41,995 research outputs found

    Measurement Invariance, Entropy, and Probability

    Full text link
    We show that the natural scaling of measurement for a particular problem defines the most likely probability distribution of observations taken from that measurement scale. Our approach extends the method of maximum entropy to use measurement scale as a type of information constraint. We argue that a very common measurement scale is linear at small magnitudes grading into logarithmic at large magnitudes, leading to observations that often follow Student's probability distribution which has a Gaussian shape for small fluctuations from the mean and a power law shape for large fluctuations from the mean. An inverse scaling often arises in which measures naturally grade from logarithmic to linear as one moves from small to large magnitudes, leading to observations that often follow a gamma probability distribution. A gamma distribution has a power law shape for small magnitudes and an exponential shape for large magnitudes. The two measurement scales are natural inverses connected by the Laplace integral transform. This inversion connects the two major scaling patterns commonly found in nature. We also show that superstatistics is a special case of an integral transform, and thus can be understood as a particular way in which to change the scale of measurement. Incorporating information about measurement scale into maximum entropy provides a general approach to the relations between measurement, information and probability

    Statistical mechanics of two-dimensional point vortices: relaxation equations and strong mixing limit

    Full text link
    We complete the literature on the statistical mechanics of point vortices in two-dimensional hydrodynamics. Using a maximum entropy principle, we determine the multi-species Boltzmann-Poisson equation and establish a form of virial theorem. Using a maximum entropy production principle (MEPP), we derive a set of relaxation equations towards statistical equilibrium. These relaxation equations can be used as a numerical algorithm to compute the maximum entropy state. We mention the analogies with the Fokker-Planck equations derived by Debye and H\"uckel for electrolytes. We then consider the limit of strong mixing (or low energy). To leading order, the relationship between the vorticity and the stream function at equilibrium is linear and the maximization of the entropy becomes equivalent to the minimization of the enstrophy. This expansion is similar to the Debye-H\"uckel approximation for electrolytes, except that the temperature is negative instead of positive so that the effective interaction between like-sign vortices is attractive instead of repulsive. This leads to an organization at large scales presenting geometry-induced phase transitions, instead of Debye shielding. We compare the results obtained with point vortices to those obtained in the context of the statistical mechanics of continuous vorticity fields described by the Miller-Robert-Sommeria (MRS) theory. At linear order, we get the same results but differences appear at the next order. In particular, the MRS theory predicts a transition between sinh and tanh-like \omega-\psi relationships depending on the sign of Ku-3 (where Ku is the Kurtosis) while there is no such transition for point vortices which always show a sinh-like \omega-\psi relationship. We derive the form of the relaxation equations in the strong mixing limit and show that the enstrophy plays the role of a Lyapunov functional

    How to read probability distributions as statements about process

    Full text link
    Probability distributions can be read as simple expressions of information. Each continuous probability distribution describes how information changes with magnitude. Once one learns to read a probability distribution as a measurement scale of information, opportunities arise to understand the processes that generate the commonly observed patterns. Probability expressions may be parsed into four components: the dissipation of all information, except the preservation of average values, taken over the measurement scale that relates changes in observed values to changes in information, and the transformation from the underlying scale on which information dissipates to alternative scales on which probability pattern may be expressed. Information invariances set the commonly observed measurement scales and the relations between them. In particular, a measurement scale for information is defined by its invariance to specific transformations of underlying values into measurable outputs. Essentially all common distributions can be understood within this simple framework of information invariance and measurement scale.Comment: v2: added table of contents, adjusted section numbers v3: minor editing, updated referenc

    Escort mean values and the characterization of power-law-decaying probability densities

    Get PDF
    Escort mean values (or qq-moments) constitute useful theoretical tools for describing basic features of some probability densities such as those which asymptotically decay like {\it power laws}. They naturally appear in the study of many complex dynamical systems, particularly those obeying nonextensive statistical mechanics, a current generalization of the Boltzmann-Gibbs theory. They recover standard mean values (or moments) for q=1q=1. Here we discuss the characterization of a (non-negative) probability density by a suitable set of all its escort mean values together with the set of all associated normalizing quantities, provided that all of them converge. This opens the door to a natural extension of the well known characterization, for the q=1q=1 instance, of a distribution in terms of the standard moments, provided that {\it all} of them have {\it finite} values. This question would be specially relevant in connection with probability densities having {\it divergent} values for all nonvanishing standard moments higher than a given one (e.g., probability densities asymptotically decaying as power-laws), for which the standard approach is not applicable. The Cauchy-Lorentz distribution, whose second and higher even order moments diverge, constitutes a simple illustration of the interest of this investigation. In this context, we also address some mathematical subtleties with the aim of clarifying some aspects of an interesting non-linear generalization of the Fourier Transform, namely, the so-called qq-Fourier Transform.Comment: 20 pages (2 Appendices have been added

    A parametrization of two-dimensional turbulence based on a maximum entropy production principle with a local conservation of energy

    Full text link
    In the context of two-dimensional (2D) turbulence, we apply the maximum entropy production principle (MEPP) by enforcing a local conservation of energy. This leads to an equation for the vorticity distribution that conserves all the Casimirs, the energy, and that increases monotonically the mixing entropy (HH-theorem). Furthermore, the equation for the coarse-grained vorticity dissipates monotonically all the generalized enstrophies. These equations may provide a parametrization of 2D turbulence. They do not generally relax towards the maximum entropy state. The vorticity current vanishes for any steady state of the 2D Euler equation. Interestingly, the equation for the coarse-grained vorticity obtained from the MEPP turns out to coincide, after some algebraic manipulations, with the one obtained with the anticipated vorticity method. This shows a connection between these two approaches when the conservation of energy is treated locally. Furthermore, the newly derived equation, which incorporates a diffusion term and a drift term, has a nice physical interpretation in terms of a selective decay principle. This gives a new light to both the MEPP and the anticipated vorticity method.Comment: To appear in the special IUTAM issue of Fluid Dynamics Research on Vortex Dynamic

    Revisiting maximum-a-posteriori estimation in log-concave models

    Get PDF
    Maximum-a-posteriori (MAP) estimation is the main Bayesian estimation methodology in imaging sciences, where high dimensionality is often addressed by using Bayesian models that are log-concave and whose posterior mode can be computed efficiently by convex optimisation. Despite its success and wide adoption, MAP estimation is not theoretically well understood yet. The prevalent view in the community is that MAP estimation is not proper Bayesian estimation in a decision-theoretic sense because it does not minimise a meaningful expected loss function (unlike the minimum mean squared error (MMSE) estimator that minimises the mean squared loss). This paper addresses this theoretical gap by presenting a decision-theoretic derivation of MAP estimation in Bayesian models that are log-concave. A main novelty is that our analysis is based on differential geometry, and proceeds as follows. First, we use the underlying convex geometry of the Bayesian model to induce a Riemannian geometry on the parameter space. We then use differential geometry to identify the so-called natural or canonical loss function to perform Bayesian point estimation in that Riemannian manifold. For log-concave models, this canonical loss is the Bregman divergence associated with the negative log posterior density. We then show that the MAP estimator is the only Bayesian estimator that minimises the expected canonical loss, and that the posterior mean or MMSE estimator minimises the dual canonical loss. We also study the question of MAP and MSSE estimation performance in large scales and establish a universal bound on the expected canonical error as a function of dimension, offering new insights into the good performance observed in convex problems. These results provide a new understanding of MAP and MMSE estimation in log-concave settings, and of the multiple roles that convex geometry plays in imaging problems.Comment: Accepted for publication in SIAM Imaging Science
    corecore