876 research outputs found

    Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    Full text link
    We present a novel stereo vision algorithm that is capable of obstacle detection on a mobile-CPU processor at 120 frames per second. Our system performs a subset of standard block-matching stereo processing, searching only for obstacles at a single depth. By using an onboard IMU and state-estimator, we can recover the position of obstacles at all other depths, building and updating a full depth-map at framerate. Here, we describe both the algorithm and our implementation on a high-speed, small UAV, flying at over 20 MPH (9 m/s) close to obstacles. The system requires no external sensing or computation and is, to the best of our knowledge, the first high-framerate stereo detection system running onboard a small UAV

    Extrinsic Parameter Calibration for Line Scanning Cameras on Ground Vehicles with Navigation Systems Using a Calibration Pattern

    Full text link
    Line scanning cameras, which capture only a single line of pixels, have been increasingly used in ground based mobile or robotic platforms. In applications where it is advantageous to directly georeference the camera data to world coordinates, an accurate estimate of the camera's 6D pose is required. This paper focuses on the common case where a mobile platform is equipped with a rigidly mounted line scanning camera, whose pose is unknown, and a navigation system providing vehicle body pose estimates. We propose a novel method that estimates the camera's pose relative to the navigation system. The approach involves imaging and manually labelling a calibration pattern with distinctly identifiable points, triangulating these points from camera and navigation system data and reprojecting them in order to compute a likelihood, which is maximised to estimate the 6D camera pose. Additionally, a Markov Chain Monte Carlo (MCMC) algorithm is used to estimate the uncertainty of the offset. Tested on two different platforms, the method was able to estimate the pose to within 0.06 m / 1.05∘^{\circ} and 0.18 m / 2.39∘^{\circ}. We also propose several approaches to displaying and interpreting the 6D results in a human readable way.Comment: Published in MDPI Sensors, 30 October 201

    Multiperspective Modeling and Rendering Using General Linear Cameras

    Full text link

    Space optical instruments optimisation thanks to CMOS image sensor technology

    Get PDF
    Today, both CCD and CMOS sensors can be envisaged for nearly all visible sensors and instruments designed for space needs. Indeed, detectors built with both technologies allow excellent electro-optics performances to be reached, the selection of the most adequate device being driven by their functional and technological features and limits. The first part of the paper presents electro-optics characterisation results of CMOS Image Sensors (CIS) built with an optimised CMOS process, demonstrating the large improvements of CIS electro-optics performances. The second part reviews the advantages of CMOS technology for space applications, illustrated by examples of CIS developments performed by EADS Astrium and Supaéro/CIMI for current and short term coming space programs

    In-lab characterization of HYPSOS, a novel stereo hyperspectral observing system: first results

    Get PDF
    HYPSOS (HYPerspectral Stereo Observing System, patented) is a novel remote sensing instrument able to extract the spectral information from the two channels of a pushbroom stereo camera; thus it simultaneously provides 4D information, spatial and spectral, of the observed features. HYPSOS has been designed to be a compact instrument, compatible with small satellite applications, to be suitable both for planetary exploration as well for terrestrial environmental monitoring. An instrument with such global capabilities, both in terms of scientific return and needed resources, is optimal for fully characterizing the observed surface of investigation. HYPSOS optical design couples a pair of folding mirrors to a modified three mirror anastigmat telescope for collecting the light beams from the optical paths of the two stereo channels; then, on the telescope focal plane, there is the entrance slit of an imaging spectrograph, which selects and disperses the light from the two stereo channels on a bidimensional detector. With this optical design, the two stereo channels share the large majority of the optical elements: this allowed to realize a very compact instrument, which needs much less resources than an equivalent system composed by a stereo camera and a spectrometer. To check HYPSOS actual performance, we realized an instrument prototype to be operated in a laboratory environment. The laboratory setup is representative of a possible flight configuration: the light diffused by a surface target is collimated on the HYPSOS channel entrance apertures, and the target is moved with respect to the instrument to reproduce the in- flight pushbroom acquisition mode. Here we describe HYPSOS and the ground support equipment used to characterize the instrument, and show the preliminary results of the instrument alignment activities
    • …
    corecore