38 research outputs found

    Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem

    Get PDF
    In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has increased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants

    Improved Bounds for Online Preemptive Matching

    Get PDF
    When designing a preemptive online algorithm for the maximum matching problem, we wish to maintain a valid matching M while edges of the underlying graph are presented one after the other. When presented with an edge e, the algorithm should decide whether to augment the matching M by adding e (in which case e may be removed later on) or to keep M in its current form without adding e (in which case e is lost for good). The objective is to eventually hold a matching M with maximum weight. The main contribution of this paper is to establish new lower and upper bounds on the competitive ratio achievable by preemptive online algorithms: 1. We provide a lower bound of 1+ln 2~1.693 on the competitive ratio of any randomized algorithm for the maximum cardinality matching problem, thus improving on the currently best known bound of e/(e-1)~1.581 due to Karp, Vazirani, and Vazirani [STOC'90]. 2. We devise a randomized algorithm that achieves an expected competitive ratio of 5.356 for maximum weight matching. This finding demonstrates the power of randomization in this context, showing how to beat the tight bound of 3 +2\sqrt{2}~5.828 for deterministic algorithms, obtained by combining the 5.828 upper bound of McGregor [APPROX'05] and the recent 5.828 lower bound of Varadaraja [ICALP'11]

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Approximating Semi-Matchings in Streaming and in Two-Party Communication

    Full text link
    We study the communication complexity and streaming complexity of approximating unweighted semi-matchings. A semi-matching in a bipartite graph G = (A, B, E), with n = |A|, is a subset of edges S that matches all A vertices to B vertices with the goal usually being to do this as fairly as possible. While the term 'semi-matching' was coined in 2003 by Harvey et al. [WADS 2003], the problem had already previously been studied in the scheduling literature under different names. We present a deterministic one-pass streaming algorithm that for any 0 <= \epsilon <= 1 uses space O(n^{1+\epsilon}) and computes an O(n^{(1-\epsilon)/2})-approximation to the semi-matching problem. Furthermore, with O(log n) passes it is possible to compute an O(log n)-approximation with space O(n). In the one-way two-party communication setting, we show that for every \epsilon > 0, deterministic communication protocols for computing an O(n^{1/((1+\epsilon)c + 1)})-approximation require a message of size more than cn bits. We present two deterministic protocols communicating n and 2n edges that compute an O(sqrt(n)) and an O(n^{1/3})-approximation respectively. Finally, we improve on results of Harvey et al. [Journal of Algorithms 2006] and prove new links between semi-matchings and matchings. While it was known that an optimal semi-matching contains a maximum matching, we show that there is a hierarchical decomposition of an optimal semi-matching into maximum matchings. A similar result holds for semi-matchings that do not admit length-two degree-minimizing paths.Comment: This is the long version including all proves of the ICALP 2013 pape
    corecore