11 research outputs found

    Approximability and proof complexity

    Full text link
    This work is concerned with the proof-complexity of certifying that optimization problems do \emph{not} have good solutions. Specifically we consider bounded-degree "Sum of Squares" (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Parrilo shows that this proof system is automatizable using semidefinite programming (SDP), meaning that any nn-variable degree-dd proof can be found in time nO(d)n^{O(d)}. Furthermore, the SDP is dual to the well-known Lasserre SDP hierarchy, meaning that the "d/2d/2-round Lasserre value" of an optimization problem is equal to the best bound provable using a degree-dd SOS proof. These ideas were exploited in a recent paper by Barak et al.\ (STOC 2012) which shows that the known "hard instances" for the Unique-Games problem are in fact solved close to optimally by a constant level of the Lasserre SDP hierarchy. We continue the study of the power of SOS proofs in the context of difficult optimization problems. In particular, we show that the Balanced-Separator integrality gap instances proposed by Devanur et al.\ can have their optimal value certified by a degree-4 SOS proof. The key ingredient is an SOS proof of the KKL Theorem. We also investigate the extent to which the Khot--Vishnoi Max-Cut integrality gap instances can have their optimum value certified by an SOS proof. We show they can be certified to within a factor .952 (>.878> .878) using a constant-degree proof. These investigations also raise an interesting mathematical question: is there a constant-degree SOS proof of the Central Limit Theorem?Comment: 34 page

    A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

    Full text link
    We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov '02], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown in [Riis '93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree expanders.Comment: Full-length version of paper to appear in Proceedings of the 30th Annual Computational Complexity Conference (CCC '15), June 201

    Space complexity in polynomial calculus

    Get PDF
    During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems that are used by SAT solvers. There has been a relatively long sequence of papers on space in resolution, which is now reasonably well understood from this point of view. For other natural candidates to study, however, such as polynomial calculus or cutting planes, very little has been known. We are not aware of any nontrivial space lower bounds for cutting planes, and for polynomial calculus the only lower bound has been for CNF formulas of unbounded width in [Alekhnovich et al. ’02], where the space lower bound is smaller than the initial width of the clauses in the formulas. Thus, in particular, it has been consistent with current knowledge that polynomial calculus could be able to refute any k-CNF formula in constant space. In this paper, we prove several new results on space in polynomial calculus (PC), and in the extended proof system polynomial calculus resolution (PCR) studied in [Alekhnovich et al. ’02]: 1. We prove an Ω(n) space lower bound in PC for the canonical 3-CNF version of the pigeonhole principle formulas PHPm n with m pigeons and n holes, and show that this is tight. 2. For PCR, we prove an Ω(n) space lower bound for a bitwise encoding of the functional pigeonhole principle. These formulas have width O(log n), and hence this is an exponential improvement over [Alekhnovich et al. ’02] measured in the width of the formulas. 3. We then present another encoding of the pigeonhole principle that has constant width, and prove an Ω(n) space lower bound in PCR for these formulas as well. 4. Finally, we prove that any k-CNF formula can be refuted in PC in simultaneous exponential size and linear space (which holds for resolution and thus for PCR, but was not obviously the case for PC). We also characterize a natural class of CNF formulas for which the space complexity in resolution and PCR does not change when the formula is transformed into 3-CNF in the canonical way, something that we believe can be useful when proving PCR space lower bounds for other well-studied formula families in proof complexity

    Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes

    No full text
    This paper gives nearly optimal lower bounds on the minimum degree of polynomial calculus refutations of Tseitin's graph tautologies and the mod p counting principles, p 2. The lower bounds apply to the polynomial calculus over fields or rings. These are the first linear lower bounds for the polynomial calculus for k-CNF formulas. As

    Resolution over Linear Equations and Multilinear Proofs

    Get PDF
    We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using the (monotone) interpolation by a communication game technique we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on (non-monotone) interpolants in this fragment. We then apply these results to extend and improve previous results on multilinear proofs (over fields of characteristic 0), as studied in [RazTzameret06]. Specifically, we show the following: 1. Proofs operating with depth-3 multilinear formulas polynomially simulate a certain, considerably strong, fragment of resolution over linear equations. 2. Proofs operating with depth-3 multilinear formulas admit polynomial-size refutations of the pigeonhole principle and Tseitin graph tautologies. The former improve over a previous result that established small multilinear proofs only for the \emph{functional} pigeonhole principle. The latter are different than previous proofs, and apply to multilinear proofs of Tseitin mod p graph tautologies over any field of characteristic 0. We conclude by connecting resolution over linear equations with extensions of the cutting planes proof system.Comment: 44 page
    corecore