181 research outputs found

    Multi-Antenna Coded Caching

    Full text link
    In this paper we consider a single-cell downlink scenario where a multiple-antenna base station delivers contents to multiple cache-enabled user terminals. Based on the multicasting opportunities provided by the so-called Coded Caching technique, we investigate three delivery approaches. Our baseline scheme employs the coded caching technique on top of max-min fair multicasting. The second one consists of a joint design of Zero-Forcing (ZF) and coded caching, where the coded chunks are formed in the signal domain (complex field). The third scheme is similar to the second one with the difference that the coded chunks are formed in the data domain (finite field). We derive closed-form rate expressions where our results suggest that the latter two schemes surpass the first one in terms of Degrees of Freedom (DoF). However, at the intermediate SNR regime forming coded chunks in the signal domain results in power loss, and will deteriorate throughput of the second scheme. The main message of our paper is that the schemes performing well in terms of DoF may not be directly appropriate for intermediate SNR regimes, and modified schemes should be employed.Comment: 7 pages, 2 figure

    Reduced complexity multicast beamforming and group assignment schemes for multi-antenna coded caching

    Get PDF
    Abstract. In spite of recent advancements in wireless communication technologies and data delivery networks, it is unlikely that the speeds supported by these networks will be able to keep up with the exponentially increasing demand caused by the widespread adoption of high-speed and large-data applications. One appealing idea proposed to address this issue is coded caching, which is an innovative data delivery technique that makes use of the network’s aggregate cache rather than the individual memory available to each user. This proposed idea of coded caching helps boost the data rates by distributing cache material throughout the network and delivering independent content to many users at a time. Despite the original theoretical promises for large caching gains, in reality, coded caching suffers from severe bottlenecks that dramatically limit these gains. Some of these bottlenecks are requiring complex successive interference cancellation (SIC) at the receiver, exponential increase in subpacketization, applicability to a limited range of input parameters, and performance losses in low- and mid- signal to noise ratio (SNR) regimes. In this study, we present a novel coded caching scheme based on user grouping for cache-aided multi-input single-output (MISO) networks. One special property of this new scheme is its applicability to every set of input values for the user count (KK), transmitter-side antenna count (LL), and the global coded caching gain (tt). Moreover, for a fixed tt, this scheme can achieve theoretical sum-DoF optimality with no limitations. This strategy yields superior performance in terms of subpacketization when input parameters satisfy t+Lt+1∈N\frac{t+L}{t+1} \in \mathbb{N}. This performance boost is enabled by the underlying user grouping structure during data delivery. However, when input parameters do not comply with t+Lt+1\frac{t+L}{t+1} ∈N\in \mathbb{N}, in order to guarantee symmetry of the scheme and optimal DoF, multicast and unicast messages need to be constructed using a tree diagram, resulting in excess subpacketization and transmission count. Nevertheless, the simple receiver structure without the SIC requirement not only simplifies the implementation complexity but also enables us to use state-of-the-art methods to readily design optimized transmit beamformers maximizing the achievable symmetric rate. Finally, we use numerical analysis to compare our new proposed scheme with well-known coded caching schemes in the literature

    Content delivery over multi-antenna wireless networks

    Get PDF
    The past few decades have witnessed unprecedented advances in information technology, which have significantly shaped the way we acquire and process information in our daily lives. Wireless communications has become the main means of access to data through mobile devices, resulting in a continuous exponential growth in wireless data traffic, mainly driven by the demand for high quality content. Various technologies have been proposed by researchers to tackle this growth in 5G and beyond, including the use of increasing number of antenna elements, integrated point-to-multipoint delivery and caching, which constitute the core of this thesis. In particular, we study non-orthogonal content delivery in multiuser multiple-input-single-output (MISO) systems. First, a joint beamforming strategy for simultaneous delivery of broadcast and unicast services is investigated, based on layered division multiplexing (LDM) as a means of superposition coding. The system performance in terms of minimum required power under prescribed quality-of-service (QoS) requirements is examined in comparison with time division multiplexing (TDM). It is demonstrated through simulations that the non-orthogonal delivery strategy based on LDM significantly outperforms the orthogonal strategy based on TDM in terms of system throughput and reliability. To facilitate efficient implementation of the LDM-based beamforming design, we further propose a dual decomposition-based distributed approach. Next, we study an efficient multicast beamforming design in cache-aided multiuser MISO systems, exploiting proactive content placement and coded delivery. It is observed that the complexity of this problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users in the system. Therefore, we propose a low-complexity alternative through time-sharing that limits the number of subfiles that can be received by a user in each time slot. Moreover, a joint design of content delivery and multicast beamforming is proposed to further enhance the system performance, under the constraint on maximum number of subfiles each user can decode in each time slot. Finally, conclusions are drawn in Chapter 5, followed by an outlook for future works.Open Acces
    • …
    corecore