q, B and B can be arbitrarily large. Conversely, let X be a
ereditary class containing a graph G with c∆(G) ≥ k for each value of k. Then G contains a vertex v such that d(v) ≥ k
nd d(v) ≥ k. Let A be the set of neighbours of v and B the set of its non-neighbours. Since both A and B can be arbitrarily

large, each of them contains either a big clique or a big independent set (Theorem 3), and G[A, B] contains either a big
biclique or its bipartite complement (Theorem 5). Therefore, graphs in X contain either Sn or Sn or Qn or Q n or Bn or Bn
for arbitrarily large values of n. As a result, X contains at least one of S , S , Q, Q, B and B. □

3.3. Matching number, co-matching number and c-matching number

We repeat that the matching number µ(G) of a graph G is the size of a maximum matching in G. Also, we define the
co-matching number of G to be the size of a maximum matching in the complement of G and denote it by µ(G). The
-matching number of G is defined and denoted as follows: cµ(G) = min(µ(G), µ(G)). In this section, we characterize all

three parameters in terms of minimal hereditary classes where these parameters are unbounded. To this end, we denote
by

M the class of graphs of vertex degree at most 1. By Mn we denote an induced matching of size n, i.e. the up to an
isomorphism unique graph from this class with 2n vertices each of which has degree 1. Clearly, Mn is n-universal
for graphs in M.

Z the class of chain graphs. These are bipartite graphs in which the vertices in each colour class can be linearly ordered
under inclusion of their neighbourhoods, i.e. the neighbourhoods form a chain. By Zn we denote a chain graph such
that for each i ∈ {1, 2, . . . , n}, each part of the graph contains exactly one vertex of degree i (this graph is also known
as a half-graph, see e.g. [20]). Fig. 1 represents the graph Zn for n = 5. It is known [34] that Zn is n-universal for
graphs in Z .

emma 1. For any two positive integers s, t, there exists a positive integer q = q(s, t) such that every bipartite graph G with
matching of size q contains either an induced Ms or an induced Bt .

roof. Let us denote m = 2max(s, t) and q = F (2, 4,m), where F (k, r, p) is the Frank Ramsey number (Theorem 1).
onsider a matching M = {x1y1, . . . , xqyq} of size q. To each pair xiyi, xjyj (i < j) of edges of M we assign one of the four
olours as follows:

• colour 1 if G contains no edges between xiyi and xjyj,
• colour 2 if G contains both possible edges between xiyi and xjyj,
• colour 3 if G contains the edge xiyj but not the edge yixj,
• colour 4 if G contains the edge y x but not the edge x y .
i j i j
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Fig. 1. The graph Z5 .

By Ramsey’s Theorem, M contains a monochromatic set M ′ of edges of size m. If the colour of each pair in M ′ is

1, then M ′ is an induced matching of size m ≥ 2s > s,
2, then the vertices of M ′ induce a complete bipartite graph Bm with m ≥ 2t > t ,
3 or 4, then the vertices of M ′ induce a Zm and hence G contains a complete bipartite graph Bm/2 with m/2 ≥ t . □

Lemma 2. For any positive integers s, t, p, there exists a positive integer Q = Q (s, t, p) such that every graph G with a
matching of size Q contains either an induced Ms or an induced Bt or a clique Kp.

Proof. Let us denote Q = R(p, R(p, q)), where R is the (non-symmetric) Ramsey number and q = F (2, 4, 2max(s, t)) is
the value defined in the proof of Lemma 1. We consider a matching M of size Q in G and colour the endpoints of each
edge of M in two colours, say white and black, arbitrarily. Since the set of white vertices has size Q , it must contain either
a clique Kp, in which case we are done, or an independent set A of size R(p, q). In the latter case, we look at the black
vertices matched with the vertices of A. According to the size of this set, it must contain either a clique Kp, in which case
we are done, or an independent set A′ of size q. In the latter case, we denote by A′′ the set of white vertices matched
with the vertices of A′. Then A′ and A′′ induce a bipartite graph with a matching of size q, in which case, by Lemma 1, G
contains either an induced matching of size s or an induced complete bipartite graph Bt . □

The above sequence of results allows us to make the following conclusions, the first two of which follow directly from
Lemma 2.

Theorem 8. M, B and the class of complete graphs are the only three minimal hereditary classes of graphs of unbounded
matching number.

Theorem 9. M, B and the class of edgeless graphs are the only three minimal hereditary classes of graphs of unbounded
o-matching number.

heorem 10. M, B, S , M, B and S are the only six minimal hereditary classes of graphs of unbounded c-matching number.

Proof. Clearly, graphs in M, B, S , M, B and S can have arbitrarily large c-matching number. Conversely, let X be a
ereditary class with unbounded c-matching number. Assume X contains none of M, B, M, B, i.e. there is a value of p

such that none of Mp, Bp, Mp, Bp belongs to X . By assumption, X contains a graph G with cµ(G) ≥ k for each value of k,
i.e. G contains a matching and a co-matching of size k. Since k can be arbitrarily large and both Mp and Bp are forbidden,
G contains a large clique (Lemma 2). Similarly, G contains a large independent set. Therefore, X contains graphs with
arbitrarily large complex number. But then X contains either S or S (Theorem 6). □

3.4. Neighbourhood diversity

The neighbourhood diversity of a graph was introduced in [31]. This parameter can be defined as follows.

Definition 1. We say that two vertices x and y are similar if there is no vertex z distinguishing them, i.e. if there is
no vertex z adjacent to exactly one of x and y. Clearly, the similarity is an equivalence relation. We denote by nd(G) the
number of similarity classes in G and call it the neighbourhood diversity of G.

In order to characterize the neighbourhood diversity by means of minimal hereditary classes of graphs where this
parameter is unbounded, we denote by

bc the class of bipartite complements of graphs in M. The bipartite complement of the graph Mn will be denoted Mbc
n .

Clearly, Mbc
n is n-universal for graphs in Mbc .

M∗ the class of split graphs obtained from graphs in M by creating a clique in one of the colour classes. The graph
obtained from Mn by creating a clique in one of its colour classes will be denoted by M∗

n . Clearly, M
∗
n is n-universal

for graphs in M∗.
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Z∗ the class of split graphs obtained from graphs in Z by creating a clique in one of the colour classes. This class is
known in the literature as the class of threshold graphs. The graph obtained from Zn by creating a clique in one of its
colour classes will be denoted Z∗

n . This graph is n-universal for threshold graphs [25].

Before we provide a Ramsey-type characterization of the neighbourhood diversity, we introduce an auxiliary param-
eter.

Definition 2. A skew matching in a graph G is a matching {x1y1, . . . , xqyq} such that yi is not adjacent to xj for all i < j.
The complement of a skew matching is a sequence of pairs of vertices that create a skew matching in the complement of
G.

Lemma 3. For any positive integer m, there exists a positive integer r = r(m) such that any bipartite graph G = (A, B, E) of
neighbourhood diversity r contains either a skew matching of size m or its complement.

Proof. Define r = 22m and let D be a set of pairwise non-similar vertices of size r/2 chosen from the same colour class
of G, say from A. Let y1 be a vertex in B distinguishing the set D (i.e. y1 has both a neighbour and a non-neighbour in D)
and let us say that y1 is big if the number of its neighbours in D is larger than the number of its non-neighbours in D,
and small otherwise. If

y1 is small, we arbitrarily choose its neighbour in D, denote it by x1 and remove all neighbours of y1 from D.
y1 is big, we arbitrarily choose a non-neighbour of y1 in D, denote it by x1 and remove all non-neighbours of y1 from

D.

Observe that y1 does not distinguish the vertices in the updated set D.
We apply the above procedure to the set D 2m − 1 times and obtain in this way a sequence of 2m − 1 pairs xiyi. If m

of these pairs contain small vertices yi, then these pairs create a skew matching (of size m). Otherwise, there is a set of
m pairs containing big vertices yi, in which case these pairs create the complement of a skew matching. □

Lemma 4. For any positive integer p, there exists a positive integer q = q(p) such that any bipartite graph G = (A, B, E) of
neighbourhood diversity q contains either an induced Mp or an induced Zp or an induced Mbc

p .

Proof. Let m = R(p + 1) (where R is the symmetric Ramsey number) and q = 22m. According to the proof of Lemma 3,
G contains a skew matching of size m or its complement. If G contains a skew matching M , we colour each pair xiyi, xjyj
(i < j) of edges of M in two colours as follows:

• colour 1 if xi is not adjacent to yj,
• colour 2 if xi is adjacent to yj.

By Ramsey’s Theorem, M contains a monochromatic set M ′ of edges of size p + 1. If the colour of each pair of edges in
M ′ is

1, then M ′ is an induced matching of size p + 1,
2, then the vertices of M ′ induce a Zp+1.

Analogously, in the case when G contains the complement of a skew matching, we find either an induced Mbc
p+1 or an

induced Zp (observe that the bipartite complement of Zp+1 contains an induced Zp). □

Lemma 5. For any positive integer p, there exists a positive integer Q = Q (p) such that every graph G of neighbourhood
diversity Q contains one of the following nine graphs as an induced subgraph: Mp, Mbc

p , Zp, Mp, M
bc
p , Zp, M∗

p , M
∗

p , Z
∗
p .

Proof. Let Q = R(q), where q = 22m and m = R(R(p) + 1) (R is the symmetric Ramsey number). We choose one vertex
from each similarity class of G and find in the chosen set a subset A of vertices that form an independent set or a clique
of size q = 22m. Let us call the vertices of A white. We denote the remaining vertices of G by B and call them black. Let
G′

= G[A, B]. By the choice of A, all vertices of this set have pairwise different neighbourhoods in G′. Therefore, according
to the proof of Lemma 4, G′ contains a subgraph G′′ inducing either Mn, or Mbc

n or Zn with n = R(p). Among the n black
vertices of G′′, we can find a subset B′ of vertices that form either a clique or an independent set of size p in the graph G.
Then B′ together with a subset of A of size p induce in G one of the nine graphs listed in the statement of the theorem. □

Since the nine graphs of Lemma 5 are universal for their respective classes, we make the following conclusion.

Theorem 11. There exist exactly nine minimal hereditary classes of graphs of unbounded neighbourhood diversity: M, Mbc ,
Z , M, Mbc , Z , M∗, M∗, Z∗.
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.5. VC-dimension

A set system (X, S) consists of a set X and a family S of subsets of X . A subset A ⊆ X is shattered if for every subset
⊆ A there is a set C ∈ S such that B = A ∩ C . The VC-dimension of (X, S) is the cardinality of a largest shattered subset

of X .
The VC-dimension of a graph G = (V , E) was defined in [8] as the VC-dimension of the set system (V , S), where S the

family of closed neighbourhoods of vertices of G, i.e. S = {N[v] : v ∈ V (G)}. Let us denote the VC-dimension of G by
c[G].
In this section, we characterize VC-dimension by means of three minimal hereditary classes where this parameter is

nbounded. To this end, we first redefine it in terms of open neighbourhoods as follows. Let vc(G) be the size of a largest
et A of vertices of G such that for any subset B ⊆ A there is a vertex v outside of A with B = A ∩ N(v). In other words,
c(G) is the size of a largest subset of vertices shattered by open neighbourhoods of vertices of G.
We start by showing that the two definitions are equivalent in the sense that they both are either bounded or

nbounded in a hereditary class. To prove this, we introduce the following terminology. Let A be a set of vertices that is
hattered by a collection of neighbourhoods (open or closed). For a subset B ⊆ A we will denote by v(B) the vertex whose
eighbourhood (open or closed) intersects A at B. We will say that B is closed if v(B) belongs to B, and open otherwise.

emma 6. vc(G) ≤ vc[G] ≤ vc(G)(vc(G) + 1) + 1

roof. The first inequality is obvious. To prove the second one, let A be a subset of V (G) of size vc[G] that is shattered by
collection of closed neighbourhoods. If A has no closed subsets, then vc[G] = vc(G). Otherwise, let B be a closed subset
f A.
Assume first that |B| = 1. Then B = {v(B)} and v(B) is isolated in G[A], i.e. it has no neighbours in A. Let C be the set

of all such vertices, i.e. the set of vertices each of which is a closed subset of A. By removing from A any vertex x ∈ C we
btain a new set A and may assume that it has no closed subsets of size 1. Indeed, for any vertex y ∈ C different from x,
here must exist a vertex y′

̸∈ A such that N(y′)∩ A = {x, y} (since A is shattered). After the removal of x from A, we have
(y′)∩ A = {y} and hence {y} is not a closed subset anymore. This discussion allows us to assume in what follows that A
as no closed subsets of size 1, in which case we only need to show that vc[G] ≤ vc(G)(vc(G) + 1).
Assume now that B is a closed subset of A of size at least 2. Suppose that B − v(B) contains a closed subset C ,

.e. v(C) ∈ C . Observe that v(C) is adjacent to v(B), as every vertex of B − v(B) is adjacent to v(B). But then N[v(C)] ∩ A
ontains v(B) contradicting the fact that N[v(C)] ∩ A = C . This contradiction shows that every subset of B − v(B) is open,
.e. |B − v(B)| ≤ vc(G).

The above observation allows us to apply the following procedure: as long as A contains a closed subset B with at
least two vertices, delete from A all vertices of B except for v(B). Denote the resulting set by A∗. Assume the procedure
was applied p times and let B1, . . . , Bp be the closed subsets it was applied to. It is not difficult to see that the set
{v(B1), . . . , v(Bp)} has no closed subsets and hence its size cannot be larger than vc(G), i.e. p ≤ vc(G). Combining, we
conclude:

vc[G] = |A| ≤ |A∗
| +

p∑
i=1

|Bi − v(Bi)| ≤ vc(G) + p · vc(G) ≤ vc(G)(vc(G) + 1). □

This lemma allows us to assume that if A is shattered, then there is a set C disjoint from A such that for any subset
B ⊆ A there is a vertex v ∈ C with B = A ∩ N(v), in which case we will say that A is shattered by C , or C shatters A.

Let Wn = (A, B, E) be the bipartite graph with |A| = n and |B| = 2n such that all vertices of B have pairwise different
neighbourhoods in A. Also, let Dn be the split graph obtained from Wn by creating a clique in A.

Lemma 7. The graph Wn is an n-universal bipartite graph, i.e. it contains every bipartite graph with n vertices as an induced
subgraph.

Proof. Let G be a bipartite graph with n vertices and with parts A and B of size n1 and n2, respectively. By adding at most
n2 vertices to A, we can guarantee that all vertices of B have pairwise different neighbourhoods in A. Clearly, Wn contains
the extended graph and hence it also contains G as an induced subgraph. □

Corollary 1. Every co-bipartite graph with at most n vertices is contained in W n and every split graph with at most n vertices
s contained in both Dn and Dn.

Lemma 8. If a set A shatters a set B with |B| = 2n, then B shatters a subset A∗ of A with |A∗
| = n.

Proof. Without loss of generality we assume that B is the set of all binary sequences of length n. Then every vertex a ∈ A
efines a Boolean function of n variables (the neighbourhood of a consists of the binary sequences, where the function
akes value 1). For each i = 1, . . . , n, let us denote by ai the Boolean function such that ai(x1, . . . , xn) = 1 if and only if
i = 1. Let A′ be an arbitrary subset of A∗

= {a1, . . . , an} and α = (α1, . . . , αn) its characteristic vector, i.e. αi = 1 if and
nly if a ∈ A′. Clearly, α ∈ B and N(α) ∩ A∗

= A′. Therefore, B shatters A∗. □
i
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emma 9. For every n, there exists a k = k(n) such that every graph G with vc(G) = k contains one of Wn,W n,Dn,Dn as
an induced subgraph.

Proof. Define k = R(2R(n)), where R is the symmetric Ramsey number. Since vc(G) = k, there are two subsets A and B of
V (G) such that |A| = k and B shatters A. By definition of k, A must have a subset A′ of size 2R(n) which is a clique or an
independent set. Clearly, B shatters A′ and hence, by Lemma 8, A′ shatters a subset B′ of B of size R(n). Then B′ must have
subset B′′ of size n which is either a clique or an independent set. Now G[A′

∪ B′′
] is either bipartite or co-bipartite or

plit graph, |B′′
| = n and A′ shatters B′′. Therefore, G[A′

∪ B′′
] contains one of Wn,W n,Dn,Dn as an induced subgraph. □

Theorem 12. The classes of bipartite, co-bipartite and split graphs are the only three minimal hereditary classes of graphs of
unbounded VC-dimension.

Proof. Clearly these three classes have unbounded VC-dimension, since they contain Wn,W n,Dn,Dn with arbitrarily large
alues of n.
Now let X be a hereditary class containing none of these three classes. Therefore, there is a bipartite graph G1, a

o-bipartite graph G2 and a split graph G3 which are forbidden for X . Denote by n the maximum number of vertices in
hese graphs.

Assume that VC-dimension is not bounded for graphs in X and let G ∈ X be a graph with vc(G) = k, where k = k(n)
s from Lemma 9. Then G contains one of Wn,W n,Dn,Dn, say Wn. Since Wn is n-universal (Lemma 7), it contains G1
s an induced subgraph, which is impossible because G1 is forbidden for graphs in X . This contradiction shows that

VC-dimension is bounded in the class X . □

4. Graph parameters and the speed of hereditary classes

Given a hereditary class X , we denote by Xn the number of n-vertex labelled graphs in X and call it the speed of X .
According to Ramsey’s Theorem, there exist precisely two minimal infinite hereditary classes: the complete graphs

and the edgeless graphs. In both cases, the speed is obviously Xn = 1. On the other extreme, lies the set of all simple
graphs, in which case the speed is Xn = 2(

n
2). Between these two extremes, there are uncountably many other hereditary

classes and their speeds have been extensively studied, originally in the special case of a single forbidden subgraph, and
more recently in general. For example, Erdős et al. [23] and Kolaitis et al. [29] studied Kr -free graphs, Erdős et al. [21]
studied classes where a single graph is forbidden as a subgraph (not necessarily induced), and Prömel and Steger obtained
a number of results [38–40] for classes defined by a single forbidden induced subgraph. This line of research culminated
in a breakthrough result stating that for every hereditary class X different from the set of all finite graphs, the entropy
limn→∞

log2 Xn
(n2)

satisfies

lim
n→∞

log2 Xn(n
2

) = 1 −
1

k(X)
, (1)

where k(X) is a positive integer called the index of X . To define this notion, let us denote by Ei,j the class of graphs whose
vertices can be partitioned into at most i independent sets and j cliques. In particular, E2,0 is the class of bipartite graphs,
E0,2 is the class of co-bipartite (i.e. complements of bipartite) graphs and E1,1 is the class of split graphs. Then k(X) is the
largest k such that X contains Ei,j for some i, j with i+ j = k. This result was obtained independently by Alekseev [4] and
Bollobás and Thomason [15,16] and is known nowadays as the Alekseev–Bollobás–Thomason Theorem (see e.g. [7]). This
theorem shows that the set of possible values for the entropy is not continuous, but in fact undergoes a series of discrete
‘jumps’. In particular, the entropy jumps from 0 to 1/2.

A systematic study of hereditary classes of low speed (0 entropy) was initiated by Scheinerman and Zito in [44]. In
particular, they revealed that the speed jumps

• from constant (classes X with Xn = Θ(1)) to polynomial (Xn = nΘ(1)),
• from polynomial to exponential (Xn = 2Θ(n)) and
• from exponential to factorial (Xn = nΘ(n)).

Independently, similar results have been obtained by Alekseev in [5]. Moreover, Alekseev described the set of minimal
classes in all the four lower layers and the asymptotic structure of classes in the first three of them.

In this section, we complement this line of research by identifying graph parameters responsible for the above
mentioned jumps. In particular, Theorem 12 together with Alekseev–Bollobás–Thomason Theorem implies the following
conclusion.

Theorem 13. The entropy of a hereditary class X equals zero if and only if the VC-dimension of graphs in X is bounded by a
constant.

In the rest of the section we characterize other jumps of the speed by means of graph parameters. In the proofs we
use the results and notation of Section 3.
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.1. Hereditary classes of constant speed

The family of hereditary classes of constant speed constitutes the lowest layer of the lattice of hereditary classes. To
haracterize classes in this layer, we introduce one more parameter as follows. Let S(G) and s(G) denote the size of a
argest and a smallest similarity class (see Definition 1) of vertices in G, respectively. Then the similarity difference of G is
S(G) − s(G).

Theorem 14. The speed of a hereditary class X is constant if and only if the similarity difference of graphs in X is bounded
by a constant.

Proof. To prove the theorem we introduce the following classes of graphs:

R the class of graphs each of which is either an edgeless graph or a star,
E1 the class of graphs with at most one edge.

The proof of the theorem is based on the following claim.

(*) If none of R, E1, R, E1 is a subclass of X, then X contains finitely many graphs different from complete and empty graphs.
Indeed, if none of the four classes is a subclass of X , then there is a number p such that none of the following graphs
belongs to X: K1,p, K 1,p, H1

p , H
1
p , where H1

p is a graph from E1 containing one edge and p isolated vertices.
Let G be a graph in X which is neither complete nor edgeless. Then G contains a vertex x which has both a neighbour
y and a non-neighbour z. The remaining vertices of G can be partitioned (with respect to x, y, z) into at most eight
subsets. For U ⊆ {x, y, z}, we denote VU = {v ̸∈ {x, y, z} : N(v) ∩ {x, y, z} = U}. To prove the claim, let us show
that each of VU contains at most R(p) vertices, where R(p) is the symmetric Ramsey number.
If U = ∅, then |VU | < R(p) because a clique of size p in VU together with x creates an induced K 1,p, while an
independent set of size p in VU together with x and y creates an induced H1

p , which is impossible because both
graphs are forbidden in X .
If |U | = 1, say U = {x}, then |VU | < R(p) because a clique of size p in VU together with y or z creates an induced
K 1,p, while an independent set of size p in VU together with x creates an induced K1,p, which is impossible because
both graphs are forbidden in X .
For |U | > 1, the result follows by complementary arguments.

Now we turn to the proof of the theorem and assume first that X has a constant speed, then none of R, E1, R, E1 is
subclass of X , since Rn = Rn = n + 1 and E1

n = E1
n =

(n
2

)
+ 1. Therefore, by Claim (*), X contains finitely many graphs

different from complete and empty graphs, and hence the similarity difference of graphs in X is bounded by a constant.
Conversely, assume that the similarity difference of graphs in X is bounded by a constant. Then none of R, E1, R, E1 is

a subclass of X , because this parameter is unbounded in each of the four listed classes. Therefore, by Claim (*), X contains
finitely many graphs different from complete and empty graphs, implying that X has a constant speed. □

4.2. Hereditary classes with a polynomial speed of growth

According to the proof of Theorem 14, the four minimal classes above the constant layer are R, E1, R and E1. Each of
hem contains polynomially many n-vertex labelled graphs and hence the layer following the constant one is polynomial.

heorem 15. Let X be a hereditary class above the constant layer, then the speed of X is polynomial if and only if the complex
egree and c-matching number are bounded for graphs in X by a constant.

roof. If the speed of a hereditary class X is polynomial, then it contains none of the classes B, S,Q,M,B, S,Q,M,
ecause Sn = 2n

− n, Bn = 2n−1, Qn = n2n−1
− n(n+ 1)/2+ 1 and Mn is at least ⌊n/2⌋!. This implies by Theorems 7 and

0 that the complex degree and c-matching number are bounded for graphs in X .
Conversely, assume that the complex degree and c-matching number are bounded for graphs in X by a constant k

nd let G be a graph in X with n vertices. Without loss of generality, let µ(G) ≤ k. Therefore, n − 2k vertices form an
ndependent set I in G. Also, since the complex degree is bounded in G, every vertex v outside of I has at most k neighbours
r at most k non-neighbours in I . By removing from I either k neighbours or k non-neighbours of v, for each v ̸∈ I , we
ransform I into a similarity class of size n − c , where c ≤ 2k(k + 1). It is not difficult to see that the number of labelled
raphs on n vertices with a similarity class of size n − c is

(n
c

)
2(

c+1
2 )+1 and hence the speed of X is polynomial. □

.3. Hereditary classes with an exponential speed of growth

The proof of Theorem 15 tells us that there are eight minimal classes above the polynomial layer, namely
, S,Q,M,B, S,Q, and M. Each of these classes contains at least exponentially many n-vertex labelled graphs and hence
he next layer is the exponential one.
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heorem 16. Let X be a hereditary class above the polynomial layer, then the speed of X is exponential if and only if the
eighbourhood diversity is bounded for graphs in X by a constant.

roof. If the speed of X is exponential, then X contains none of the following classes as a subclass:

M,Mbc,Z,M,Mbc
,Z,M∗,M∗

,Z∗.

Indeed, as stated previously, the number of n-vertex labelled graphs in M is at least ⌊n/2⌋!. It is not difficult to see that
the same is true for each of the other listed classes. This implies, by Theorem 11, that the neighbourhood diversity is
bounded for graphs in X .

Conversely, assume the neighbourhood diversity is bounded for graphs in X by a constant k. It is not difficult to see
that the number of labelled graphs on n vertices with at most k similarity classes is at most kn2(

k
2)+k. Therefore, the speed

of X is exponential. □

5. Beyond bounded neighbourhood diversity

We observe that among the nine minimal classes of unbounded neighbourhood diversity there are two basic structures:
chain graphs and graphs of degree at most 1 (matchings, for short). Both are subclasses of bipartite graphs. The remaining
seven classes can be obtained from these two by flipping (complementing) the edges within or between the two parts in
their bipartition. We will refer to all these classes as flipped chain graphs and flipped matchings. Note that chain graphs are
self-complementary in the bipartite sense, i.e. flipping the edges between the two parts produces a chain graph again.

The two basic minimal structures of unbounded neighbourhood diversity (chain graphs and matchings) suggest an
idea of two basic parameters that follow neighbourhood diversity in the hierarchy of graph complexity measures. They are
known as uniformicity and lettericity. A common property of these parameters is that boundedness of any of them implies
well-quasi-orderability by induced subgraphs. As a result, each of them admits a characterization in terms of minimal
hereditary classes where the respective parameter is unbounded. For uniformicity, this characterization can be derived,
with some care, from the results in [11,13,14] and we present it in Section 5.2. For lettericity, such a characterization is
known only partially, and in Section 5.3 we propose a conjecture concerning the structure of minimal hereditary classes
of unbounded lettericity.

For both parameters (uniformicity and lettericity), the set of minimal classes is infinite. For uniformicity, we describe
this set in two steps starting with a related parameter, known as distinguishing number.

5.1. Distinguishing number

The notion of distinguishing number appeared implicitly, without a name and a formal definition, in [13]. It was given
its name in [11] and later it was also studied in [10]. Originally, distinguishing number was defined as a parameter
associated with classes of graphs. Below we define this parameter with respect to graphs. The two definitions are consistent
in the sense that the distinguishing number in a class of graphs is either bounded in both definitions or unbounded in
both of them.

Given a graph G and a set U ⊆ V (G), we say that the disjoint subsets U1, . . . , Um of V (G) (also disjoint from U) are
distinguished by U if for each i, all vertices of Ui have the same neighbourhood in U , and for each i ̸= j, vertices x ∈ Ui
and y ∈ Uj have different neighbourhoods in U .

Definition 3. The distinguishing number of G is the maximum k such that G contains a subset U ⊂ V (G) that distinguishes
at least k subsets of V (G), each of size at least k.

The paper [14] provides a complete description of minimal classes of unbounded distinguishing number, of which
there are precisely 13. In Theorem 17 we list all of them with an alternative proof, which is substantially shorter and
which is based on the characterization of neighbourhood diversity given in Theorem 11. One of these classes is known as
star forests, i.e. graphs every connected component of which is a star. In the context of minimal classes we additionally
require that the centres of all stars belong to the same part of the bipartition of a star forest.

Theorem 17. Let X be a hereditary graph class where the distinguishing number is unbounded. Then X contains at least one
of the following 13 minimal classes:

• the class of P3-free graphs;
• the class of chain graphs;
• the class of threshold graphs;
• the class of star forests;
• the class of graphs obtained from star forests by creating a clique on the leaves of the stars;
• the class of graphs obtained from star forests by creating a clique on the centres of the stars;
• the class of graphs obtained from star forests by creating a clique on the leaves of the stars and a clique on the centres of

the stars;
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• the classes of complements of graphs in the above listed classes (note that the complements of threshold graphs are
threshold graphs).

roof. Let X be a class of unbounded distinguishing number. Then for each k there is a graph Gk in X containing a subset
U that distinguishes k subsets U1, . . . , Uk of V (G), each of size k. Since k can be arbitrarily large, we may assume (by a
Ramsey argument) that each Ui is either a clique or an independent set and that for any two sets Ui and Uj, there are
either all possible edges or no edges between them. For each i, we choose arbitrarily a vertex ui ∈ Ui, and denote the
subgraph of Gk induced by {u1, . . . , uk}∪U by G∗

k . Also, let X
∗ be the subclass of X consisting of all graphs G∗

k and all their
induced subgraphs.

By definition, the vertices u1, . . . , uk have pairwise different neighbourhoods in U . Therefore, the neighbourhood
diversity is unbounded in X∗ and hence it contains one of the nine minimal classes of unbounded neighbourhood diversity.

Assume first that X∗ contains the classM, i.e. we assume that the graphs G∗

k contain induced copies of pK2 for arbitrarily
large values of p. Therefore, the graphs Gk induce either arbitrarily large star forests (if arbitrarily many sets Ui are
independent) or arbitrarily large P3-free graphs (if arbitrarily many sets Ui are cliques). Therefore, if X∗ contains the class
M, then X contains either the class of all star forests or the class of all P3-free graphs.

If X∗ contains any minimal class of unbounded neighbourhood diversity obtained from M by various complementation
operations, then the situation is similar, i.e. in this case X contains one of the listed classes obtained from P3-free graphs
or from star forests by various complementation operations.

If X∗ contains the class of chain graphs, then X contains either all chain graphs (if arbitrarily many sets Ui are
independent) or all P3-free graphs (if arbitrarily many sets Ui are cliques). Similarly, if X∗ contains the class of threshold
graphs, then X contains either all threshold graphs or all P3-free graphs or all P3-free graphs. □

Theorem 17 describes what is ‘‘forbidden’’ for graphs of bounded distinguishing number. The next result can be viewed
as a counterpart of Theorem 17 explaining what is ‘‘allowed’’ for graphs of bounded distinguishing number.

Theorem 18. The distinguishing number is bounded in a hereditary class X if and only if there are positive integers b = b(X)
and d = d(X) such that the vertices of any graph G in X can be partitioned into at most b subsets, called bags, in such a way
that any bag is either a clique or an independent set and for any two bags U and W the graph G[U, V ] has either degree or
bi-codegree bounded by d.

Proof. Let us call a partition satisfying the statement of the theorem a proper (b, d)-partition. To prove the theorem in the
‘only if’ direction, we will show that none of the minimal classes of unbounded distinguishing number admits a proper
partition. Clearly, it suffices to show this only for the following three classes listed in Theorem 17: P3-free graphs, chain
graphs and star forests.

The class of P3-free graphs does not admit a proper partition, because the co-chromatic number is unbounded in this
class. Indeed, consider the graph pKp in this class for some p. Clearly, α(pKp) = ω(pKp) = p. Therefore, if pKp admits a
artition into t cliques and s independent sets, then p2 = |V (pKp)| ≤ (t+s)p and hence p ≤ t+s. Since p can be arbitrarily
arge, we conclude that the co-chromatic number is unbounded in the class of P3-free graphs.

Assume now that the class of star forests admits a proper (b, d)-partition. Without loss of generality we may assume
hat every bag in this partition is an independent set, since the clique number is bounded in this class. Consider the graph
= (b + 1)K1,(b−1)d+1 in this class. Then there are two bags in the partition of V (G), say U and W , such that U contains

he centres of at least two stars and W contains at least d+1 leaves of one of these stars. But then neither the degree nor
bi-codegree is bounded by d in G[U, V ]. This contradiction shows that the class of star forests does not admit a proper
artition.
Finally, assume that the class of chain graphs admits a proper (b, d)-partition, and again without loss of generality we

assume that every bag in this partition is an independent set. Consider the graph G = Zb((b−1)d+1)+1 in this class. Then
there are two bags in the partition of V (G), say U and W , such that U contains two vertices xi, xj with j− i ≥ (b− 1)d+ 1
(in the notation of Fig. 1) and W contains at least d + 1 neighbours of xj, which are not adjacent to xi. But then neither
the degree nor bi-codegree is bounded by d in G[U, V ]. This contradiction shows that the class of chain graphs does not
admit a proper partition.

Now we turn to the proof of the ‘if’ part of the theorem and consider a class X of graphs of bounded distinguishing
number. Then X excludes a graph from each of the 13 minimal classes identified in Theorem 17. By excluding (forbidding)
a P3-free graph, a star forest and their complements we bound the co-chromatic number of any graph G in X , which follows
from the results in [17,28]. Therefore, the vertices of G can be partitioned into finitely many bags, each of which is either
a clique or an independent set. Now we consider two independent sets in this partition and show that they can be further
partitioned into finitely many subsets any two of which induce a graph of bounded degree or bi-codegree. If two bags
induce a co-bipartite graph or a split graph, the arguments are similar.

It was shown in [9] that the vertices of any bipartite graph excluding a star forest and the bipartite complement of
a star forest can be partitioned into finitely many subsets so that any two subsets induce a bipartite graph, which is
2K1,p-free for a constant p. We repeat that the bipartite complement of 2K1,p is again 2K1,p, i.e. the class of 2K1,p-free

bipartite graphs is self-complementary in the bipartite sense.
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It remains to show that the vertices of any 2K1,p-free bipartite graph H = (A, B, E), which also excludes a chain graph Z ,
an be partitioned into finitely many subsets any two of which induce a graph of bounded degree or bi-codegree. Without
oss of generality, we assume that Z = Zt for some t (since Z is an induced subgraph of Zt for t ≥ |V (Z)|) and prove the
statement by induction on t . For t = 1, the result is obvious. To prove the result for larger values of t , we assume by
induction that it is valid for Zt−1, as well as for the bipartite complement of Zt−1 (since both chain graphs and 2K1,p-free
bipartite graphs are self-complementary in the bipartite sense) and we let H be a Zt-free graph.

Let a be a vertex of maximum degree in A and let b be a vertex of maximum degree in B, and assume first that a is
adjacent to b. We denote by B1 the set of neighbours (different from b) and by B0 the set of non-neighbours of a in B.
Also, let A1 be the set of neighbours (different from a) and let A0 be the set of non-neighbours of b in A.

First, we observe that every vertex a′
∈ A has at most p−1 neighbours in B0, because if a′ has p neighbours non-adjacent

to a, then a has p neighbours non-adjacent to a′ (since deg(a) ≥ deg(a′)), in which case an induced 2K1,p arises. Similarly,
very vertex b′

∈ B has at most p − 1 neighbours in A0.
Second, we note that the subgraph of H induced by A0 ∪ B1 does not contain Zt−1 (since otherwise together with a

nd b it induces a Zt ) and the subgraph of H induced by A1 ∪ B1 does not contain the bipartite complement of Zt−1 (since
therwise together with a and b it induces a Zt ). Similarly, the subgraph of H induced by A1 ∪ B0 does not contain Zt−1.
pplying induction to the subgraphs of H induced by A0 ∪ B1, by A1 ∪ B1, and by A1 ∪ B0, we conclude that the vertices
f H can be partitioned into finitely many subsets any two of which induce a graph of bounded degree or bi-codegree.
The case when a is not adjacent to b can be analysed similarly by involving into the analysis a vertex b′

∈ B adjacent
o a and a vertex a′

∈ A adjacent to b. If such vertices do not exist, then H is edgeless and there is nothing to prove.
therwise, the number of subsets in the partition of A and B doubles, but the arguments remain the same. □

Let us observe that if d = 0 in Theorem 18, then bounded distinguishing number coincides with bounded neighbour-
ood diversity. According to this theorem, by complementing dense bags (cliques) and dense pairs of bags (of bounded
i-codegree) in a graph G of bounded distinguishing number we transform this graph into a graph of bounded degree.
e will refer to this operation as sparsification of G.

.2. Uniformicity

Uniformicity is one more parameter that implicitly appeared in [13] without a name and a formal definition. It was
ormally defined in [30] as follows.

Let k be a natural number, F a simple graph on the vertex set {a1, . . . , ak}, and K a graph with loops allowed on the
ertex set {a1, . . . , ak}. Let U(F ) be the disjoint union of infinitely many copies of F , and for i = 1, . . . , k, let Ai be the
ubset of vertices of U(F ) containing vertex ai from each copy of F . We call A1, . . . , Ak the bags of U(F ). Now we construct
rom U(F ) an infinite graph U(F , K ) on the same vertex set by complementing (flipping) the edges between two bags
i and Aj (or within Ai), whenever aiaj (or aiai) is an edge in K . We call K the flipping graph. Finally, let C(F , K ) be the
ereditary class consisting of all the finite induced subgraphs of U(F , K ).
To give an example, let k = 2, F = K2 and E(K ) = ∅. Then C(F , K ) is the class M of graphs of vertex degree at most

1 defined in Section 3.3. By adding to K the edge a1a2, we transform M into the class Mbc of bipartite complements of
graphs in M.

Definition 4. A graph G is called k-uniform if there is a number k such that G ∈ C(F , K ) for some F and K . The minimum
k such that G is k-uniform is the uniformicity of G.

By Theorem 18, bounded uniformicity implies bounded distinguishing number. However, the inverse implication is
not valid. Indeed, sparsification transforms any graph of bounded uniformicity into a graph with connected components
of bounded size, while the distinguishing number can be bounded even for sparse graphs with arbitrarily large connected
components, for instance, for linear forests, i.e. graphs every connected component of which is a path.

The importance of the notion of uniformicity is due to the fact that all classes of bounded uniformicity are well-quasi-
ordered under the labelled induced subgraph relation, which was shown in [30]. Moreover, in case of finite distinguishing
number a hereditary class is well-quasi-ordered under the labelled induced subgraph relation if and only if it is of bounded
uniformicity, which was shown in [10].

In the context of speeds of hereditary classes the importance of this notion is due to the fact that the family of classes
of bounded uniformicity coincides with the family of classes with speeds below the Bell number, which follows from the
results in [13,14]. The latter family was characterized in [11] by means of minimal hereditary classes that do not belong
to the family in the following way.

First, we observe that all the 13 minimal classes of unbounded distinguishing number (Theorem 17) are also minimal
classes with speeds at least the Bell number, which was shown in [14]. Therefore, all the 13 minimal classes of unbounded
distinguishing number are also minimal classes of unbounded uniformicity. To illustrate this, consider, for instance, any
proper hereditary subclass X of star forests, and let pK1,p be a star forest not in X for some p. Then every graph in X has
at most p− 1 connected components (stars) of arbitrarily large size and arbitrarily many components K1,s with s ≤ p− 1.
Therefore, the uniformicity of graphs in X is bounded by 3p − 2: take the graph F on the vertex set {a , . . . , a } in
1 3p−2
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hich the vertices a1, . . . , ap induce a K1,p−1 and the remaining vertices are isolated, and define the edges of the flipping
raph K to be ap+1ap+2, ap+3ap+4, . . . , a3p−3a3p−2; then clearly every graph in X is an induced subgraph of C(F , K ).
In addition to the 13 minimal classes of unbounded distinguishing number, the list of minimal hereditary classes

of unbounded uniformicity also includes an infinite collection of classes with bounded distinguishing number. Exactly
one of them consists of sparse graphs: the class of linear forests. The minimality of this class follows from the obvious
fact that in any proper hereditary subclass of linear forests the size of connected graphs is bounded. All other minimal
classes are not sparse, because paths are the only connected sparse (i.e. of bounded degree) structures unavoidable in large
graphs (according to Ramsey). All other minimal classes can be obtained from linear forests by various complementation
operations. The complete list of these classes was described in [11] in the terminology of language theory as follows.

Let A be a finite alphabet, w an infinite word over A, and K an undirected graph with loops allowed and with vertex
et V (K ) = A (the flipping graph). Also, let P(w) be the infinite path running through the letters of w and let P(w, K ) be
he graph obtained from P(w) by flipping in accordance with the edges of K , i.e. by changing the adjacency between two
etters whenever these letters form an edge in K . Finally, let C(w, K ) be the hereditary class consisting of all the finite
nduced subgraphs of P(w, K ). In particular, if K has no edges, then C(w, K ) is the class of linear forests.

A factor in a word w is a contiguous subword, i.e. a subword whose letters appear consecutively in w. A word w is
alled almost periodic if for any factor f of w there is a constant kf such that any factor of w of size at least kf contains f
s a factor.

heorem 19 ([11]). Let X be a class of graphs with finite distinguishing number. Then X is a minimal hereditary class with
peed at least the Bell number if and only if there exists a finite graph K with loops allowed and an infinite almost periodic
ord w over V (K ) such that X = C(w, K ).

We refer to any class of the form C(w, K ), where K is a finite graph with loops allowed and w is an infinite almost
eriodic word over V (K ), as a class of flipped linear forests, and summarize the above discussion in the following statement.

Theorem 20. A hereditary class X has bounded uniformicity if and only if it has speed below the Bell number. The list of minimal
hereditary classes of unbounded uniformicity consists of the 13 classes of unbounded distinguishing number (Theorem 17) and
ll the classes of flipped linear forests (Theorem 19).

5.3. Lettericity

The notion of graph lettericity was introduced in [37] and it is closely related to the notion of geometric grid classes
of permutations introduced in [1], as was shown in [3]. This notion can be defined as follows.

Let A be a finite alphabet, D a subset of A2 (a decoder) and w = w1w2 . . . wn a word over A. The letter graph G(D, w)
associated with w has {1, 2, . . . , n} as its vertex set, and two vertices i < j are adjacent if and only if the ordered pair
(wi, wj) belongs to D. The lettericity of G is the minimum k such that G is representable as a letter graph over an alphabet
of k letters. We denote the set of all graphs representable over an alphabet A with a decoder D by C(A,D).

The class of graphs representable over the alphabet A = {a, b} with the decoder D = {(a, b)} is precisely the class of
chain graphs. In other words, chain graphs are ‘‘easy’’ for lettericity. On the other hand, they are ‘‘hard’’ for uniformicity
(uniformicity is unbounded for chain graphs). We also recall that matchings are easy for uniformicity, and from [37] we
know that they are hard for lettericity. In other words, these two notions seem to be ‘‘orthogonal’’ to each other. We
claim that there is, in fact, a close relationship between lettericity and uniformicity.

In order to describe this relationship, we observe that for each fixed k there is a bijection between the set of pairs
(F , K ) defining classes of bounded uniformicity and the set of decoders D defining classes of bounded lettericity. This
bijection can be defined as follows. For each i, we include the pair (ai, ai) in the decoder D whenever aiai is a loop in K .
If i < j and aiaj ̸∈ E(F ), then aiaj ∈ E(K ) ⇐⇒ (ai, aj), (aj, ai) ∈ D and aiaj ̸∈ E(K ) ⇐⇒ (ai, aj), (aj, ai) ̸∈ D. If i < j and
aiaj ∈ E(F ), then aiaj ∈ E(K ) ⇐⇒ (ai, aj) ∈ D, (aj, ai) ̸∈ D and aiaj ̸∈ E(K ) ⇐⇒ (aj, ai) ∈ D, (ai, aj) ̸∈ D. We will refer
to this bijection as duality. This notion, together with Theorem 20, suggests an approach to identifying minimal classes of
unbounded lettericity.

First, we observe that matchings and their flipped versions play the same role for lettericity as the 13 classes of
unbounded distinguishing number play for uniformicity, i.e., they reduce the analysis to graphs with a bounded number
of bags, as was shown in [9] (see Theorem 25 in the next section). In case of finite distinguishing number, every minimal
class C(w, K ) of unbounded uniformicity is a class of flipped linear forests. The underlying graph of P(w, K ) is an infinite
path P(w) running through an infinite almost periodic word w over a finite alphabet. To simplify the description, we
assume that w is strictly periodic (which is always the case for finitely defined classes) with period a1 . . . ak. The two
bags A1 and Ak (formed by the letters a1 and ak) induce in P(w) a matching with edges a(i)k a(i+1)

1 , where the upper index
in parentheses indicates the order in which the letters appear in the word. By shifting the upper indices, we switch this
matching to a(i)k a(i)1 and obtain the infinite graph U(Ck) consisting of an infinite collection of finite cycles Ck. In this way, we
transform a minimal class C(w, K ) of unbounded uniformicity into a class C(Ck, K ) of bounded uniformicity. Next, we map
the class C(Ck, K ) to the dual class C(A,D) of bounded lettericity. The infinite periodic word w, read with the decoder D,
now defines an infinite graph of lettericity k. In this graph, letters a and a induce a chain graph. By shifting the indices
1 k
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Fig. 2. The graphs Ti,j,k (left) and T∆
i,j,k (right).

gain in the same manner as described above, it is not difficult to show that the class of finite induced subgraphs of this
raph becomes a minimal class of unbounded lettericity. We call this procedure of transforming a class of flipped linear
orests into a class of unbounded lettericity the shifting procedure and conjecture that all minimal classes of unbounded
ettericity can be obtained in this way.

onjecture 1. The set of minimal hereditary classes of unbounded lettericity consists of matchings and their flipped versions
nd the infinite collection of classes obtained from flipped linear forests by the shifting procedure.

. More parameters and open problems

We conclude the paper by reporting more results characterizing graph parameters in terms of critical hereditary classes
nd propose a number of open problems.

• Tree-depth and path number. Let us define the path number of a graph G to be the length of a longest (not necessarily
induced) path in G. From the results in [12] it follows that there are precisely three minimal hereditary classes of
graphs of unbounded path number: complete graphs, complete bipartite graphs and linear forests. In [36], based
on the results in [12], it was reported that the same is true for tree-depth, i.e. the tree-depth is unbounded in a
hereditary class X if and only if the path number is unbounded in X , i.e. if and only if X contains either the class of
complete graphs or the class of complete bipartite graphs or the class of linear forests.

• h-index. The h-index of G is the maximum k such that G contains at least k vertices of degree at least k [19].
This parameter was characterized in [2] by means of three minimal classes as follows: the h-index of graphs in a
hereditary class X is unbounded if and only if X contains either the class of complete graphs or the class of complete
bipartite graphs or the class of star forests.

Comparing the characterization of tree-depth and h-index with Theorem 8, we conclude that both of them generalize
atching number in the sense that the family of hereditary classes of bounded matching number is contained in the

amily of classes of bounded tree-depth and in the family of classes of bounded h-index. On the other hand, distinguishing
umber generalizes h-index in the same sense, which follows from Theorem 17 and the above characterization of h-index.
An important generalization of tree-depth is tree-width, which was characterized [33] in terms of four critical classes

s follows.

• Tree-width. It is well-known that the class of complete graphs and the class of complete bipartite graphs are two
minimal hereditary classes of unbounded tree-width. However, tree-width remains unbounded even in hereditary
classes of bounded biclique number, i.e. classes excluding a complete graph and a complete bipartite graph as induced
subgraphs. In this family, minimal hereditary classes of unbounded tree-width do not exist, but this family contains
two boundary classes:

T the class of graphs every connected component of which has the form Ti,j,k represented in Fig. 2 (left),
T ∆ the class of graphs every connected component of which has the form T∆

i,j,k represented in Fig. 2 (right).

We call graphs in T the tripods. It is not difficult to see that graphs in T ∆ are the line graphs of tripods. In [33], it
was shown that T and T ∆ are the only boundary classes for the family of classes of bounded tree-width, resulting
in the following tree-width dichotomy.

Theorem 21. Let X be a hereditary class defined by a finite set F of forbidden induced subgraphs. There is a constant
bounding the tree-width of graphs in X if and only if F includes a complete graph, a complete bipartite graph, a tripod
and the line graph of a tripod.

A parameter generalizing both tree-width and h-index is known as degeneracy.
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• Degeneracy. The degeneracy of a graph G is the minimum k such that every induced subgraph of G contains a vertex
of degree at most k. The results in [27] imply the following characterization of degeneracy in terms of critical classes.

Theorem 22. The class of complete graphs and the class of complete bipartite graphs are the only two minimal hereditary
classes of unbounded degeneracy, while the class of forests is the only boundary class for this parameter. In other words,
if X is a hereditary class defined by a finite set F of forbidden induced subgraphs, then degeneracy is bounded for graphs
in X if and only if F includes a complete graph, a complete bipartite graph, and a forest.

It is well-known that bounded degeneracy implies bounded chromatic number, which in turn implies bounded
o-chromatic number.

• Chromatic and co-chromatic number. According to the Gyárfás–Sumner conjecture, there are two critical hereditary
classes for chromatic number, one of which is a minimal class of unbounded chromatic number (complete graphs)
and the other is a boundary class (forests). The authors of [17] showed that the Gyárfás–Sumner conjecture is
equivalent to a conjecture concerning co-chromatic number stating that there are four critical classes for co-
chromatic number: two minimal classes (complete multipartite graphs and their complements) and two boundary
classes (forests and their complements).

According to Theorem 18, a special case of bounded co-chromatic number is given by graphs of bounded distinguishing
umber. We now propose one more parameter, intermediate between co-chromatic number and distinguishing number,
hich implicitly appeared in the proof of Theorem 18 and which can be defined as follows.

• Double-star partition number. The double-star partition number of a graph G is the minimum p such that the vertices
of G can be partitioned into at most p subsets, each of which is either a clique or an independent set, and the
edges between any pair of subsets form a bipartite graph excluding a double star 2K1,p as an induced subgraph. The
following theorem proved in [9] characterizes the double-star partition number in terms of ten minimal hereditary
classes of graphs where this parameter is unbounded.

Theorem 23. A hereditary class X is of unbounded double-star partition number if and only if X contains at least one of
the ten classes of Theorem 17 different from chain graphs, co-chain graphs and threshold graphs.
This theorem and Theorem 17 characterize their respective parameters (double-star partition number and distin-
guishing number) in terms of ‘‘forbidden’’ structures. Theorem 18 is a counterpart of Theorem 17 in the sense that
it describes what is ‘‘allowed’’ in graphs of bounded distinguishing number. The following result provides a similar
counterpart for Theorem 23 and follows from a characterization of bipartite graphs excluding a double star obtained
in [2].

Theorem 24. If the double-star partition number is bounded in a hereditary class X, then there are positive integers
b = b(X) and d = d(X) such that the vertices of any graph G in X can be partitioned into at most b subsets, each of
which is either a clique or an independent set, and the edges between any pair of subsets form a bipartite graph H such
that every induced subgraph of H has a vertex of degree or bi-codegree bounded by d.
We observe, however, that Theorem 24, unlike Theorem 18, is valid only in the ‘if’ direction, i.e. bounding double-star
partition number is sufficient for partitioning the graph in the way described in the theorem, but it is not necessary,
because star forests admit such a partition. Finding minimal (critical) classes that are necessary obstructions for
obtaining a partition described in Theorem 24 is an open problem.

Finally, we propose one more parameter which is intermediate between double-star partition and lettericity. It deals
with the restriction of double-star partition number to the case when the edges between any pair of subsets in a partition
of G form a 2K1,1-free bipartite graph, i.e. a chain graph. We refer to this parameter as chain partition number.

• Chain partition number of a graph G is the minimum number of subsets in a partition of V (G) into cliques and
independent sets such that the edges between any pair of subsets in the partition form a chain graph.

Theorem 25 ([9]). The chain partition number is unbounded in a hereditary class X if and only if X contains at least one
of the six classes of Theorem 11 different from chain graphs, co-chain graphs and threshold graphs.
The importance of this parameter is due to the fact that graphs of bounded chain partition number can be viewed
as an analog of monotone grid classes of permutations [45], when translated to the language of permutation graphs.
More precisely, let P be a permutation class and G(P) the corresponding class of permutation graphs. Then the chain
partition number is bounded in G(P) if and only if P is a monotone grid class.

We summarize our discussion in Fig. 3 which contains most of the parameters mentioned in this paper along with the
respective critical classes.

To conclude the paper, let us observe that there is an intriguing relationship between the three unavoidable classes
of bipartite graphs of unbounded neighbourhood diversity (M, Mbc and Z , see Lemma 4) and the three unavoidable
structures in the Canonical Ramsey Theorem [22] in case of colouring 2-subsets. In this case, the theorem can be stated
as follows: for every positive integer ℓ, there exists a positive integer n = n(ℓ) such that if the 2-subsets of an n-set are
coloured with arbitrarily many colours, then the set contains a subset of size ℓ which is either
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Fig. 3. A Hasse diagram describing the following relation on graph parameters: a parameter p1 is weaker than parameter p2 if for every hereditary
class, boundedness of p1 implies boundedness of p2 . In parentheses, for each parameter, we indicate either the list of critical hereditary classes or/and
the result (conjecture) describing these classes. We indicate boundary classes with the upper index ∞. The classes that are not upper-indexed by
∞ are minimal. In addition to the notation and terminology introduced earlier, we denote by K the class of complete graphs, by LF the class of
linear forest, by SF the class of star forests, by CM the class of complete multipartite graphs.

• monochromatic, i.e. all the 2-subsets have the same colour, or
• rainbow, i.e. the 2-subsets have pairwise different colours, or
• skew, i.e. the elements of the subset can be ordered x1, x2, . . . , xℓ in such a way that the subsets {xi, xj} (i < j) and

{xp, xt} (p < t) have the same colour if and only if i = p.

In this statement, monochromatic and rainbow colourings are complementary to each other, similarly to classes M and
Mbc , while a skew colouring is self-complementary, as in the case of chain graphs (the class Z). We ask whether the two
results (the existence of three unavoidable classes of bipartite graphs of unbounded neighbourhood diversity and three
unavoidable colourings in the Canonical Ramsey Theorem) can be derived from each other.
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